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STOCHASTIC MODULATION EQUATIONS ON UNBOUNDED
DOMAINS∗

LUIGI A. BIANCHI† AND DIRK BLÖMKER‡

Abstract. We study the impact of small additive space-time white noise on nonlinear stochastic
partial differential equations (SPDEs) on unbounded domains close to a bifurcation, where an infinite
band of eigenvalues changes stability due to the unboundedness of the underlying domain. Thus we
expect not only a slow motion in time, but also a slow spatial modulation of the dominant modes, and
we rely on the approximation via modulation or amplitude equations, which acts as a replacement
for the lack of random invariant manifolds on extended domains.

One technical problem for establishing error estimates in the stochastic case rises from the spa-
tially translation invariant nature of space-time white noise on unbounded domains, which implies
that at any time the error is always very large somewhere far out in space. Thus we have to work in
weighted spaces that allow for growth at infinity.

As a first example we study the stochastic one-dimensional Swift-Hohenberg equation on the
whole real line [1, 2]. In this setting, because of the weak regularity of solutions, the standard
methods for deterministic modulation equations fail, and we need to develop new tools to treat the
approximation. Using energy estimates we are only able to show that solutions of the Ginzburg-
Landau equation are Hölder continuous in spaces with a very weak weight, which provides just
enough regularity to proceed with the error estimates.
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1. Experiments. A celebrated model in pattern formation is the Rayleigh-
Bénard convection, an experimental phenomenon where a fluid between two plates
is heated from below and kept at a constant temperature from above. Here the
full description would be a 3D-Navier-Stokes equation coupled to the heat equation, a
mathematical model that is yet too complicated for our analytical tools. In this article
we review the results of [1] and [2] and thus we consider the simpler Swift-Hohenberg
model [8] that is used as a reduced model for the convective instability.

Figure 1.1. Rayleigh-Bénard convection
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1.1. Convective instability. The convective instability is the first bifurcation
in the Rayleigh-Bénard problem. Below a critical temperature Tc the fluid is at rest
and no pattern is formed. The heat is just transported by conduction through the
system.

Above the critical temperature Tc convection rolls start to form. Hot fluid is
going up and cold fluid is going down, and they cannot do that in the same place, so
we have areas where the motion is upwards and other areas where it is downwards.
In a view from above, a striped pattern starts to show up.

T < Tc

No pattern
heat transport

T > Tc

Dominant pattern
convection rolls

Figure 1.2. Bifurcation at the convective instability, the figure shows a cut through the fluid
with the plates above and below.

1.2. Pattern formation below criticality. Very close to the critical point,
stochastic effects were observed first in electro-convection (see Rehberg et al. [18])
and much later in Rayleigh-Bénard convection (see Oh, Ahlers et al. [16, 17]). In
both experiments, pattern formation slightly below the critical threshold (i.e., a crit-
ical temperature Tc in Rayleigh Bénard) was observed. Nevertheless the distance to
bifurcation had to be of the order of the noise’s strength, which made it extremely dif-
ficult to observe in experiments, as the source of noise in Rayleigh-Bénard are thermal
fluctuations. Similar observations in numerical experiments and using formal center
manifold approximations were done by Hutt et al. [10, 9].

Observation from experiments, [18]:
Below threshold (but close)

trivial solution is not stable
pattern is slowly modulated

Well above threshold
convection rolls are stable
pattern is almost periodic

2. Introduction. The typical setting in the following presentation of our re-
sults shows complicated systems given for example by (stochastic) partial differential
equations. Near a change of stability (or bifurcation) of the trivial solution, we have
a natural separation of time-scales. The (Fourier) modes similar to the bifurcating
pattern move on a slow time-scale given by the distance from bifurcation, while the
other modes move and disappear on an order one time-scale.

The typical results we are aiming at are the approximation of the full dynamics
by means of the amplitude of the bifurcating pattern, which is given by a (stochastic)
differential equation. On unbounded domains a full band of eigenfunctions changes
stability. In order to take this into account the amplitude of the dominating pattern
is slowly modulated in space.

This approximation by modulation (or amplitude) equations is well established
in the physics literature, but only on a formal level. From a mathematical point of
view, the deterministic problems are well studied. Starting from the first publications
[4, 11, 14, 13] there is a rich literature, featuring also recent contributions, for example
[20, 6], just to name two.
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Let us point out that the celebrated center manifold reduction, which works well
for deterministic PDEs on bounded domains, is not available for PDEs on unbounded
domains. Moreover, it is not useful in the stochastic setting: because of the inherent
non-autonomy of the system due to noise, the manifold itself would move through
the whole phase space, and thus any reduction to the manifold does not reduce the
complexity of the dynamics at all.

We finally give an outline of the paper. In Section 3 we state the setting of
the Swift-Hohenberg equation and discuss the spectrum of the linearized operator
together with modulated pattern. We then briefly recall the main results on large
domains in Section 4, while in Section 5 we state in detail the results available on
unbounded domains. In the final two sections we give a remark on pattern formation
below criticality and provide an outlook on several possible extensions of the result.

3. Swift-Hohenberg. For our results we consider for simplicity only a toy prob-
lem given by the Swift-Hohenberg equation. It can be derived via heuristic reduction
from the Rayleigh-Bénard problem close to the convective instability, as was originally
shown by Swift & Hohenberg [8]. See also [19] for a more rigorous approach. The
equation is given as:

∂tu = −(1 + ∂2x)2u+ νε2u− u3 + ε3/2ξ , (SH)

where we assume
• u(t, x) ∈ R, t > 0, x ∈ R
• periodic boundary conditions – or – unbounded domain
• ξ = ∂tW Gaussian space-time white noise.

Thus in the sense of generalized processes the mean of the noise is zero and it is
uncorrelated in space and time:

E ξ(t, x) = 0 , E ξ(t, x)ξ(s, y) = δ(t− s)δ(x− y) .

As a mathematical model, the noise is given as a derivative of a standard cylindrical
Wiener process {W (t)}t≥0 in L2(R), meaning that

W (t) =
∑
k

βk(t)ek

where {ek}k is any orthonormal basis in L2(R) and {βk}k is a sequence of i.i.d. real-
valued Brownian motions.

3.1. Eigenvalues – Spectral gap. In our example of the Swift-Hohenberg
operator we can calculate all eigenvalues of the linearized operator explicitly:

L = −(1 + ∂2x)2 and thus Leikx = λ(k) eikx ,

subject to periodic boundary conditions on an interval or on the whole real line.
Obviously,

λ(k) = −(1− k2)2 .

In Figure 3.1 we plotted the eigenvalues of L for those k ∈ R which lead to admissible
eigenfunctions that satisfy the boundary conditions. We see that the spectral gap
between the largest two eigenvalues shrinks as the domain gets larger: on an interval
of length O(ε−1) already many eigenvalues are O(ε2) away from the largest eigenvalue
0.
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2π-periodic

k ∈ Z

L
ε -periodic

k ∈ 1
2Lπ ε Z

on R
k ∈ R

Figure 3.1. Band of Eigenvalues for the example L = −(1 + ∂2x)2 on bounded, large, and
unbounded domains. We plot the wave-number k against the eigenvalue λ(k) = −(1 − k2)2 for the
corresponding eigenfunction eikx.

3.2. Modulated pattern. As many eigenvalues are close to the change of sta-
bility, we need to understand how many eigenfunctions with wave-number around
k = ±1 influence the pattern.

Let us compare a 2π-periodic pattern

u(x) = εAeix + c.c. with A ∈ C

with a modulated pattern

u(x) = εA(εx)eix + c.c. with A : R 7→ C

If we consider the amplitude A in polar coordinates, then its absolute value |A| de-
termines the size of the modulated pattern, while the angle is a phase shift of the
pattern. Both move slowly in space here.

We can calculate that

u(x) = εA(εx)eix + c.c.

has Fourier transform

Fu(k) = FA ( (k − 1)/ε ) + FA ( (k + 1)/ε ) .

For 2π-periodic pattern the function is in the span of eix and e−ix. Thus the Fourier
transform is only a Dirac at wave-numbers k ∈ {−1, 1}.

−1 1

|Fu|

For the slow modulation of a 2π-periodic pattern, the Fourier transform widens
up but it is still concentrated around k ∈ {−1, 1}. A whole band of infinitely many
Fourier modes defines the structure of the solution.
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−1 1

|Fu|

4. Large domains. Here we present the results of Blömker, Hairer & Pavlio-
tis [3] without stating the technical details.

Theorem 4.1 (Approximation [3]). Consider a 2L/ε-periodic solution u of (SH)
If u(0, x) = εA(0, εx) · eix + c.c. +O

(
ε2
)

is a modulated wave with admissible initial
condition A(0, ·) = O(1), then

∀t ∈ [0, T0ε
−2] u(t, x) = εA(ε2t, εx) · eix + c.c. +O

(
ε2−
)
,

where the amplitude A(T,X) ∈ C solves (GL).
The amplitude equation is a stochastic Ginzburg-Landau equation:

∂TA = (4∂2X + ν)A− 3|A|2A+ η (GL)

with
• 2L-periodic solutions
• C-valued space-time white noise η = ∂TW

The complex-valued standard cylindrical Wiener-process W arises from rescaling the
discrete Fourier transform of the real-valued Wiener process W for Fourier-modes
with wave-number k close to 1. See also Section 5.2.

Let us remark that even in the case of ξ in (SH) colored and regular in space, the
amplitude equation (GL) has space-time white noise, due to rescaling in space and
time.

The estimates in Theorem 4.1 above are given in C0-norms and the initial condi-
tion A(0) is called admissible if it splits into a more regular H1-part, and a Gaussian
part, which we can bound in C0. This is a quite natural assumption for SPDEs using
the standard transformation with the stochastic convolution.

5. Unbounded domains. The key technical problem for deriving an approxi-
mation result via amplitude equations for (SH) on unbounded domains is the regu-
larity of solutions. All previous results require too much regularity that we do not
have in the stochastic setting. The theory for deterministic PDEs always uses uniform
bounds in space on derivatives of the amplitude A. While the pioneering works [4, 11],
which needed a uniform bound on the fourth derivative, were much improved since
then, all results still need a uniform bound.

The previously stated Theorem 4.1 on large but still bounded domains needs a
split condition in space for a more regular H1-part and a Gaussian part only in C0.
Nevertheless, solutions are always uniformly bounded in space.

In two papers Klepel, Mohammed & Blömker [15, 12] discussed the case of
spatially constant noise. Also in this setting they need too much regularity, as the
solution of the amplitude equation (GL) has to be H1/2+ in space and thus it is
uniformly bounded.

We formulate the regularity that we expect for the amplitude A as a theorem:
Theorem 5.1 (Lack of regularity). With space-time white noise on the whole

real line and with sufficiently smooth initial conditions the amplitude A solving (GL)
is

• γ-Hölder-continuous in space and time only with γ < 1/2,
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• unbounded in space, i.e. ‖A(T, ·)‖∞ =∞ for all T > 0.
To address the lack of regularity we can on one hand consider mild solutions, that

take care of the problems with differentiability. On the other hand, we need weighted
Hölder spaces which are defined by the norm (for some small κ > 0)

‖u‖C0,α
κ

= sup
L>1
{L−κ‖u‖C0,α([−L,L])} .

5.1. Mild formulation. Recall the Swift-Hohenberg equation:

∂tu = Lu+ νε2u︸ ︷︷ ︸
=:Lνu

−u3 + ε3/2∂tW (SH)

Its mild solution (see [5]), also called variation of constants formula, is

u(t) = etLνu(0)−
t∫

0

e(t−s)Lνu3(s) ds+ ε3/2WLν (t)

with the stochastic convolution given by

WLν (t) =

∫ t

0

e(t−s)LνdW (s) .

Remark 1. Results for existence and uniqueness of mild solutions are usually
straightforward using fixed-point theorems. Unfortunately this is not the case in the
weighted spaces we are considering. The nonlinearity is unbounded and the semigroup
is only regularizing in terms of differentiability but not in terms of weights. Thus the
right-hand-side of the fixed-point equation is not a self-mapping.

So the existence and uniqueness is first established for weak solutions via an ap-
proximation with large but bounded domains, and then one can show that weak so-
lutions are sufficiently regular to be also mild. We will go not into details here, for
those see [2].

5.2. Results for the linearized equation. This is the key stochastic result
from Bianchi & Blömker [1]. It is one of the essential building blocks to prove a result
for the residuum of the nonlinear equation.

Theorem 5.2 (Approximation). Given the Wiener process W from (SH), there is
a complex-valued Wiener process W for (GL) such that for any κ > 0 with probability
almost 1

sup
[0,

T0
ε2

]

∥∥∥ε 3
2WLν (t, x)−

[
εW4∂2

x+ν
(ε2t, εx) · eix + c.c.

]∥∥∥
C0
κ

≤ Cε 3
2−

Definition 5.3. We say that an ε-dependent event Aε has probability almost
1, if for all p ≥ 1 there is a constant Cp > 0 such that P(Aε) ≥ 1− Cpεp.

Let us remark that, in order to control the cubic term in the nonlinear result
afterwards, we use the weighted supremum norm and not weaker (and actually much
simpler) weighted L2-norm.

Proof. We provide here only a brief sketch of the proof, for all the technical
details see [1]. We rescale the stochastic convolution to the slow time (T = ε2t)
and large space (X = εx). Then we split into Fourier-modes larger than 0 and the
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complex conjugate corresponding to Fourier-modes smaller than 0. This defines the
complex valued Wiener process, as there is one canonical processW such that we can
summarize the difference as a single stochastic integral w.r.t. W:

ε1/2WL(Tε−2, Xε−1)− [W4∂2
x
(T,X) · eiX/ε + c.c.] =

∫ T

0

HτdW(τ) · eiX/ε + c.c.

with a convolution operator Hτu = Hτ ? u that mainly contains rescaled differences
of the semigroups.

We use a technical estimate that allows to bound
∫ T
0
HτdW(τ) in weighted Hölder

spaces with small exponent and small weight in terms of bounds on the Fourier-
transform Ĥτ in spaces with slightly more regularity than L2([0, T0]× R).

The remaining and lengthy part of the proof shows the bounds for the norm of
Ĥτ in different areas of the Fourier-space.

5.3. Nonlinear result. The full nonlinear result for (SH) and (GL) was treated
in Bianchi, Blömker & Schneider [2]. It contains of two steps: first we bound the
residual of the Swift-Hohenberg equation, and then via standard energy-type estimates
we establish the approximation result.

5.3.1. Residual. Let A be a solution of (GL) with some conditions on A(0, ·).
It basically has to be in any W 1,p

ρ , p > 1 for an integrable weight ρ.
Definition 5.4 (Approximation). For A from above, we define the approxima-

tion

uA(t, x) = εA(ε2t, εx)eix + c.c.

The key step towards an approximation result is to bound the residual for uA.
Definition 5.5 (Residual). For uA from above we define

Res(t) = u(t)− etLνuA(0) +

t∫
0

e(t−s)Lνu3A(s) ds− ε3/2WLν (t)

We can prove the following result:
Theorem 5.6 (Residual). For every small κ > 0 with probability almost 1

sup
[0,T0ε−2]

‖Res ‖C0
κ
≤ Cε3/2−.

The proof can be found in [2, Theorem 5.9]. Its main strategy is as follows:
• use suitable exchange Lemmas to replace Swift-Hohenberg semigroups by

Ginzburg-Landau semigroups,
• take advantage of Theorem 5.2 for stochastic convolution WLν ,
• notice that all terms of order O(ε) cancel due to (GL).

The key problem is that for the exchange Lemmas some regularity (or Gaussianity)
is needed to estimate:

etL[D(εx)eix] ≈ [e4T∂
2
XD](εx) · eix and etL[D(εx)e3ix] ≈ 0

If D is very smooth the proofs are straightforward, but here D ∈ {A3, A|A|2} thus we
only have Hölder-regularity.
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5.3.2. Approximation. For a solution u of (SH) and the approximation uA we
define

R = u− uA −Res

which solves

∂tR = LνR− (R+ uA +Res)3 − uA3.

Use standard energy estimates in a weighted L2-norm (for ρ > 1)

‖R‖2L2
ρ,ε

=

∫
R

(1 + ε2x2)−ρ/2|R(x)|2dx

we obtain the following result.

Theorem 5.7. With probability almost 1

sup
[0,T0ε−2]

‖u− uA‖L2
ρ,ε
≤ C‖u(0)− uA(0)‖L2

ρ,ε
+ Cε1−.

Details of the proof can be found in [2, Theorem 6.3].

6. A comment on pattern formation below criticality. Using amplitude
equations, the question of pattern formation has a simple answer. Let us consider
(SH) below the bifurcation, but sufficiently close. To be more precise, if σ is the
noise-strength, then the distance from bifurcation should be O(σ4/3). In such scaling
the effective dynamic is described by the amplitude equation, which is independent
of σ. Thus the amplitude A is always O(1) and hence the pattern is visible.

7. Outlook. Let us conclude by commenting on some possible extensions of the
results above.

7.1. Other types of noise in (SH). In the result presented here we only treat
space-time white noise in both equations. But we could try more regular noise to
overcome regularity barriers.

For colored, spatially smooth and translation invariant noise, it seems straight-
forward that in the approximation result (GL) still has space-time white noise, due
to the rescaling both in space and time. Thus it does not help with the regularity.

If we consider trace class noise in L2(R) then we impose a decay-condition at
infinity for (SH). But in that case, due to the spatial rescaling, we expect point-
forcing in (GL).

In order to have noise that does not change under the space-time rescaling, one
could try to consider algebraic decay of correlations. Here we expect a similar algebraic
decay of correlations also for the noise in (GL). However, these types of noise seem to
yield poor regularity of solutions, too.

7.2. Quadratic non-linearities. A more accurate Swift-Hohenberg model of
the real Rayleigh-Bénard convection has a quadratic nonlinearity. In that setting
the analysis is much more involved, as one has much more complicated interaction
of Fourier-modes. But it is known from the deterministic results that even in the
Rayleigh-Bénard phenomenon the amplitude equation is of Ginzburg-Landau type.
Consequently, we expect a similar result to hold in the stochastic case, too.
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7.3. Higher-dimensional models. Considering higher dimensional models is
a difficult problem, as already in 2D the Ginzburg-Landau equation is no longer well-
defined. See Hairer, Ryser & Weber [7] for a result on Allen-Cahn, which should
generalize to (GL).

Consider for example Swift-Hohenberg in R2

∂tu = −(1 + ∆)2u+ 4∂2yu+ νε2u− u3 + ε∂tW (2D-SH)

subject to space-time white noise or even smoother spatially colored noise. This
formally has the amplitude equation

∂TA = −4∆A+ νA− 3A|A|2 + ∂TW (2D-GL)

also with space-time white noise, which is no longer well-defined, as noted in the
aforementioned [7]. Nevertheless, results like these are used in the applied literature.

Here in the spirit of [7], we can consider a smaller strength of the noise to obtain
a meaningful limit. In that case the amplitude equation has no longer an additive
noise, but additional deterministic terms should appear due to the presence of noise
in (SH-2D) and averaging effects in the nonlinearity.
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