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NUMERICAL HOMOGENIZATION FOR INDEFINITE
H(CURL)-PROBLEMS

BARBARA VERFÜRTH∗

Abstract. In this paper, we present a numerical homogenization scheme for indefinite, time-
harmonic Maxwell’s equations involving potentially rough (rapidly oscillating) coefficients. The
method involves an H(curl)-stable, quasi-local operator, which allows for a correction of coarse finite
element functions such that order optimal (w.r.t. the mesh size) error estimates are obtained. To that
end, we extend the procedure of [D. Gallistl, P. Henning, B. Verfürth, Numerical homogenization
for H(curl)-problems, arXiv:1706.02966, 2017] to the case of indefinite problems. In particular, this
requires a careful analysis of the well-posedness of the corrector problems as well as the numerical
homogenization scheme.
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1. Introduction. Time-harmonic Maxwell’s equations, which model electro-
magnetic wave propagation, play an essential role in many physical applications. If
the coefficients are rapidly oscillating on a fine scale as in the context of photonic
crystals or metamaterials, standard discretizations suffer from bad convergence rates
and a large pre-asymptotic range due to the multiscale nature, the low regularity, and
the indefiniteness of the problem.

In this paper, we consider a numerical homogenization scheme to cope with the
multiscale nature and the resolution condition, which couples the maximal mesh size
to the frequency and is typical for indefinite wave propagation problems, see [2]. An-
alytical homogenization for locally periodic H(curl)-problems shows that the solution
can be decomposed into a macroscopic contribution (without rapid oscillations) and
a fine-scale corrector, see [3, 9, 10, 17]. In [5], this was extended beyond the periodic
case and without assuming scale separation. Using a suitable interpolation operator,
the exact solution is decomposed into a coarse part, which is a good approximation
in H(div)′, and a corrector contribution, which then gives a good approximation in
H(curl). Furthermore, the corrector can be quasi-localized, allowing for an efficient
computation. Analytical homogenization and other multiscale methods can also be
applied to indefinite problems [3, 9] so that it is natural to examine this extension
also for the numerical homogenization of [5].

The technique of numerical homogenization presented there is known as Localized
Orthogonal Decomposition (LOD) and was originally proposed in [12]. Among many
applications, we point to elliptic boundary value problems [8], the wave equation [1],
mixed elements [7], and in particular Helmholtz problems [6, 16, 15]. The works on
the Helmholtz equation reveal that the LOD can also reduce the so-called pollution
effect. Only a natural and reasonable resolution condition of a few degrees of freedom
per wavelength is needed in the LOD and the local corrector problems have to be
solved on patches which grow logarithmically with the wave number. The crucial
observation is that the bilinear form is coercive on the kernel space of a suitable
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interpolation operator. For Maxwell’s equations this is not possible due to the large
kernel of the curl-operator. However, a wave number independent inf-sup-stability of
the bilinear form over the kernel of the interpolation operator is proved using a regular
decomposition. This inf-sup-stability forces us to localize the corrector problem in a
non-conforming manner, which leads to additional terms in the analysis and may be
of independent interest. Still, we are able to define a well-posed localized numerical
homogenization scheme which allow for order optimal (w.r.t. the mesh size) a priori
estimates.

The paper is organized as follows. Section 2 introduces the model problem and the
necessary notation for meshes and the interpolation operator. We introduce an ideal
numerical homogenization scheme in Section 3. We localize the corrector operator,
present the resulting main scheme and its a priori analysis in Section 4.

The notation a . b denotes a ≤ Cb with a constant C independent of the mesh
size H, the oversampling parameter m and the frequency ω. Bold face letters will in-
dicate vector-valued quantities and all functions are complex-valued, unless explicitly
mentioned. We study the high-frequency case, i.e. ω & 1 is assumed.

2. Problem setting.

2.1. Model problem. Let Ω ⊂ R3 be an open, bounded, contractible domain
with polyhedral Lipschitz boundary with outer unit normal n. For any bounded
subdomain G ⊂ Ω, the spaces H(curl, G), H0(curl, G) and H(div, G) denote the
usual curl- and div-conforming spaces; see [14] for details. We will omit the domain
G if it is equal to the full domain Ω. In addition to the standard inner product, we
equip H(curl, G) with the following ω-dependent inner product

(v,w)curl,ω,G := (curlv, curlw)L2(G) + ω2(v,w)L2(G).

Let f ∈ H(div,Ω) and let µ−1 ∈ L∞(Ω,R3×3) and ε ∈ L∞(Ω,R3×3) be uniformly
elliptic. For any open subset G ⊂ Ω, we define the bilinear form BG : H(curl, G) ×
H(curl, G)→ C as

BG(v,ψ) := (µ−1 curlv, curlψ)L2(G) − ω2(εv,ψ)L2(G), (2.1)

and set B := BΩ. The form BG is obviously continuous and the continuity constant
is independent of ω if we use the norm ‖ · ‖curl,ω.

We now look for u ∈ H0(curl,Ω) such that

B(u,ψ) = (f ,ψ)L2(Ω) for all ψ ∈ H0(curl,Ω). (2.2)

We implicitly assume that the above problem is a multiscale problem, i.e. the coeffi-
cients µ−1 and ε are rapidly varying on a very fine sale. Fredholm theory guarantees
the existence of a unique solution u to (2.2) provided that ω is not an eigenvalue of
curl-curl-operator, which we will assume from now on. This in particular implies that
there is γ(ω) > 0 such that B is inf-sup stable with constant γ(ω), i.e.

inf
v∈H0(curl)\{0}

sup
ψ∈H0(curl)\{0}

|B(v,ψ)|
‖v‖curl,ω‖ψ‖curl,ω

≥ γ(ω). (2.3)

2.2. Mesh and interpolation operator. Let TH be a regular partition of Ω
into tetrahedra, such that ∪TH = Ω and any two distinct T, T ′ ∈ TH are either
disjoint or share a common vertex, edge or face. We assume the partition TH to



NUMERICAL HOMOGENIZATION FOR INDEFINITE H(CURL)-PROBLEMS 139

be shape-regular and quasi-uniform. The global mesh size H is defined as H :=
max{diam(T )|T ∈ TH}. TH is a coarse mesh in the sense that it does not resolve the
fine-scale oscillations of the parameters.

Given any subdomain G ⊂ Ω define the patches via

N1(G) := N(G) := int(∪{T ∈ TH |T ∩G 6= ∅}) and Nm(G) := N(Nm−1(G)).

We refer to [15], for instance, for a visualization of the patches. The shape regularity
implies that there is a uniform bound Col,m on the number of elements in the m-

th order patch, i.e. maxT∈TH card{K ∈ TH |K ⊂ Nm(T )} ≤ Col,m, and the quasi-
uniformity implies that Col,m depends polynomially on m. We abbreviate Col := Col,1.
We denote the lowest order Nédélec finite element, cf. [14, Section 5.5], by

N̊ (TH) := {v ∈ H0(curl)|∀T ∈ TH : v|T (x) = aT × x + bT with aT ,bT ∈ C3}.

We require an H(curl)-stable interpolation operator (with some additional prop-
erties) for the numerical homogenization. The only suitable candidate is the Falk-
Winter interpolation operator, see [4]. Some important properties are summarized
below, see [5] for details and proofs.

Proposition 2.1. There exists a projection πE
H : H0(curl) → N̊ (TH) with the

following local stability properties: For all v ∈ H0(curl) and all T ∈ TH it holds that

‖πE
H(v)‖L2(T ) .

(
‖v‖L2(N(T )) +H‖ curlv‖L2(N(T ))

)
, (2.4)

‖ curlπE
H(v)‖L2(T ) . ‖ curlv‖L2(N(T )). (2.5)

Moreover, for any v ∈ H0(curl,Ω), there are z ∈ H1
0(Ω) and θ ∈ H1

0 (Ω) such that
v − πE

H(v) = z +∇θ with the local bounds for every T ∈ TH

H−1‖z‖L2(T ) + ‖∇z‖L2(T ) . ‖ curlv‖L2(N3(T )),

H−1‖θ‖L2(T ) + ‖∇θ‖L2(T ) .
(
‖v‖L2(N3(T )) +H‖ curlv‖L2(N3(T ))

)
,

(2.6)

where ∇z stands for the Jacobi matrix of z.
The stability estimates in particular imply that πE

H is stable with respect to the
‖ · ‖curl,ω-norm if the condition ωH . 1 is fulfilled:

‖πE
Hv‖curl,ω . ‖v‖curl,ω if ωH . 1.

3. Ideal numerical homogenization. In this section we introduce an ideal
numerical homogenization scheme which approximates the exact solution in H0(curl)
by a coarse part (which itself is a good approximation in H−1(Ω)) and a corrector
contribution. The idea is based on the direct sum splitting H0(curl) = N̊ (TH) ⊕W
with W := ker(πE

H) the kernel of the Falk-Winther interpolation operator introduced
in the previous section. The regular decomposition estimates (2.6) directly imply for
any w ∈W

‖w‖H(div)′ . H‖w‖H(curl). (3.1)

¿From now on, we assume the resolution condition

ωH . 1. (3.2)

It reflects that a few degrees of freedom per wavelength are always required to repre-
sent a wave. The constant only depends on interpolation constants and the bounds
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on the material coefficients. Under resolution condition (3.2), B is stable on W, as
details the next lemma.

Lemma 3.1 (Properties of W). Let w ∈W be decomposed as w = z +∇θ and
(3.2) be satisfied. Then

• we have a (ω-independent) norm equivalence between ‖ · ‖curl,ω and ‖|w|‖2 :=
‖ curl z‖2 + ω2‖∇θ‖2

• there is α > 0 independent of ω such that

inf
w∈W\{0}

sup
φ∈W\{0}

|B(w,φ)|
‖w‖curl,ω‖φ‖curl,ω

≥ α.

Proof. For the norm equivalence we obtain using (2.6) and curlw = curl z

‖|w|‖2 = ‖ curl z‖2+ω2‖∇θ‖2 . ‖ curlw‖2 + ω2‖w‖2 + ω2H2‖ curlw‖2 . ‖w‖2curl,ω,

‖w‖2curl,ω ≤ ‖z‖2curl,ω + ‖∇θ‖2curl,ω . ‖ curl z‖2+ω2H2‖ curl z‖2 + ω2‖∇θ‖2 . ‖|w|‖2.

For the inf-sup-constant, define the sign-flip isomorphism A(w) := z −∇θ. Observe
that curlπE

Hz = curlπE
Hw = 0 because of the commuting property of πE

H . Then

<{B(w, (id−πE
H)A(w))} & ‖ curl z‖2 + ω2‖∇θ‖2 − ω2‖z‖2 − 2ω2|(εz,∇θ)|

− 2ω2|(εz, πE
Hz)| − 2ω2|(ε∇θ, πE

Hz)|,

where we used πE
H∇θ = −πE

Hz because of πE
Hw = 0. Applying Young’s inequality, the

stability of πE
H (2.4)–(2.5), estimate (2.6) and using the resolution condition (3.2), we

arrive at

<{B(w, (id−πE
H)A(w))} & ‖ curl z‖2 + ω2‖∇θ‖2 & ‖w‖2curl,ω

because of the norm equivalence. The estimate ‖(id−πE
H)A(w)‖curl,ω . ‖w‖curl,ω

finally gives the claim.
In contrast to coercive problems, unique solvability is not guaranteed when B

is restricted to subspaces. Therefore, the inf-sup-stability of B on W is the crucial
ingredient to introduce a well-defined Corrector Green’s Operator.

Definition 3.2. For F ∈ H0(curl)′, we define the Corrector Green’s Operator

G : H0(curl)′ →W by B(G(F),w) = F(w) for all w ∈W. (3.3)

Let L : H0(curl)→ H0(curl)′ denote the differential operator associated with B
and set K := −G◦L. Inspired by the procedure in [5], an ideal numerical homogeniza-
tion scheme consists in solving the variational problem over the “multiscale” space
(id +K)N̊ (TH). The well-posedness of this scheme is proved in the next lemma.

Lemma 3.3. Under the resolution condition, we have with γ(ω) from (2.3) that

inf
vH∈N̊ (TH)\{0}

sup
ψH∈N̊ (TH)\{0}

|B((id +K)vH , (id +K)ψH)|
‖vH‖curl,ω‖ψH‖curl,ω

& γ(ω). (3.4)

Proof. Fix vH ∈ N̊ (TH). From (2.3), there exists ψ ∈ H0(curl) with ‖ψ‖curl,ω = 1
such that

|B((id +K)vH ,ψ)| ≥ γ(ω)‖(id +K)vH‖curl,ω.
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By the definition of K, it holds that (id +K)πE
Hψ = (id +K)ψ and B((id +K)vH ,w) =

0 for all w ∈W. Thus, we obtain

|B((id +K)vH , (id +K)πE
Hψ)| = |B((id +K)vH , (id +K)ψ)| = |B((id +K)vH ,ψ)|

≥ γ(ω)‖(id +K)vH‖curl,ω.

The claim follows now by the norm equivalence

‖vH‖curl,ω = ‖πE
H(id +K)vH‖curl,ω . ‖(id +K)vH‖curl,ω,

which is a result of the stability of πE
H .

Before we introduce the ideal numerical homogenization scheme, we summarize
the approximation and stability properties of the Corrector Green’s Operator, cf. [5].

Lemma 3.4 (Ideal corrector estimates). Any F ∈ H0(curl)′ and any f ∈ H(div)
satisfy

H‖G(F)‖curl,ω + ‖G(F)‖H(div)′ . Hα−1‖F‖H0(curl)′ (3.5)

H‖G(f)‖curl,ω + ‖G(f)‖H(div)′ . H2α−1‖f‖H(div). (3.6)

Collecting the results of the previous lemmas, we have the following result on
our ideal numerical homogenization scheme.

Theorem 3.5. Let u denote the exact solution to (2.2) and uH = πE
Hu. Then

• it holds that u = uH +K(uH) + G(f)
• assuming (3.2), uH is characterized as the unique solution to

B((id +K)uH , (id +K)ψH) = (f , (id +K)ψH) for all ψH ∈ N̊ (TH) (3.7)

• assuming (3.2), it holds that

‖u− (id +K)uH‖curl,ω + ‖u− uH‖H(div)′ . H‖f‖H(div). (3.8)

Proof. The proof of the first two items carries over verbatim from the elliptic case
[5]. The a priori error estimate (3.8) follows from the first item and Lemma 3.4.

The theorem shows that (id +K)uH approximates the analytical solution with
linear rate without assumptions on the regularity of the problem. What is more, only
the reasonable resolution condition ωH . 1 is required, overcoming the pollution
effect. However, the determination of K requires the solution of global problems,
which limits the practical usability of the scheme.

4. Quasi-local numerical homogenization.

4.1. Exponential decay and localized corrector. The property that K can
be approximated by local correctors is directly linked to the decay properties of G
defined in (3.3). The following result states – loosely speaking – in which distance
(measured in unit of the coarse mesh size H) from the support of the source term
F the weighted H(curl)-norm of G(F) becomes negligibly small. For that, recall the
definition of element patches Nm(T ) from Section 2.2.

Proposition 4.1. Let T ∈ TH , m ∈ N and FT ∈ H0(curl)′ be a local source
functional, i.e. FT (v) = 0 for all v ∈ H0(curl) with supp(v) ⊂ Ω \ T . If (3.2) holds,
there exists 0 < β̃ < 1 such that

‖G(FT )‖curl,ω,Ω\Nm(T ) . βm‖FT ‖H0(curl)′ . (4.1)
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Proof. The proof can be easily adapted from the elliptic case in [5] using the
inf-sup-stability of B over W from Lemma 3.1.

The result can be used to approximate K, which has a non-local argument, via

K(vH) = −
∑

T∈TH

G(LT (vH)),

where the localized differential operator LT : H(curl, T ) → H(curl,Ω)′ is associated
with BT , the restriction of B to the element T . Proposition 4.1 now suggests to
truncate the computation of G(FT ) to the patches Nm(T ) and then collect the results
from all elements T . Typically, m is referred to as oversampling parameter.

Definition 4.2 (Localized Corrector Approximation). For any element T ∈ TH
we define its patch ΩT := Nm(T ). Let F ∈ H0(curl)′ be the sum of local functionals,
i.e. F =

∑
T∈TH FT with FT as in Proposition 4.1. Denote by πE

H,ΩT
: H0(curl,Ω)→

N̊ (TH(ΩT )) the Falk-Winther interpolation operator which enforces essential boundary
conditions (i.e. zero tangential traces) on ∂ΩT . We then define

W(ΩT ) := {w ∈ H0(curl)|w = 0 outside ΩT , π
E
H,ΩT

w = 0} * W. (4.2)

We call GT,m(FT ) ∈W(ΩT ) the localized corrector if it solves

B(GT,m(FT ),w) = FT (w) for all w ∈W(ΩT ). (4.3)

The global corrector approximation is then given by

Gm(F) =
∑

T∈TH

GT,m(FT ).

Observe that problem (4.3) is only formulated on the patch ΩT . Its well-posedness
can be proved as in Lemma 3.1: For w ∈W(ΩT ), use (id−πE

H,ΩT
)A(w) ∈W(ΩT ) as

test function (with the sign-flip isomorphism A). We emphasize that the definition of
W(ΩT ) via πE

H,ΩT
is needed to make this test function a member of W(ΩT ), otherwise

the support would be enlarged. This is a non-conforming definition of the localized
corrector (i.e. πE

HGm(·) 6= 0), so that additional terms appear in the error analysis.
However, the non-conformity error only plays a role near the boundary of ∂ΩT and
can therefore be controlled very well.

Theorem 4.3. Let G(F) be the ideal Green’s corrector and Gm(F) the localized
corrector from Definition 4.2. Under (3.2), there exists 0 < β < 1 such that

‖G(F)− Gm(F)‖curl,ω .
√
Col,m βm

( ∑
T∈TH

‖FT ‖2H0(curl)′

)1/2

, (4.4)

‖πE
HGm(F)‖curl,ω .

√
Col,m βm

( ∑
T∈TH

‖FT ‖2H0(curl)′

)1/2

. (4.5)

The proof is postponed to Subsection 4.3.

4.2. The quasi-local numerical homogenization scheme. Following the
above motivation, we define a quasi-local numerical homogenization scheme by re-
placing K in the ideal scheme (3.7) with Km.
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Definition 4.4. Let Km be defined as described in the previous subsection. The
quasi-local numerical homogenization scheme seeks uH,m ∈ N̊ (TH) such that

B((id +Km)uH,m, (id +Km)vH) = (f , (id +Km)vH) for all vH ∈ N̊ (TH). (4.6)

We observe that Km can be computed by solving local decoupled problems, see
[5] for details. Note that the spaces W(ΩT ) are still infinite dimensional so that in
practice, we require an additional fine-scale discretization of the corrector problems.
We omit this step here and refer the reader to [5] for the elliptic case and [16] for the
Helmholtz equation.

We now prove the well-posedness and the a priori error estimate for the quasi-local
numerical homogenization scheme.

Theorem 4.5 (Well-posedness of (4.6)). If the resolution condition (3.2) and
the oversampling condition

m & | log
(
γ(ω)/

√
Col,m

)
|/| log(β)| (4.7)

are fulfilled, B is inf-sup-stable over (id +Km)N̊ (TH), i.e.

inf
vH∈N̊ (TH)\{0}

sup
ψH∈N̊ (TH)\{0}

|B((id +Km)vH , (id +Km)ψH)|
‖vH‖curl,ω‖ψ‖curl,ω

≥ γLOD(ω) ≈ γ(ω).

Theorem 4.6 (A priori estimate). Let u denote the analytical solution to (2.2)
and uH,m the solution to (4.6). If the resolution condition (3.2) and the oversampling
condition

m & | log
(
γLOD(ω)/

√
Col,m

)
|/| log(β)| (4.8)

are fulfilled, then

‖u− (id +Km)uH,m‖curl,ω . (H + βmγ−1(ω))‖f‖H(div). (4.9)

Note that the oversampling condition (4.8) is – up to constants independent of H
and ω – the same as condition (4.7). Since Col,m grows polynomially in m for quasi-
uniform meshes, it is satisfiable and depends on the behavior of γ(ω). If γ(ω) . ωq,
we derive m ≈ log(ω), which is a better resolution condition than for a standard
discretization. Note that in (4.9), we can replace γ−1(ω) with Cstab(ω), the stability
constant of the original problem (2.2). This is exactly the same a priori estimate as
for Helmholtz problems in [16]. To sum up, an oversampling parameter m ≈ | log(ω)|
is sufficient for the stability of the LOD. Requiring additionally m ≈ | log(H)|, we
obtain a linear convergence rate for the error.

4.3. Main proofs. Theorem 4.3 results from the exponential decay of G in
Proposition 4.1.

Proof. [Proof of Theorem 4.3] We start by proving the following local estimate

‖G(FT )− GT,m(FT )‖curl,ω . β̃m‖FT ‖H0(curl)′ . (4.10)

By Strang’s second Lemma we obtain

‖G(FT )− GT,m(FT )‖curl,ω . inf
wT,m∈W(ΩT )

‖G(FT )−wT,m‖curl,ω

+ sup
φT,m∈W(ΩT )

‖φT,m‖curl,ω=1

|B(G(FT ),φT,m)− FT (φT,m)|.
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The first term can be estimated as in [5]. For the second term, we have due to (3.3)
that it is equal to

sup
φT,m∈W(ΩT ),‖φT,m‖curl,ω=1

|B(G(FT ),φT,m − φ)− FT (φT,m − φ)|

for any φ ∈ W. Fixing φT,m = zT,m + ∇θT,m, we choose φ = (id−πE
H)(ηzT,m +

∇(ηθT,m)) with a cut-off function such that φT,m − φ = 0 in Nm−2(T ). Then

FT (φT,m − φ) = 0 and we get with the stability of πE
H and (2.6)

|B(G(FT ),φT,m − φ)| . ‖G(FT )‖curl,ω,Ω\Nm−2(T )‖φT,m − φ‖curl,ω

. ‖G(FT )‖curl,ω,Ω\Nm−2(T ).

Combination with Proposition 4.1 gives (4.10).
For (4.4), we split the error as

‖G(F)− Gm(F)‖curl,ω ≤ ‖(id−πE
H)(G(F)− Gm(F))‖curl,ω + ‖πE

HGm(F)‖curl,ω.

The first term can be estimated with the procedure from [5]. The second term is
the left-hand side of (4.5) and thus, it suffices to prove (4.5). We observe that
πE
HGT,m(FT ) 6= 0 only on a small ring R ⊂ Nm+1(T ) because πE

H and πE
H,ΩT

only
differ near the boundary of ΩT . Hence, we get

‖πE
HGm(F)‖2curl,ω ≤

∑
T∈TH

|(πE
HGm(F), πE

HGT,m(FT ))curl,ω|

.
∑
T

‖πE
HGm(F)‖curl,ω,Nm+1(T )‖πE

H(G(FT )− GT,m(FT ))‖curl,ω

.
√
Col,m‖πE

HGm(F)‖curl,ω

(∑
T

‖G(FT )− GT,m(FT )‖curl,ω

)1/2

.

Application of (4.10) gives the claim.
The well-posedness of the quasi-local numerical scheme comes from the well-

posedness of the ideal scheme (Theorem 3.5) and the fact that the localized corrector
is exponentially close to the ideal corrector.

Proof. [Proof of Theorem 4.5] Fix vH ∈ N̊ (TH) and set ṽH = πE
H(id +Km)(vH).

According to Theorem 3.5, there exists ψH ∈ N̊ (TH) with ‖ψH‖curl,ω = 1 such that

|B((id +K)ṽH , (id +K)ψH)| ≥ γ(ω)‖ṽH‖curl,ω.

As B(w, (id +K)ψH) = 0 for all w ∈W, we derive

B((id +Km)vH , (id +K)ψH) = B((id+Km)vH−(id−πE
H)((id +Km)vH), (id +K)ψH)

= B(ṽH , (id +K)ψH) = B((id +K)ṽH , (id +K)ψH).

This yields together with Theorem 4.3

|B((id +Km)vH , (id +Km)ψH)|
= |B((id +Km)vH , (Km −K)ψH) + B((id +K)vH , (id +K)ψH)|
= |B((id +Km)vH , (Km −K)ψH) + B((id +K)ṽH , (id +K)ψH)|
≥ γ(ω)‖ṽH‖curl,ω − C

√
Col,m βm‖(id +Km)vH‖curl,ω.
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Moreover, we have

‖(id +Km)vH‖curl,ω . (1 + βm)‖vH‖curl,ω . ‖vH‖curl,ω,

since β < 1, and

‖vH‖curl,ω = ‖πE
H(id +K)vH‖curl,ω = ‖πE

H(id +Km)vH + πE
H(K −Km)vH‖curl,ω

. ‖ṽH‖curl,ω + C
√
Col,m βm‖vH‖curl,ω.

If m is large enough (indirectly implied by the oversampling condition), the second
term can be hidden on the left-hand side. Thus, we finally obtain

|B((id +Km)vH , (id +Km)ψH)| & (γ(ω)− C
√
Col,m βm)‖vH‖curl,ω.

Application of the oversampling condition (4.7) gives the assertion.
The proof of the a priori error estimate is inspired by the procedure for the

Helmholtz equation [16] and uses duality arguments.
Proof. [Proof of Theorem 4.6] Denote by e the error u − (id +Km)uH,m and set

eH,m := (id +Km)πE
H(e). Let zH ∈ N̊ (TH) be the solution to the dual problem

B((id +Km)vH , (id +Km)zH) = (eH,m, (id +Km)vH)curl,ω for all vH ∈ N̊ (TH).

Using the fact that B(w, (id +K)zH) = 0 for all w ∈W and employing the Galerkin
orthogonality B(e, (id +Km)zH) = 0, we obtain that

‖eH,m‖2curl,ω = B(eH,m, (id +Km)zH)

= B(eH,m, (Km −K)zH) + B(eH,m, (id +K)zH)

= B(e− eH,m, (K −Km)zH)− B(πE
H(e− eH,m), (id +K)zH).

Observe that πE
H(e− eH,m) = πE

HKmπ
E
H(e). Theorem 4.3 and 4.5 yield

‖eH,m‖2curl,ω .
√
Col,m βm‖e− eH,m‖curl,ω‖zH‖curl,ω+

√
Col,m βm‖e‖curl,ω‖zH‖curl,ω

.
√
Col,m βm γ−1

LOD(ω) (‖e− eH,m‖curl,ω + ‖e‖curl,ω)‖eH,m‖curl,ω.

The triangle inequality gives

‖e‖curl,ω ≤ ‖(id−πE
H)(e− eH,m)‖curl,ω + ‖πE

H(e− eH,m)‖curl,ω + ‖eH,m‖curl,ω.

The above computations and (4.5) imply with the resolution condition (4.8)

‖e‖curl,ω . ‖(id−πE
H)(e− eH,m)‖curl,ω.

Observe that e − eH,m = u − (id +Km)πE
H(u) − (id +Km)πE

HKmuH,m. Since
(id−πE

H)(e− eH,m) ∈W, Lemma 3.1 gives w ∈W with ‖w‖curl,ω = 1 such that

‖(id−πE
H)(e− eH,m)‖curl,ω

. |B((id−πE
H)(e− eH,m),w)|

= |B(u,w)−B((id+Km)πE
Hu,w)−B((id+Km)πE

HKmuH,m,w)−B(πE
HKmπ

E
He,w)|

= |(f ,w)−B((Km −K)πE
Hu,w)−B((Km −K)πE

HKmuH,m,w)−B(πE
HKmπ

E
He,w)|.

Theorems 4.3 and 4.5 now give together with the stability of πE
H and (3.1)

‖(id−πE
H)(e− eH,m)‖curl,ω

.
(
H +

√
Col,m βmγ−1(ω) + Col,m β2mγ−1

LOD(ω)
)
‖f‖H(div) +

√
Col,m βm‖e‖curl,ω.

The last term can be hidden on the left-hand side and the third term can be absorbed
in the second term.
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Conclusion. In this paper, we presented and analyzed a numerical homogeniza-
tion scheme for indefinite H(curl)-problems, inspired by [5]. We showed that the
indefinite bilinear form is inf-sup-stable for ωH . 1 over the kernel of the Falk-
Winther interpolation operator, which is crucial for the analysis. Under this reason-
able resolution condition and the additional oversampling condition m ≈ | log(γ(ω))|,
the numerical homogenization method is stable and yields linear convergence (w.r.t.
the mesh size) of the error in the H(curl)-norm. These conditions are similar for
the Helmholtz equation, suggesting that they are optimal. Incorporating impedance
boundary conditions as well as numerical experiments are subject of future research.
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