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TOWARD A MATHEMATICAL ANALYSIS FOR A MODEL OF
SUSPENSION FLOWING DOWN AN INCLINED PLANE

KANAME MATSUE∗ AND KYOKO TOMOEDA†

Abstract. We consider the Riemann problem of the dilute approximation equations with spa-
tiotemporally dependent volume fractions from the full model of suspension, in which the particles
settle to the solid substrate and the clear liquid film flows over the sediment [Murisic et al., J. Fluid.
Mech. 717, 203–231 (2013)]. We present a method to find shock waves, rarefaction waves for the
Riemann problem of this system. Our method is mainly based on [Smoller, Springer-Verlag, New
York, second edition, (1994)].
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1. Introduction. We are concerned here with the two dimensional motion of a
suspension flowing down an inclined plane under the effect of gravity. To describe the
problem we choose a coordinate system (x, y), where the x-axis is along a plane with
a inclination angle α

(
0 < α < π

2

)
and the y-axis is perpendicular to this plane. The

motion of suspension is governed by the following partial differential equations

∇p−∇ · [µ(φ)(∇u +∇u>)] = ρ(φ)g,

∂tφ+ u · ∇φ+∇ · J = 0, (1.1)

∇ · u = 0, in 0 < y < h(x, t), t ≥ 0.

Here u = (u, v)> is the volume averaged velocity and p is the pressure of fluid and
h(x, t) is the total suspension thickness. φ is the particle volume fraction and J =
(Jx,Jy)> is the particle flux and g = g(sinα,− cosα)> is the acceleration of gravity.
µ(φ) is the viscosity of fluid and ρ(φ) = ρpφ + ρf (1 − φ), where ρf and ρp are the
density of fluid and particles respectively. The boundary condition on the wall is the
non-slip and no-penetration condition

u = (0, 0)>, at y = 0. (1.2)

The dynamical and kinematic conditions on the free surface are(
−pI + µ(φ)(∇u +∇u>)

)
n = 0, at y = h(x, t), (1.3)

∂th+ u∂xh− v = 0, at y = h(x, t),

where I is the identity matrix and n is the outward unit normal vectors to the free
surface. For the particle fluxes, the no-flux boundary conditions at the wall and free
surface are also imposed :

J · n = 0, at y = 0 and y = h(x, t). (1.4)
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To explain the mechanisms of suspensions, some approximation equations are
derived from the full model (1.1)–(1.4). Murisic et al. [4] derived the dilute approxi-
mation equation which is the system of conservation laws :

∂th+ ∂x

(
1

3
h3
)

= 0, (1.5)

∂tn+ ∂x

(√
2

9C
(nh)3/2

)
= 0, (1.6)

where C =
2(ρp−ρf ) cotα

9(ρfKc)
is the buoyancy parameter and Kc is constant and n = φh.

This dilute approximation equation focuses on the settled regime in which particles
settle to the solid substrate and the clear liquid film flows over the sediment. In [4],
the authors solved (1.5) exactly with the initial data h(x, 0) = 1 for 0 ≤ x ≤ 1,
h(x, 0) = 0 otherwise, and the exact solution for h is given by

h(x, t) =


1 t ≤ x ≤ x`,√
x

t
0 < x < min(t, x`),

0 otherwise,

for t ≥ 0, where x` denote the liquid front position which is given by x` = 1 + t
3 for

0 ≤ t ≤ 3
2 , x` =

(
9t
4

)1/3
for 3

2 < t. One of the earlier examples for solution (1.7) is
given by Huppert [1] for the flow of a constant volume of viscous fluid down a constant
slope. The authors in [4] also obtain the exact solution n of (1.6) with the initial data
n(x, 0) = f0h(x, 0) and some given value f0 � 1.

Our aim in this paper is to cover the solution of the system (1.5)–(1.6) when the
initial volume fraction φ(x, 0) is a variable satisfying 0 < φ < 1. For this system, only
exact solutions obtained for the fixed initial volume fraction φ(x, 0) = f0 are treated
in [4]. On the other hand, in mathematical theory, it is known that the general m×m
system of the hyperbolic conservation laws

∂tU + ∂x(F (U)) = 0

has a discontinuous solution such as a shock wave and a smooth solution such as a
rarefaction wave, where U = (U1, · · · , Um)> ∈ Rm, (x, t) ∈ R × R+ and F (U) =
(F1(U), · · · , Fm(U))> is a vector-valued function which is C2 in some open subset
D ⊂ Rm (see [2], [6]). In order to cover the solution of the system (1.5)–(1.6), we
consider the case where the solutions have a discontinuity, and hence we deal with the
weak solution of the system which is defined by (2.2) below. Applying mathematical
theories established in [2], [6] to the system (1.5)–(1.6), we give a construction method
of weak solutions consisting of simple waves such as shock waves and rarefaction waves.

The organization of this paper is as follows. In Section 2, we formulate shock
waves and rarefaction waves for the Riemann problem of the system (1.5)–(1.6). In
Section 3, we find the admissible shock waves and rarefaction waves in settled regime
by using the formula given in Section 2.

2. Preliminaries. We let

U =

(
h
n

)
, F (U) =


1

3
h3√

2

9C
(nh)3/2

 ,
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so that the system (1.5) and (1.6) can be rewritten in the form

∂tU + ∂x(F (U)) = 0. (2.1)

It is well known that a solution to conservation laws (2.1) can become discontinuous
even if the initial data is smooth. Therefore we treat the weak solution which is
defined as follows :

Definition 2.1 ([6]). A bounded measurable function U(x, t) is called a weak
solution of the initial-value problem for (2.1) with bounded and measurable initial data
U(x, 0), provided that∫ ∞

0

∫
R

(Uψt + F (U)ψx)dxdt+

∫
R
U(x, 0)ψ(x, 0)dx = 0 (2.2)

holds for all ψ ∈ C1
0 (R ×R+;R2). If the weak solution U(x, t) has a discontinuity

along a curve x = x(t), the solution U and the curve x = x(t) must satisfy the
Rankine-Hugoniot relations (jump conditions)

s(UL − UR) = F (UL)− F (UR), (2.3)

where UL = U(x(t) − 0, t) is the limit of U approaching (x, t) from the left and
UR = U(x(t) + 0, t) is the limit of U approaching (x, t) from the right, and s = dx

dt is
the propagation speed of x(t).

We consider the Riemann problem for the conservation laws (2.1) with the initial
data called the Riemann data

U(x, 0) =

{
U0 x < 0

U2 x > 0
. (2.4)

The Jacobian matrix of F at U is

DF (U) =

 h2 0√
1

2C
n3h

√
1

2C
h3n


and district eigenvalues of DF (U) are

λ1(U) =

√
1

2C
h3n, λ2(U) = h2. (2.5)

Here we assume that h and n are real valued function of (x, t) ∈ R×R+. According
to [4], set C = 2.307 and n = φh, where the particle volume fraction φ satisfies
0 ≤ φ < 1. Under these conditions, the system (2.1) is strictly hyperbolic, i.e.,
district eigenvalues λj(U) (j = 1, 2) are real-valued and λ1(U) < λ2(U) holds for
any U ∈ Ω, where Ω = {(h, n) ∈ R2 : h > 0, 0 ≤ n < h}. The right eigenvectors
corresponding to the eigenvalues λj(U) are

r1(U) =

(
0

t1

)
, r2(U) =

h
2 −

√
1

2C
h3n√

1

2C
n3h

 ,
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where t1 6= 0 is a constant. Note that ∇λ1 · r1 = t1
2

√
1

2Cnh
3 6= 0 and ∇λ2 · r2 =

2h(h2 −
√

1
2Ch

3n) 6= 0 in Ω, namely, the first and the second characteristic fields are

genuinely nonlinear in Ω. In this case, the weak solution will consist of three constant
states U0, U1, U2; the constant states Uj−1 and Uj (j = 1, 2) are connected by either
shock waves or rarefaction waves (see [2], [6]).

Fix the reference point Up = (hp, np). We consider right states UR = U = (h, n)
which can be connected to a left state UL = Up followed by shock waves or rarefaction
waves. If the weak solution has a jump discontinuity between the left state Up and
the right state U , then U must satisfy the Rankine-Hugoniot relation (2.3):

s(h− hp) =
1

3

(
h3 − h3p

)
, (2.6)

s(n− np) =

√
2

9C

(
(nh)3/2 − (nphp)

3/2
)
.

Eliminating s from these equations, we obtain

(n− np)
(
h2 + hhp + h2p

)
=

√
2

C

(
(nh)3/2 − (nphp)

3/2
)

whose graph is called the Hugoniot locus. In order to pick up physically relevant
solutions, we further require the following k-entropy inequalities (k = 1, 2)

s < λ1(Up), λ1(U) < s < λ2(U), (1-entropy inequality),

λ1(Up) < s < λ2(Up), λ2(U) < s, (2-entropy inequality),

which in this case reads√
1

2C
h3n < s < min

{√
1

2C
h3pnp, h

2

}
, (1-entropy inequality), (2.7)

max

{√
1

2C
h3pnp, h

2

}
< s < h2p, (2-entropy inequality), (2.8)

where s is the speed of discontinuity

s =

(
2

81C

)1/4
√

(h2 + hhp + h2p)
(
(nh)3/2 − (nphp)3/2

)
n− np

.

If U satisfies (2.6) and (2.7), then U can be connected to Up from the right followed
by a 1-shock wave. Since the system (2.1) is strictly hyperbolic, it is clear that√

1
2Ch

3n < h2. Thus the 1-shock curve is given by

S1(Up) = {(h, n) : (n− np)
(
h2 + hhp + h2p

)
=

√
2

C

(
(nh)3/2 − (nphp)

3/2
)
,

h3n < h3pnp}. (2.9)

Similarly, U can be connected to Up from the right followed by a 2-shock wave, pro-
vided U satisfies (2.3) and (2.8). This curve is called the 2-shock curve, which is given
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by

S2(Up) = {(h, n) : (n− np)
(
h2 + hhp + h2p

)
=

√
2

C

(
(nh)3/2 − (nphp)

3/2
)
,

h < hp}. (2.10)

We consider candidates of right states UR = U = (h, n) which can be connected
to a given left state UL = Up = (hp, np) followed by a rarefaction wave. Here we note
that the condition for (physically relevant) rarefaction waves is that the corresponding
eigenvalue (speed) λ increases from the left to the right side of the wave (see [6]), that
is

λ(Up) < λ(U). (2.11)

The Riemann problem (2.1), (2.4) are invariant under the scaling (x, t) 7→ (ηx, ηt) for
all η > 0. Therefore we seek self-similar solutions of the form U(x, t) ≡ U(xt ). If we
let ξ = x

t , then we see that U(ξ) satisfies the ordinary differential equation

(DF (U)− ξ)dξU = 0,

where dξ = d
dξ . If dξU 6= 0, then ξ is the eigenvalue for DF (U) and dξU is the

corresponding eigenvector. Since DF (U) has two real and distinct eigenvalues λ1 <
λ2, there exist two families of rarefaction waves, 1-rarefaction waves and 2-rarefaction
waves. For 1-rarefaction waves, the eigenvector dξU = (dξh, dξn)> satisfies

(−λ1(U)I +DF (U))dξU =

−
√

1

2C
h3n+ h2 0√

1

2C
n3h 0

(dξhdξn
)

=

(
0
0

)
,

which gives dξh = 0. Since dξn 6= 0, we have

dh

dn
= 0.

We integrate this to obtain the curve passing all possible U connected to Up followed
by a 1-rarefaction wave. This curve is called the 1-rarefaction curve, which is in our
case given by

R1(Up) = {(h, n) : h = hp, n > np}, (2.12)

where n > np comes from λ1(Up) < λ1(U).
For 2-rarefaction waves, the eigenvector dξU satisfies

(−λ2(U)I +DF (U))dξU =

 0 0√
1

2C
n3h −h2 +

√
1

2C
h3n

(dξh
dξn

)
=

(
0
0

)
,

which gives

dh

dn
=
h2 −

√
1
2Ch

3n√
1
2Cn

3h
=

(
√

2C

√
h

n
− 1

)
h

n
.
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We can solve this ordinary differential equation, the solution is given by

h =
n

(
√

C
2 − eAn)2

,

where eA is the constant of integration. When the solution takes Up = (hp, np), the

constant eA is determined as 1
np

(
√

C
2 −

√
np

hp
) then the special solution is obtained as

h =
nn2p(

n
√

np

hp
− (n− np)

√
C
2

)2 .
The graph of this function is called the 2-rarefaction curve consisting of U which can
be connected from the left state Up by a 2-rarefaction wave. We denote by

R2(Up) = {(h, n) : h

(
n

√
np
hp
− (n− np)

√
C

2

)2

= nn2p, h > hp}, (2.13)

where the condition hp < h comes from λ2(Up) < λ2(U).

3. Admissble weak solutions for the settled regime. In this section we
construct weak solutions of Riemann problem (2.1), (2.4) by substituting the values
corresponding to the settle regime into the curves given in the previous section. We
tackle the Riemann problem for situations wherein h < hp and h > hp representing a
step-down and step-up function, respectively.

We begin with finding admissible wave curves connecting from the fixed left state
U0 to the right states U = (h, n) when h < h0. We set U0 = (h0, n0) = (1, 0.1) and
C = 2.307, which are used in [4]. Then the Hugoniot locus becomes the set

S(U0) :

{
(n− 0.1)

(
h2 + h+ 1

)
=

√
2

2.307

(
(nh)3/2 − (0.1)3/2

)}
, (3.1)

while the 1-entropy inequality and the 2-entropy inequality are as follows, respectively
: √

1

4.614
h3n <s< min

{√
1

46.14
, h2

}
, (3.2)

max

{√
1

46.14
, h2

}
<s< 1, (3.3)

where

s =

(
2

186.867

)1/4
√

(h2 + h+ 1)
(
(nh)3/2 − (0.1)3/2

)
n− 0.1

. (3.4)

We note that inequalities (3.2), (3.3) are equivalent to the following inequalities :

s−
√

1

4.614
h3n > 0 and s−min

{√
1

46.14
, h2

}
< 0, (3.5)

s−max

{√
1

46.14
, h2

}
> 0 and s− 1 < 0. (3.6)
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Fig. 3.1: Hugoniot locus and the 1-entropy inequality. We plot the Hugoniot lo-
cus (3.1) and implicit functions s = λ1(U) and s = min{λ1(U0), λ2(U)}, where

λ1(U) =
√

1
4.614h

3n, λ1(U0) =
√

1
46.14 , λ2(U) = h2. The solid, dashed and dot-

ted curves represent the Hugoniot locus (3.1), s = min{λ1(U0), λ2(U)} and s = λ1(U)
respectively.

We shall examine whether there exists (h, n) satisfying (3.1) and (3.5) with phase
portraits. In Figure 3.1 we plot the Hugoniot locus (3.1) and the implicit functions

s =
√

1
4.614h

3n and s = min{
√

1
46.14 , h

2}, which is s = h2 for the case
√

1
46.14 ≥ h2

(Figure 3.1(a)) and s =
√

1
46.14 for the case

√
1

46.14 < h2 (Figure 3.1(b)). Two dashed

lines in Figure 3.1 show the upper bound and lower bound for the inequality (3.5),
which means that every point (h, n) within the open region between the upper graph

s = min{
√

1
46.14 , h

2} and the lower graph s =
√

1
4.614h

3n satisfies (3.5). As can be

seen from the figure, (h, n) satisfying the Rankine-Hugoniot relation (3.1) does not
belong to the region that the 1-entropy inequality (3.5) holds. Thus, the weak solution
does not admit 1-shock waves.

Similarly, we examine whether there exists a (right) state (h, n) satisfying (3.1)
and (3.6). In Figure 3.2 we plot the Hugoniot locus (3.1) and the implicit functions

s = 1 and s = max{
√

1
46.14 , h

2}. When
√

1
46.14 ≥ h2, every point (h, n) satisfying

the Rankine-Hugoniot relation (3.1) does not belong to the region between the upper
graph s = 1 and the lower graph s = h2 (Figure 3.2(a)). On the other hand, when√

1
46.14 < h2, the Hugoniot locus S(U0) belongs to the region between the upper

graph s = 1 and the lower graph s =
√

1
46.14 (Figure 3.2(b)), which means that there

exists (h, n) satisfying both (3.1) and (3.6). Thus, when
√

1
46.14 < h2, the 2-shock

wave exists and the 2-shock curve is given by (3.1) for h < 1.
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Fig. 3.2: Hugoniot locus and the 2-entropy inequality. In this figure we plot the
Hugoniot locus (3.1) and implicit functions s = λ2(U0) and s = max{λ1(U0), λ2(U)},
where λ1(U0) =

√
1

46.14 , λ2(U0) = 1, λ2(U) = h2. The solid, dashed and dotted

lines represent the Hugoniot locus (3.1), s = λ2(U0) and s = max{λ1(U0), λ2(U)}
respectively.

As a example, we take U2 = (0.2, n2,s)
1, where n2,s is the solution of

1.24 (n2,s − 0.1) =

√
2

2.307

(
(0.2n2,s)

3/2 − (0.1)3/2
)
, (3.7)

which is exactly the equation (3.1) with U = U2. Then the left state U0 = (1, 0.1) and
the right state U2 is connected by a single 2-shock wave. In the range h < 1,(2.9) and
(2.10) make no sense as 1-shock wave and 2-shock wave by the entropy inequalities,
respectively.

Similarly, we find admissible wave curves in the case h > h0. Fix U0 = (h0, n0) =
(0.4, 0.08) and C = 2.307, and we plot the 1-rarefaction curve and 2-rarefaction curve,
which are given as follows, respectively :

h = 0.4, n > 0.08, (3.8)

h =
n (0.08)2(

n
√

0.2− (n− 0.08)
√

2.307
2

)2 , h > 0.4, (3.9)

which means that (3.8) makes no sense as 1-rarefaction 2, but (3.9) makes sense as
2-rarefaction by (2.11).

1Using Newton’s method, a sample of the approximate solution for equation (3.7) is obtained as
n2,s = 0.0777100325.

2When h 6= hp, which is typical as phenomena of fluid motion [3], 1-rarefaction waves do not
exist. On the other hand, if we admit h = hp, a 1-rarefaction wave connecting (hp, np) and (hp, n)
with np < n < hp is also admitted.
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Fig. 3.3: In this figure we plot a graph of two rarefaction wave curves (3.8) and
(3.9). The dashed and solid lines represent the 1-rarefaction wave curve (3.8) and the
2-rarefaction wave curve (3.9) respectively.

w1 w2 appear
ance

1-rarefaction 4
1-rarefaction 2-rarefaction 4
1-rarefaction 1-shock wave ×
1-rarefaction 2-shock wave ×
2-rarefaction 1-rarefaction ×

2-rarefaction ©
2-rarefaction 1-shock wave ×
2-rarefaction 2-shock wave ×

w1 w2 appear
ance

1-shock wave 1-rarefaction ×
1-shock wave 2-rarefaction ×

1-shock wave ×
1-shock wave 2-shock wave ×
2-shock wave 1-rarefaction ×
2-shock wave 2-rarefaction ×
2-shock wave 1-shock wave ×

2-shock wave ©

Table 3.1: Combination of solutions to appearance. wi (i = 1, 2) denote the simple
wave in the i-characteristic field.

As an example, we take U2 = (1.0, n2,r)
3, where n2,r is the solution of

0.08
√
n2,r + (n2,r − 0.08)

√
2.307

2
= n2,r

√
0.2. (3.10)

Then the left state U0 = (0.4, 0.08) and the right state U2 is connected by a single
2-rarefaction wave.

Our argument is summarized in Table 3.1. Following the terminology “allowed
sequence” of waves in [5], wave sequences consisting of shocks and rarefactions asso-
ciated with identical characteristic fields are excluded.

4. Conclusions. In this paper we have dealt with a Riemann problem for the
system of conservation laws (1.5)–(1.6) which is derived from the dilution approxima-

3Using Newton’s method, a sample of the approximate solution for equation (3.10) is obtained
as n2,r = 0.0972723141.
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tion of a suspension flow on an incline as a mathematical model in the settled regime.
Murisic et al. [4] dealt only with a exact solution for the system (1.5)–(1.6), when the
initial volume fraction is fixed as φ(x, 0) ≡ f0 for some given f0 � 1. On the other
hand, we aim at covering the solution of this system when the initial volume fraction
φ(x, 0) is a variable satisfying 0 < φ < 1. In Sections 2 and 3, we show that the
weak solution of this Riemann problem is connected by a single 2-rarefaction wave
from the left state U0 = (h0, n0) to the right state U2 = (h2, n2) when h0 < h2, and
connected by a single 2-shock wave when h0 > h2. To illustrate one example of these
wave curves, we impose the initial conditions as follows,

Ur(x, 0) =

{
U0 = (0.4, 0.08) x < 0

U2 = (1.0, n2,r) x > 0
, Us(x, 0) =

{
U0 = (1.0, 0.1) x < 0

U2 = (0.2, n2,s) x > 0
,

where n2,s and n2,r is the solution of (3.7) and (3.10) respectively. We take the values
of Ur(x, 0) and Us(x, 0) to satisfy the ranges 0 ≤ h ≤ 1 and 0 ≤ n ≤ 0.1 of the
exact solution handled in [4]. With the Riemann data Ur(x, 0), the weak solution
consists of a single 2-rarefaction wave whose curve is shown in Figure 3.3. With the
Riemann data Us(x, 0), the weak solution consists of a single 2-shock wave whose
curve is shown in Figure 3.2(b). The construction method given in Sections 2 and 3
may also be useful for other suspension models even if the initial volume fraction φ
depends on x. The correspondence between rarefaction wave and shock wave obtained
from (1.5)-(1.6) and experimental results in [4], as well as solutions of (general) initial
value problems discussed there, will be a next issue.
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