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BOUNDEDNESS AND STABILIZATION
IN A THREE-DIMENSIONAL TWO-SPECIES
CHEMOTAXIS-NAVIER-STOKES SYSTEM
WITH COMPETITIVE KINETICS*

MISAKI HIRATA, SHUNSUKE KURIMA, MASAAKI MIZUKAMI, TOMOMI YOKOTA'

Abstract. This paper is concerned with the two-species chemotaxis-Navier—Stokes system with
Lotka—Volterra competitive kinetics

(n)t+u-Vnir =An; —x1V - (m1Ve) + pini(1 — n1 —ainz) in Q x (0,00),
(n2)t +u-Vna = Ang — x2V - (n2Ve) + pana (1 — agny —n2)  in Q x (0, 00),
¢t +u-Ve=Ac— (any + fn2)c in © x (0, 00),

ut + (u-V)u=Au+ VP + (yn1 + 6n2)Ve, V.-u=0 in Q x (0, 00)
under homogeneous Neumann boundary conditions and initial conditions, where €2 is a bounded do-
main in R? with smooth boundary. Recently, in the 2-dimensional setting, global existence and stabi-
lization of classical solutions to the above system were first established. However, the 3-dimensional
case has not been studied: Because of difficulties in the Navier—Stokes system, we can not expect
existence of classical solutions to the above system. The purpose of this paper is to obtain global
existence of weak solutions to the above system, and their eventual smoothness and stabilization.
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1. Introduction. This paper deals with the following two-species chemotaxis-
Navier—Stokes system with Lotka—Volterra competitive kinetics:
(n1):+u-Vny =Any —x1V - (mVe) + prni (1l —ny —aing) in Q x (
(n2)t +u-Vng = Ang — x2V - (naVe) 4+ pana (1l — agng —ng)  in Q x (
¢t +u-Ve=Ac— (any + fng)c in Q x (
u + Kk(u-V)u=Au+ VP + (yng +dng)Ve, V-u=0 in Q x (0,
ony=0,n2=0,c=0, u=0 on 99 x (0, 00),

TL](',O) = n1,0, TLQ(',O) = N2,0, C(',O) = Co, U(',O) = Up in Q?

0
0
0
0

(1.1)
where 2 is a bounded domain in R? with smooth boundary 92 and 8, denotes dif-
ferentiation with respect to the outward normal of 99Q; k = 1, x1, X2, a1,a2 > 0 and
M1, 2, o, B,v,0 > 0 are constants; ni o, n2,0, Co, Uo, P are known functions satisfying

0< n1,0,M2,0 € C(ﬁ), 0<cye€ Wl’q(Q)7 Ug € D(Ae), (12)
d c CTNQ) (1.3)

for some ¢ > 3, 6 € (2,1), A € (0,1) and A denotes the realization of the Stokes
operator under homogeneous Dirichlet boundary conditions in the solenoidal subspace

L2(Q) of L2(Q).
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In the mathematical point of view, difficulties of this problem are mainly caused
by the chemotaxis terms —x1V - (n1Ve), —x2V « (naVe), the competitive kinetics
uing (1 —ng —aing), pena(l—asng —ng) and the Navier—Stokes equation which is the
fourth equation in (1.1). In the case that ny = 0, global existence of weak solutions,
and their eventual smoothness and stabilization were shown in [5]. On the other hand,
in the case that ny # 0 and 2 C R?, global existence and boundedness of classical
solutions to (1.1) have been attained ([4]). Moreover, in the case that x =0 in (1.1),
which namely means that the fourth equation in (1.1) is the Stokes equation, global
existence and stabilization can be found in [2]; in the case that £ = 0in (1.1) and that
—(any + Bng)c is replaced with +ang + Bna — ¢, global existence and boundedness of
classical solutions to the Keller—Segel-Stokes system and their asymptotic behaviour
are found in [3].

As we mentioned above, global classical solutions are found in (1.1) in the 2-
dimensional setting and the case that kK = 0. However, global existence of solutions in
3-dimensional setting has not been attained. Thus the main purposes of this paper is
to obtain global existence of solutions to (1.1) in the case that Q C R®. Nevertheless,
because of the difficulties of the Navier—-Stokes equation, we can not expect global
existence of classical solutions to (1.1) in the 3-dimensional case. Therefore our goal
is to obtain global existence of weak solutions to (1.1) in the following sense.

DEFINITION 1.1. A quadruple (ny,na,c,u) is called a (global) weak solution of

(1.1) if

ning € L2,([0,00); L2() 1 L ([0, 00): W3 (),
ce L. ([0,00); WH2(Q)),

u € Liyc([0,00); Wy 7 ()

~—

and for all T > 0 the identities

—//nwt—/m,ow(-,O)—//n1u-V<,0
0JQ Q 0JQ
:—//Vm-Vgo—k)a//n1Vc~V<p+,u1//nl(l—nl—alng)@,
0JQ 0JQ 0JQ
_//n2¥7t_/n2,0§0('70)_//n2u'v90
0JQ Q 0JQ
:—//Vng-Vgo—l—xg//n2V0~V<p+,u2//ng(l—agnl—ng)cp,
0JQ 0JQ 0JQ
—//apt—/cw(-,O)—//cu-Vw
0 JQ Q 0JQ
Z—//VC'V@—//(am-i-ﬁnz)C%
0JQ 0JQ
v [aowto - [ [ uwuv
0 JQ Q 0JQ

:—/OOO/QVu-vw+/OOZZ(7n1+6n2)W-V<I>

hold for all ¢ € C§°(Q x [0,00)) and all ¢ € C§%,(Q x [0,00)), respectively.
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Now the main results read as follows. The first theorem is concerned with global
existence of weak solutions to (1.1).

THEOREM 1.2. Let Q C R? be a bounded smooth domain and let x1, X2, a1,a2 > 0
and pa, o, o, By, 8 > 0. Assume that ny g, n2,0, o, uo satisfy (1.2) with some ¢ > 3
and € (2,1) and ® € C*TX(Q) for some A € (0,1). Then there is a weak solution of
(1.1), which can be approzimated by a sequence of solutions (n1 e, No.e, Ce, ue) of (2.1)
(see Section 2) in a pointwise manner.

The second theorem gives eventual smoothness and stabilization.

THEOREM 1.3. Let the assumption of Theorem 1.2 be satisfied. Then there are
T >0 and o’ € (0,1) such that the solution (ny,nz, ¢, u) given by Theorem 1.2 satisfies

N1 ma, ¢ € CFHIHE (Q X [T, 00)), u e C2H 145 (Q x [T, 00)).

Moreover, the solution of (1.1) has the following properties:
(i) Assume that ay,az € (0,1). Then

ni(-,t) = Ny, no(,t) = No, c(,t) =0, wu(-,t) =0 in L®(Q)
as t — oo, where

1-— 1-—
N1 = 7011 y N2 = 7@2 .
1-— a1a9 1-— a1a9

(ii) Assume that ay > 1 > ay. Then
ni(,t) =0, n2(,t) =1, ¢(,t) =0, u(-,t) =0 in L=(Q)

ast — o0.

The proofs of the main theorems are based on the arguments in [5]. The strategies
for the proofs is to construct energy estimates for the solution (n ¢, n2., e, ue) of
(2.1). In Section 2 we consider the energy function F. defined as

Ve |?
Fe ::/nl,glogn175—|—/ngyglogngﬁ—kg/ @4‘]54)(/ |u5|2
Q Q Q Ce Q

with some constant x > 0. Noting that for all p,&; > 0 there exists C > 0 such that
[ v (el )
Q 1 +en; e 1 +5(an1,s +5n2,5)

Ve, |4 Vi, |2
Sp/' ce| +&/'L+C/n?,e (i=12),
o ¢ Q Nie Q

which did not appear in the previous work [5], from the estimate for the energy
function F. we obtain global-in-time solvability of approximate solutions. Then we
moreover see convergence as £ \, 0. Furthermore, in Section 3, according to an

argument similar to [4], by putting
B 2
)5 [

n n
Gep 1= /Q <n1,e—N1 log]\lf’:> + /Q (nz,E—N2 log =

with suitable constant B > 0 and establishing the Holder estimates for the solution of
(1.1) through the estimate for the energy function G. g, we can discuss convergence
of (n1(-,t),na(:,t), c(-,t),u(,t)) as t — oo.
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2. Proof of Theorem 1.2 (Global existence). We will start by considering
an approximate problem with parameter € > 0, namely:

nl,e)t + ue - vnl,e = Anl,e - le ’ (1+8n1 vce) + ,ulnl,s(l —MNie — aan,e)a

(
(n2e)e + ue - Vg e = Ang . — X2V - (1+sn2 Vca) + pong (1 — agny o — na o),
(ce)t +ue - Vee = Ace — ce 2 Llog (1 +e(any e + Bne E))

(ue)t + (Yeue - V)ue = Aug + VP + (Y01 + 0n2.)VP, V-u, =0,

Oynieloo = Ounacloa = Opcelon =0,  uclan =0,

nl,s('zo) = n1,0, n2,s('7 0) = N2,0, CE('? 0) = Co, us('70) = Uop,

(2.1)
where Y. = (1 +eA)~!, and provide estimates for its solutions. We first give the
following result which states local existence in (1.1).

LEMMA 2.1. Let x1,X2,01,a2 > 0, u1, po, @, 3,7,0 > 0, and ® € C*HAQ) for
some A € (0,1) and assume that n1,0,M2,0,Co,uo Satisfy (1.2) with some ¢ > 3,0 €
(%, 1). Then for all e > 0 there are Tyax,. and uniquely determined functions:

N1,e,N2e € CVO(ﬁ X [07 Tmax,e)) N C’QJ(ﬁ X (07 Tmax,s))a
ce € COQ % [0, Trmax.c)) NCHHQ x (0, Tmax.e)) N L ([0, Trnax,c); WH()),
e € CO(Q % [0, Tmax.c)) N C%H(Q x (0, Trnax.c)),

which together with some P € C*°(Q x (0, Tiax.c)) solve (2.1) classically. Moreover,
N1, N2 and c. are positive and the following alternative holds: Tax,e = 00 or

n1e(- )l oe ) + In2,e (o )l Lo o) + llee (o )llwraa) + 1A% (-, 1) || L2(o) — 00
(2.2)

ast /" Thax.c-

We next show the following lemma which holds a key for the proof of Theorem
1.2. This lemma derives the estimate for the energy function.

LEMMA 2.2. For all £&1,& € (0,1) and x > 0 there are C, C, 5, k k> 0 such that

Ve 2 -
Fe 5:/711,5 10gn1,5+/ N2 e logng . + g/ @Jrk)(/ |Us|2
Q Q Q Ce Q

satisfies

d
—F. <—-= n1 clogny . — —/ ngﬁ logna .

dt
AL
—ﬂ—&)|7w|+0/nu+0/n%+0

N2

—1=&
Q Ni,e
\%
—k/cE\D2logca|2—k/ %—k/ |Vu.|?
Q Q € Q

on (0, Tiax.e) for all e > 0.
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Proof. Noting, the boundedness of s(1 — s) and s(1 — §)log s, we have that there
exists C7 > 0 such that

N1, 1Og Nie

dt
/ |V .|? Vee - Vnge
=—| ———+x1 | —/—
Q Nie o l+eni,
+ 1 / n1e(l —nie —ainge)logny  + / Ny e(l—n1c—aino)
Q
A4 2 \V4 \V4
Y S O (PR .
Q 1 +eny £ 2 Q ’
— pay / n1,en2e logni e — par / nienze + Ch. (2.3)
Q Q

Similarly, there is Co > 0 such that

|VTL2 5‘2 VCE ) VnZ € M2
n logng, < — | —————— + —= =t 2 p2 logn
dt 2,6 108 M2 = 0 Ny X2 0 1+€n2,e 2 0 2,e g1 e

— /.Lgag/ N1,eN2e log Nge — IJQGQ/ N1,eN2.e + 02. (24)
Q Q

According to an argument similar to that in the proof of [5, Lemma 2.8], there exist
k1,C3,Cy > 0 such that

d 2 4
4 [ Vel g—kl/cs|D210gcs|27k1/ Vel
dt Q Ce Q Q Cg

aVee - Vg + BVe. - Vng o
+C +C/v 2—2/ o, - Bl
3 4 Q\ Ue| O 1 +e(any e + Bnac) (%)

Now we let k, 71,12, k be constants satisfying % —k= —%7 m = ”Tlx, Ny = ZZ; and

= Xkl . Then we have

/\u5|2:—2/ IV |? —2/u5~(YuE-V)ug+2/ o (Yn1. + bna ) V.
Q

Q

From the Schwarz inequality, the Poincaré inequality, the Young inequality and the
1 “ . .

fact that [, ¢* < a [, ¢*loge + [Qe« holds for any positive function ¢ and any

a > 0, there exist Cs, ), ,Cy, > 0 such that

W/Q\nl,sV@.usl < A[|V®|| L~ </ gs) </ |u€|2>
<aivale- ([ nlﬁ) (cs ] VW)

< 2205 VB2 / n? o+ / V|

771 2
+f/|Vu|
Q 2 4 Q :

n? clogng ¢

m
-2
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1
12 +Z/Q‘Vu8|2

and

(5/ N2,V - u.| < @/ ngalogng‘S
Q 2 Jo
hold. Therefore we have

d
$/9|u5|2 < _/Q|Vu8|2 +771/Qn§)5 10gn1,5+772/§2n§,5 logng e + Cy, + O,
(2.6)

Thus a combination of (2.3), (2.4), (2.5) and (2.6) leads to

d Ve|? =
- |:/ Nie IOg Nie +/ n2 e 1Og N2 e+ K/ Q + kX/ |Us|2:|
dt | Jo Q 2 Jo ce Q
(Exm - &) / n3 logni . (Exng - &) / n3 . logna .
2 2) )"
AV 2 \Y% 2 —
(/ Bt [ ¥ )+(XC4—kx)/ Ve
N2 e 2 Q
X1 X&
+ | Ve -Vnge —
/Q L (1 +enie  l+e(an o+ 5712,5))

X2 XB
+ | Veo-Vnag, —
/Q 2 (1 +eng.  l4e(ani+ ,@ng,e)>

Ve |[* —
—Kk’l/ C€|D210g65|2— Kkl/ | Csl +01+CQ+K03+]€X(C771 +C7,2)
2 Q 2 [e) Cg 2

— piay / nienge(logny c + 1) — poas / n1enge(logng e + 1).
Q Q

Here, since n; ., n2 are nonnegative, we can find Cgs, C7 > 0 such that

X1 X

Ve - Vng . _
/Q ¢ ™, (1 +eni. l4+e(ani+ ﬁngyg))
<(x1+ Xa)/ |Vee - Ving ¢l

Q

< Xk‘13 / Ve |* + Cg/ %% €|3

8llcoll3 o
Ly Vel /\vw o [

) o Cg l,e

and there is Cg > 0 such that

Y2 X5
Ve - Vn -
/Q : “e (1 +enge  l+e(amye+ 5”275))

Xk1 |VC6|4 / Vg 8|2 / 2
< &= — = 4 C
=g /sz 3 + & T2 + Cs 9”2,@

IN
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which with the fact that slogs > —1 (s > 0) enables us to obtain

e

(EXUI - %) / n%,a lognl,a + (EXU2 - %) / n%,a 10gn2,5
Q Q
Vni.|? Vo |? —
—(/' L, +/| 2’|)+(XC4—kx>/|Vu52
Q MNie Q MN2e 2 Q
X1 X«
+ | Ve -Vn —
/Q ¢ Le (1 +enie  l+e(an o+ Bngﬁ))

X2 X5
+ | Ve, -Vn —
/Q ¢ 2’5<1 +ense  1+e(ang .+ fBno 5))

Ve
—Kkl/ce\p%gcﬁ—ikl/' < oiot Cg+kx(Cnl+Cn2)
2 Q 2 Q C

€

— p1ay / niengc(logng . +1) — ,uzflz/ n1,eng.c(logng e + 1)
Q Q

<—% niglognl,a—&/n%lognge
Q 4 Jo

Vg |? Vne . |?
- 1—51)/7| Lel —(1-¢&) [zl
Q MNie

Q MNie

\V4 4
R e o e K=y T Ae
Q Q o C Q Q

Therefore we obtain this lemma. O
Proof of Theorem 1.2. Let 7 = min{l Tmax e}, &1,& €(0,1) and x > 0. Lemma
2.2, the facts that s?logs > slogs — —e (s > 0) and ny ¢, N2c, ¢ > 0 imply
d _ ~
GFAF<C [t T [l
dt Q ’ Q ’

for some C,C,C’ > 0. According to [5, Lemma 2.5], there exists Cy > 0 such that

[z

for all t € (0, Tinax,e — 7) and each ¢ = 1,2. From the uniform Gronwall type lemma
(see e.g., [6, Lemma 3.2]) we can find Cy > 0 such that

X |VCs|2 7 2
nielognie+ [ noclogne .+ = +hx [ |uel® < Cq (2.7)
Q Q 2Jq ce Q

for all t € (0, Tmax,e). Moreover, we have from integration of the differential inequality
in Lemma 2.2 over (t,t+ 7) that for all £&,& € (0,1) there is C5 > 0 such that

Lo t+7 t+1
/ / nlElognl,E + Z/ /Qngs logna . +k/ /QCe\Dz log c.|?
t t

t+7 vn 52 t+7 vn 52
+<1—§1)/ @Hl—@)/ [Vna.e[”
t Q t Q

Nie N2 e

s

t+1 4 t+1
/ |Vc€| / / IVue|? < Cs (2.9)
t

<0 (2.8)

and
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as well as

t+7 t+7
[ fvmat s [ ] et
t+71
/\VCE\Z / Ve |* + / /”15 / /n25<03 (2.10)

for all t € [0, Tipaxe — 7). Now we assume Tyax e < 0o for some € > 0. From (2.7),
(2.8), (2.9) and (2.10), we can see that there exists Cy > 0 such that

[n1,eCo )L < Cay In2e(5t)][Le) < O,
llee( t)lwrao) < Cu, [A%uc (-, t) || L2 (0) < Ca

for all t € (0, Tiax,e), which is inconsistent with (2.2). Therefore we obtain Tyax,e = 00
for all € > 0, which means global existence and boundedness of (11 ¢, na ¢, Ce, ue). We
next verify convergence of the solution (n1e,7n2,,¢Ce,u:). Due to Lemma 2.2 and
arguments similar to those in [5], we establish that for all 7" > 0 there is C5 > 0 such
that
1, )ell oo myswzs ) < G5 lm2e)ellp o,y ey < G
H(cf)t||L2((0,T);(W01’2(Q))*) < G, [[(ue)ell L2 (o.1y: W (@)+) < Cs (2.11)

for all € > 0, which together with arguments in [5] implies that there exist a sequence
(€j)jen such that €; \, 0 as j — oo and functions nq,ng, ¢, u such that

n1.nz € L2,0([0, 00); 2(9)) N Ly, (10, 00): W (),
c € L3,([0,00); WH2(Q)),
u € Liyo([0,00); Wo 2(92))

and that
2
Nie—ng in Llic([O,oo);Lp(Q)) forall p € { 5> and a.e. in © x (0, 00),
12
Nge — Ny in LIOC([O, 00); LP(2)) for all p € { 5) and a.e. in Q x (0, c0),
e > ¢ in C.([0,00); LP()) for all p € ) and a.e. in Q x (0, 00),

1,6
Ue = U in L2 .([0,00); LP(2)) for all p € [1,6) and a.e. in © x (0, 00),
e > ¢ weakly* in L>(Q2 x (t,t+ 1)) forallt >0,

Vni. — Vn; weakly in Lf(')c([O, 00); L3 (Q)),
Vnge — Vng  weakly in LIOC([O, 00): L3 (Q)),
Ve, — Ve weakly* in L2 ([0, 00); L*(Q)),
Vu. — Vu  weakly in LE_(]0,00); L*(Q)),

[
Youe »uin L ([0, 00); L?
Nie — Ny in Lloc([O, 00); L3(Q

nae —ny  in L ([0,00); L*(Q (2.12)

as € = ¢; \, 0. Thus we see that (ni,n2,c,u) is a weak solution to (1.1) in the sense
of Definition 1.1, which means the end of the proof. O
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in the proof of Theorem 1.3

19
3. Proof of Theorem 1.3 (Eventual smoothness and stabilization). In
this section we will prove Theorem 1.3. The following lemma plays an important role

LEMMA 3.1.
(i) Assume that a1, a2 € (0,1).

Then there exists C' > 0 such that for all € > 0,

//nlg—Nl <C, //n2€_ 1) < C,

—aq — _l—as
1 a1a2 2

where N1 =

1— alag

(ii) Assume a1 > as > 0. Then there exists C > 0 such that for all e > 0

o0 o0
//niagc, //(n27£—1) <C.
0Jo 0 Ja
energy functions

Proof. Due to arguments similar to those in [4, Lemmas 4.1-4.4], by using the

Nie N9 e B 9
G = [ (e o Tge) + [ (mnc - Maton )+ 7 [
€, 0 l,e 1 Nl 0 2,e 2 N2 0
in the case that aq,as € (0,1), and

B
gsB —/nls / N2 e — 10gn2€> */C

2

€
in the case that a; > 1 > as > 0, we can see this lemma. O

Proof of Theorem 1.3. According to an argument similar to that in the proof of

[5, Lemmas 3.4 and 3.5], for all 7 > 0 and p € (1,00) there are T' > 0, &g > 0 and
Cy > 0 such that for all t > T and ¢ € (0,¢0)

HCE('vt)HL"O(Q) <,

7% (5 D)l r@) < Crs Inh (5 )|y < Ch
We next consider the estimate for u,

Since V - u. = 0, it follows from the Young
inequality, the Poincaré inequality, boundedness of V® and (2.1) that there exists
C5 > 0 such that

i/ |ug|2:—2/ |Vu5|2—2/u6-(Y€uE-V)ug+2/
dt Jo Q Q

Q
= —2/ |Vue|? — 2/ te - (Yeue - V)ue
Q Q
—|—27/ ua-(m,g—nl,oo)V@—l—Zé/ Ue - (Noe —N2.00) VP
Q Q
—/ |Vu€|2 - 2/ ue - (Yeue - V)ue
Q Q

+ Cs / (n1e —N1,00)° + Co / (n2.e — N2.00)%
Q Q
where (11,00, M2,00)

in the case that a;

Ug * (’an#s + 6“2,5)V(b

= (N1, N2) in the case that a1, as € (0, 1) and (11 o0, n2,00)
>

) ) = (07 1)
1 > ag > 0. Then, noticing from straightforward calculations
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that [, ue - (Yeue - V)ue = £ [, V- (Youe)|ue|> = 0, thanks to Lemma 3.1, we obtain
from integration of the above mequahty over (0, oo) that there exists Cg > 0 such

that
/ / |vus|2 < Cs.
0 Q

According to an argument similar to that in the proof of [5, Lemmas 3.7-3.11], there
exist o/ > 0, T* > T, C4 > 0 such that for all ¢+ > T* there exists £; > 0 such that
for all € € (0,¢1),

< 047 Hﬂ2 E” < 047

< Cy, [luell

[71c

leell

Then aided by arguments similar to those in the proofs of [5, Corollary 3.3-Lemma
3.13], from (2.11) there are o’ € (0,1) and Ty > 0 as well as a subsequence ¢; \, 0
such that for all ¢ > Ty

oo’ *(Qx[t t+1]) ot *(Qx[t t+1])

cite’ *(Qx[t t+1]) cite’s *(Qx[t t+1]) —

Nie — N1, MNo2e— N, C—C U —U In orre’ss (Qx[t t+1])
as € =¢; \(0, and then

< <
||7’l1|| 1+a 7(Q><[t 1)) 04, HnQH 1+a 7(Q><[t 1) = C4a

<Ci lul <Cy (3.1)

el ot gy = CRRE NUNEESY

Then we obtain
ny,no, C, U € C’2+°‘,’1+a7/(§ x [Ty, 00)).
Finally, from (3.1) the solution (n1,ns, ¢, u) of (2.1) constructed in (2.12) fulfills
ni(-,t) = N1, no(,t) = No, c(,t) =0, u(,t) =0 inCYQ) (t—o0)
in the case that ai,as € (0,1), and
ni(-t) =0, na(t) =1, c(,t) =0, u(,t)—=0, inC Q) (t— o0)

in the case that a; > 1 > as > 0, which enable us to see Theorem 1.3. O
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