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NONLINEAR DIFFUSION EQUATIONS WITH PERTURBATION
TERMS ON UNBOUNDED DOMAINS

SHUNSUKE KURIMA∗

Abstract. This paper considers the initial-boundary value problem for the nonlinear diffusion
equation with the perturbation term

ut + (−∆ + 1)β(u) +G(u) = g in Ω× (0, T )

in an unbounded domain Ω ⊂ RN with smooth bounded boundary, where N ∈ N, T > 0, β is a
single-valued maximal monotone function on R, e.g.,

β(r) = |r|q−1r (q > 0, q 6= 1)

and G is a function on R which can be regarded as a Lipschitz continuous operator from (H1(Ω))∗

to (H1(Ω))∗. The present work establishes existence and estimates for the above problem.
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1. Introduction. In this paper we consider the initial-boundary value problem
for the nonlinear diffusion equation with the perturbation term

ut + (−∆ + 1)β(u) +G(u) = g in Ω× (0, T ),

∂νβ(u) = 0 on ∂Ω× (0, T ),

u(0) = u0 in Ω,

(P)

where Ω is an unbounded domain in RN (N ∈ N) with smooth bounded boundary
∂Ω (e.g., Ω = RN \ B(0, R), where B(0, R) is the open ball with center 0 and radius
R > 0) or Ω = RN or Ω = RN+ , T > 0, and ∂ν denotes the derivative with respect to
the outward normal of ∂Ω. Though the precise conditions for β, G, g and u0 will be
given in (A1)-(A4) stated later, we roughly explain that β is a single-valued maximal
monotone function, e.g.,

β(r) = |r|q−1r,

where the problem is the porous media equation in the case that q > 1 (see e.g.,
[1, 13, 17, 18]) and is the fast diffusion equation in the case that 0 < q < 1 (see e.g.,
[5, 15, 17]); G can be regarded as a Lipschitz continuous operator from (H1(Ω))∗ to
(H1(Ω))∗; g and u0 are known functions.

Nonlinear diffusion equations on unbounded domains are not so substantially
studied from a viewpoint of the operator theory, whereas in the case that Ω = RN
the equations are studied by the method of real analysis (see e.g., [11]). The case
of unbounded domains would be important in both mathematics and physics. Also,
since compact methods do not work directly on unbounded domains, it would be worth
studying the case of unbounded domains mathematically. Also, the perturbation term
G(u) makes proving existence for (P) without growth conditions for β be difficult (see
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Remark in the end of this section). Although we give an example ofG only asG(u) = u
in this paper, if we can weaken the condition for G and we can take G(u) = −β(u),
then we can possibly deal with the “pure” diffusion equation as ut −∆β(u) = g.

In the case that G ≡ 0, in [12] and [9], existence of weak solutions to (P) and
their estimates were shown by monotonicity methods.

The new point of this paper is that the perturbation term “G(u)” is added to the
left-hand side of the equation ut + (−∆ + 1)β(u) = g studied in [12] and [9]. The
purpose of this paper is to show existence of weak solutions to (P) and to obtain their
estimates. In particular, we prove existence for (P) by using Brézis’s theory which is
a monotonicity method for an abstract evolution equation including a subdifferential
operator and a perturbation term.

We first give assumptions, notations and definitions used in this paper before
introducing main results.

Assume that β, G, g and u0 satisfy the following conditions:

(A1) The following (A1a), (A1b) and (A1c) hold:
(A1a) β : R→ R is a single-valued maximal monotone function and

β(r) = β̂ ′(r) = ∂β̂(r),

where β̂ ′ and ∂β̂ respectively denote the differential and subdifferential
of a proper differentiable (lower semicontinuous) convex function β̂ :

R→ [0,+∞] satisfying β̂(0) = 0. This entails β(0) = 0.
(A1b) There exist constants m > 1 and c0, c

′
0 > 0 such that for all r ∈ R,

β̂(r) ≥ c0|r|m

and

|β(r)| ≤ c′0|r|m−1

hold.
(A1c) For all z ∈ H1(Ω), if β̂(z) ∈ L1(Ω), then β(z) ∈ L1

loc(Ω). For all

z ∈ H1(Ω) and all ψ ∈ C∞c (Ω), if β̂(z) ∈ L1(Ω), then β̂(z+ψ) ∈ L1(Ω).

(A2) G : (H1(Ω))∗ → (H1(Ω))∗ is a Lipschitz continuous operator.

(A3) g ∈ L2
(
0, T ;L2(Ω)

)
.

(A4) u0 ∈ L2(Ω) and β̂(u0) ∈ L1(Ω).

From (A3) we can fix a solution f ∈ L2
(
0, T ;H2(Ω)

)
of{

(−∆ + 1)f(t) = g(t) a.e. in Ω,

∂νf(t) = 0 in the sense of traces on ∂Ω

for a.a. t ∈ (0, T ), that is,∫
Ω

∇f(t) · ∇z +

∫
Ω

f(t)z =

∫
Ω

g(t)z for all z ∈ H1(Ω).

An example of (A2) is given as G(v∗) = v∗ for all v∗ ∈ (H1(Ω))∗.
We define the Hilbert spaces

H := L2(Ω), V := H1(Ω)
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with inner products (·, ·)H and (·, ·)V , respectively. Moreover we put

W :=
{
z ∈ H2(Ω) | ∂νz = 0 a.e. on ∂Ω

}
.

The notation V ∗ denotes the dual space of V with duality pairing 〈·, ·〉V ∗,V . Moreover
the Riesz representation theorem ensures the existence of a bijective mapping F : V →
V ∗ satisfying

〈Fv1, v2〉V ∗,V := (v1, v2)V for all v1, v2 ∈ V

and we define the inner product in V ∗ as

(v∗1 , v
∗
2)V ∗ :=

〈
v∗1 , F

−1v∗2
〉
V ∗,V

for all v∗1 , v
∗
2 ∈ V ∗.

We remark that (A3) implies

Ff(t) = g(t) for a.a. t ∈ (0, T ). (1.1)

We give the definition of weak solutions to (P).
Definition 1.1. A pair (u, µ) with

u ∈ H1(0, T ;V ∗), µ ∈ L2(0, T ;V )

is called a weak solution of (P) if (u, µ) satisfies〈
u′(t) +G(u(t)), z

〉
V ∗,V

+
(
µ(t), z

)
V

= 0 for all z ∈ V and a.a. t ∈ (0, T ), (1.2)

µ(t) = β(u(t))− f(t) in V for a.a. t ∈ (0, T ), (1.3)

u(0) = u0 a.e. on Ω. (1.4)

We next state the main result which asserts existence and estimates for (P).

Theorem 1.2. Assume (A1)-(A4). Then there exists a unique weak solution
(u, µ) of (P) satisfying u ∈ H1(0, T ;V ∗), µ ∈ L2(0, T ;V ). Moreover, if it holds that
G(v∗) = av∗ for v∗ ∈ V ∗, where a ∈ R, then there exists a constant M > 0 such that
for a.a. t ∈ (0, T ), u(t) ∈ H and

|u(t)|2H ≤M, (1.5)∫ t

0

∣∣u′(s)∣∣2
V ∗
ds+ a|u(t)|2V ∗ ≤M, (1.6)∫ t

0

|µ(s)|2V ds ≤M, (1.7)∫ t

0

|β(u(s))|2V ds ≤M. (1.8)

In the case that G ≡ 0, in [12], existence of weak solutions to (P) was proved by
rewriting (P) to

u′(t) + ∂φ(u(t)) = g(t) in V ∗,

where φ is a proper lower semicontinuous convex function on V ∗ and ∂φ is the subdif-
ferential of φ, and by applying Brézis’s theory ([3, Theorem 3.6]). Also, the m-growth
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condition for β was assumed to derive the lower semicontinuity of φ : V ∗ → R. The
examples are the porous media equation and the fast diffusion equation. Recently, in
[9], the approximation

u′ε(t) + (−∆ + 1)(ε(−∆ + 1)uε(t) + β(uε(t)) + πε(uε(t))) = g (P)ε

was considered and existence of weak solutions to (P)ε with their estimates was shown;
moreover, existence of weak solutions to (P) with their estimates was obtained without
growth conditions for β, and existence of weak solutions to (P), their estimates were
obtained without growth conditions for β by passing to the limit in (P)ε as ε ↘ 0.
In addition to the porous media equation and fast diffusion equation, the examples
of (P) include the Stefan problem (see e.g., [2, 4, 6, 7, 8, 10]) which is described by
(P) with

β(r) =


ksr if r < 0,

0 if 0 ≤ r ≤ L,
k`(r − L) if r > L

for all r ∈ R, where ks, k`, L are positive constants.
The strategy for the proof of Theorem 1.2 is to prove existence for (P) under

the m-growth condition for β by setting some proper lower semicontinuous convex
function φ : V ∗ → R appropriately as in [12, Section 3], by rewriting (P) to

u′(t) + ∂φ(u(t)) +G(u(t)) = g in V ∗

and by applying Brézis’s theory to the above abstract evolution equation with the
perturbation term.

Remark. At the moment, we do not know whether existence of weak solutions to
(P) can be proved in a similar way to [9] or not. Since existence of weak solutions to
the approximation of (P)

u′ε(t) + (−∆ + 1)
(
ε(−∆ + 1)uε(t) + β(uε(t)) + πε(uε(t))

)
+G(uε(t)) = g (1.9)

can be proved in a similar way to the above strategy for (P), we can prove existence
of weak solutions to (P) by passing the limit in (1.9) if we can obtain estimates for
(1.9). In this paper we will directly prove existence of weak solutions to (P) under the
m-growth condition for β without approximation (1.9). We hope that we can avoid
growth conditions for β in a future work.

The plan of this paper is as follows. In Section 2 we prove existence of weak
solutions to (P). Section 3 obtains estimates for (P). In Section 4 we present the
porous media equation and the fast diffusion equation as examples of (P).

2. Proof of Theorem 1.2 (existence). In this section we will prove existence
of a unique weak solution to (P). The following lemma is known in the Brézis’s theory
for a nonlinear evolution equation with a perturbation term including a subdifferential
operator (see e.g., [3, Proposition 3.12]) and plays an important role in this section.

Lemma 2.1. Let X be a real Hilbert space, let ψ : X → R be a proper l.s.c.
convex function and let G : X → X be a Lipschitz continuous operator. If u0 ∈ D(ψ)
and f̃ ∈ L2(0, T ;X), then there exists a unique function u such that u ∈ H1(0, T ;X),
u(t) ∈ D(∂ψ) for a.a. t ∈ (0, T ) and u solves the following initial value problem:{

u′(t) + ∂ψ(u(t)) +G(u(t)) 3 f̃(t) in X for a.a. t ∈ (0, T ),

u(0) = u0 in X.
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Proof of Theorem 1.2 (existence). Defining φ : V ∗ → R as

φ(z) =


∫

Ω

β̂(z(x)) dx if z ∈ D(φ) := {z ∈ V ∗ ∩ Lm(Ω) | β̂(z) ∈ L1(Ω)},

+∞ otherwise,

we deduce from [12, Section 3] that this φ is proper lower semicontinuous convex on
V ∗ and

β(z) ∈ V, ∂φ(z) = Fβ(z) (2.1)

hold for all z ∈ D(∂φ). Hence, from (1.1) and (2.1) we can rewrite (1.2)-(1.4) in
Definition 1.1 tou

′(t) + ∂φ(u(t)) +G(u(t)) = g(t) in V ∗ for a.a. t ∈ [0, T ],

u(0) = u0 in V ∗.
(2.2)

Invoking Lemma 2.1, we can find a unique solution u ∈ H1(0, T ;V ∗) of (2.2) and
u(t) ∈ D(∂φ) for a.a. t ∈ (0, T ). Hence there exists a unique weak solution of (P).

3. Proof of Theorem 1.2 (estimates). We will obtain the estimates for weak
solutions of (P) in this section.

Proof of Theorem 1.2 (estimates). In addition to (A2) we assume further that

G(v∗) = av∗

for all v∗ ∈ V ∗, where a ∈ R. For λ > 0 we put

A := −∆ : D(A) := W ⊂ H → H,

Jλ := (I + λA)−1 : H → H,

Aλ := λ−1(I − Jλ) : H → H,

and

Ã := F − I : V → V ∗,

J̃λ :=
(
I + λÃ

)−1
: V ∗ → V.

Let u ∈ H1(0, T ;V ∗) be a unique solution of (2.2). We first show (1.5). Noting that

J̃
1/2
λ : V ∗ → H is defined as a bounded operator (see e.g., [14, Lemma 3.3]) and

putting

uλ(t) := J̃
1/2
λ u(t) for all t ∈ (0, T ),

we derive from [12, Lemma 3.3] that

uλ ∈ H1(0, T ;H)

and

u′λ(t) + J̃
1/2
λ Fβ(u(t)) + J̃

1/2
λ G(u(t)) = J

1/2
λ g(t).
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Then we obtain

1

2

d

ds
|uλ(s)|2H ≤

1

2
|g(s)|2H +

1

2
|uλ(s)|2H +

(
J̃

1/2
λ G(u(s)), uλ(s)

)
H

(3.1)

in a similar way to [12, Section 3]. Here we have(
J̃

1/2
λ G(u(s)), uλ(s)

)
H

= a
(
J̃

1/2
λ u(s), uλ(s)

)
H

= a|uλ(s)|2H . (3.2)

Thus combining (3.1) and (3.2) yields

1

2

d

ds
|uλ(s)|2H ≤

1

2
|g(s)|2H +

(
a+

1

2

)
|uλ(s)|2H ,

and hence the inequality

|uλ(t)|2H ≤ e|2a+1|T |u0|2H + e|2a+1|T |g|2L2(0,T ;H)

holds for all t ∈ (0, T ). Therefore it follows from a similar way to [12, Section 3, Proof
of Theorem 1.1 (continued)] that for a.a. t ∈ (0, T ),

u(t) ∈ H

and there exists a positive constant C such that

‖u‖L∞(0,T ;H) ≤ C,

which means that the estimate (1.5) holds.
Next we verify (1.6). The equation in (2.2) yields that∣∣u′(s)∣∣2

V ∗
= −

(
u′(s), ∂φ(u(s))

)
V ∗

+
(
u′(s), Ff(s)

)
V ∗
− a
(
u′(s), u(s)

)
V ∗

= −
(
u′(s), ∂φ(u(s))

)
V ∗

+
(
u′(s), Ff(s)

)
V ∗
− a

2

d

ds
|u(s)|2V ∗ . (3.3)

Here we have (
u′(s), ∂φ(u(s))

)
V ∗

=
d

ds
φ(u(s))

(see e.g., Showalter [16, Lemma IV.4.3]) and it follows from the definition of (·, ·)V ∗
and Young’s inequality that(

u′(s), Ff(s)
)
V ∗

=
〈
u′(s), f(s)

〉
V ∗,V

≤ 1

2

∣∣u′(s)∣∣2
V ∗

+
1

2
|f(s)|2V .

Integrating (3.3) combined with these facts leads to the inequality

1

2

∫ t

0

∣∣u′(s)∣∣2
V ∗
ds ≤ −φ(u(t)) + φ(u0) +

1

2
|f |2L2(0,T ;V ) −

a

2
|u(t)|2V ∗ +

a

2
|u0|2V ∗ ,

i.e.,

1

2

∫ t

0

∣∣u′(s)∣∣2
V ∗
ds+

∫
Ω

β̂(u(t)) +
a

2
|u(t)|2V ∗ ≤

∫
Ω

β̂(u0) +
1

2
|f |2L2(0,T ;V ) +

a

2
|u0|2V ∗ .
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Since (A1a) implies ∫
Ω

β̂(u(t)) ≥ 0,

it holds that∫ t

0

∣∣u′(s)∣∣2
V ∗
ds+ a|u(t)|2V ∗ ≤ 2

∫
Ω

β̂(u0) + |f |2L2(0,T ;V ) + a|u0|2V ∗ .

Next we show (1.7). The fact that µ(s) = −F−1
(
u′(s)

)
implies

∫ t

0

|µ(s)|2V ds =

∫ t

0

∣∣F−1
(
u′(s)

)∣∣2
V
ds

=

∫ t

0

∣∣u′(s)∣∣2
V ∗
ds.

Hence (1.7) can be obtained from (1.6).

Next we prove (1.8). We see from (1.3) and the definition of µ(·) that

|β(u(s))|2V =
(
−F−1

(
u′(s)

)
− au(s) + f(s), β(u(s))

)
V

≤
(∣∣F−1

(
u′(s)

)∣∣
V

+ |a||u(s)|V ∗ + |f(s)|V
)
|β(u(s))|V

≤
∣∣F−1

(
u′(s)

)∣∣2
V

+ a2|u(s)|2V ∗ + |f(s)|2V +
3

4
|β(u(s))|2V

=
∣∣u′(s)∣∣2

V ∗
+ a2|u(s)|2V ∗ + |f(s)|2V +

3

4
|β(u(s))|2V .

Integrating this inequality, we have∫ t

0

|β(u(s))|2V ds ≤ 4

∫ t

0

∣∣u′(s)∣∣2
V ∗
ds+ 4a2

∫ t

0

|u(s)|2V ∗ ds+ 4|f |2L2(0,T ;V ).

Therefore there exists a constant M > 0 satisfying (1.5), (1.6), (1.7) and (1.8). More-
over, (1.5) means that u ∈ L∞(0, T ;H).

4. Examples. An example of G : (H1(Ω))∗ → (H1(Ω))∗ is given by G(v∗) = v∗

for all v∗ ∈ (H1(Ω))∗. As to β, we give the following two examples.

The porous media equation. We consider

β(r) = |r|q−1r (q > 1).

This β is the function in the porous media equation (see e.g., [1, 13, 17, 18]).

The fast diffusion equation. Consider

β(r) = |r|q−1r (0 < q < 1).

This β is the function in the fast diffusion equation (see e.g., [5, 15, 17]).

In both examples we can show that β satisfies (A1), (A4) (see [12, Section 6]).
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