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PROPAGATION OF ERRORS IN DYNAMIC ITERATIVE SCHEMES

BARBARA ZUBIK-KOWAL∗

Abstract. We consider iterative schemes applied to systems of linear ordinary differential
equations and investigate their convergence in terms of magnitudes of the coefficients given in the
systems. We address the question of whether the reordering of equations in a given system improves
the convergence of an iterative scheme.
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1. Introduction. We investigate convergence of dynamic iteration schemes, see
e.g. [2], [4], whose successive iterates are vector functions of the time variable t
rather than just a collection of scalars (as in static iterations). The schemes are
also called waveform relaxation techniques and their advantages are described e.g. in
[3]. The references [3], [2], [4] provide a broad overview on the dynamic iteration
schemes (designed for time-dependent initial value problems) versus static iteration
schemes (designed for linear algebraic systems). Convergence analyses for dynamic
iteration schemes are provided in [3], [2], [4] and the references therein. However,
the comparison of different choices of dynamic iteration schemes obtained through a
change in the order of the differential equations in a given system is not considered
in these references.

In this paper, we show that the choice of the components to be computed using
previous iterates and the components to be computed using present iterates affects
the efficiency of resulting iterative schemes. To illustrate this, we consider dynamic
iterative schemes for the following system

d

dt
x1(t) = a11x1(t) + a12x2(t) + g1(t),

d

dt
x2(t) = a21x1(t) + a22x2(t) + g2(t), t > 0.

(1.1)

supplemented by the initial conditions

x1(0) = x1,0, x2(0) = x2,0, (1.2)

where a11 ≤ 0, a22 ≤ 0, a12, a21, x1,0, x2,0 are given real numbers and gi(t) are given
real valued functions.

For (1.1)–(1.2), we consider the following alternative iterative schemes
d

dt
xk+1
1 (t) = a11x

k+1
1 (t) + a12x

k
2(t) + g1(t),

d

dt
xk+1
2 (t) = a21x

k+1
1 (t) + a22x

k+1
2 (t) + g2(t), t > 0.

(1.3)
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and 
d

dt
yk+1
2 (t) = a22y

k+1
2 (t) + a21y

k
1 (t) + g2(t),

d

dt
yk+1
1 (t) = a12y

k+1
2 (t) + a11y

k+1
1 (t) + g1(t), t > 0.

(1.4)

supplemented by the initial conditions

xk1(0) = yk1 (0) = x1,0, xk2(0) = yk2 (0) = x2,0. (1.5)

Scheme (1.3) is initiated from an arbitrary function x02(t) and (1.4) is initiated from
another arbitrary function y01(t). Schemes (1.3) and (1.4) are called Gauss-Seidel
waveform relaxation schemes see, e.g., [2], [4].

Note that (1.4) is obtained from (1.1) by switching the equations in (1.1). More-
over, schemes (1.3) and (1.4) differ through the fact that scheme (1.3) is slowed down
by the previous iterate xk2(t) that is multiplied by the coefficient a12 while scheme
(1.4) is slowed down by the previous iterate yk1 (t) multiplied by a21.

Suppose that both kth iterates xk2(t) and yk1 (t) give rise to the same error

Ek(t) = xk2(t)− x2(t) = yk1 (t)− y1(t).

Then, in scheme (1.3), the error Ek(t) is multiplied by the coefficient a12 while, in
scheme (1.4), Ek(t) is multiplied by a21. Let us additionally suppose that a12 is much
greater than a21, for example, a12 = 106 and a21 = 10−6. Then, in scheme (1.3), the
error Ek(t) is multiplied by 106 (that is, it is significantly enlarged) while, in scheme
(1.4), the error Ek(t) is multiplied by 10−6 (so, it is significantly reduced). Therefore,
a natural question arises. Which of the schemes (1.3) or (1.4) is faster? In other
words, which of the sequences{(

xk1(t), xk2(t)
)}∞

k=0
,

{(
yk1 (t), yk2 (t)

)}∞
k=0

(1.6)

converges to
(
x1(t), x2(t)

)
faster?

This brings about further questions. Is it better to reorder the differential equa-
tions in system (1.1) before the Gauss-Seidel waveform relaxation scheme is applied
to get faster convergence of the resulting successive iterates? The goal of the paper
is to address the above questions.

2. Convergence analysis involving the spectral radius of a linear inte-
gral operator. In this section, we follow [3] and define the linear integral operator

Kx(t) =

∫ t

0

exp
(
(t− s)A

)
Bx(s)ds,

where A and B are complex square matrices of the same size. Then system (1.3) is
written in the form

xk+1(t) = Kxk(t) +

∫ t

0

exp
(
(t− s)A

)
g(s)ds+ exp

(
(t− s)A

)
x0

with

A =

[
a11 0
a21 a22

]
, B =

[
0 a12
0 0

]
, g(t) =

[
g1(t)
g2(t)

]
, x0 =

[
x1,0
x2,0

]
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and the spectral radius of K is written in the form

ρ(K) =
∣∣∣a12a21
a11a22

∣∣∣,
see [3]. If

Ã =

[
a22 0
a12 a11

]
, B̃ =

[
0 a21
0 0

]
, g̃(t) =

[
g2(t)
g1(t)

]
, x̃0 =

[
x2,0
x1,0

]
then (1.4) is written in the form

yk+1(t) = K̃yk(t) +

∫ t

0

exp
(
(t− s)Ã

)
g̃(s)ds+ exp

(
(t− s)Ã

)
x̃0,

where

K̃x(t) =

∫ t

0

exp
(
(t− s)Ã

)
B̃x(s)ds,

and

ρ(K̃) =
∣∣∣a12a21
a11a22

∣∣∣.
Note that the spectral radius for (1.4) is the same as for (1.3). Therefore, the spectral
radius does not give rise to any answer to the question of which of the schemes (1.3) or
(1.4) converge faster, though numerical experiments presented in Section 5 illustrate
that both schemes converge at different rates, showing that one is more efficient than
the other.

3. Explicit formulas for errors and conclusions for improving conver-
gence of iterative schemes. The roles of the parameters in the propagation of
errors can be traced more precisely from exact formulas of the errors than from error
bounds. In this section, we investigate the roles of the parameters a11, a12, a21, a22
in the propagation of errors arising during computations of the sequences of vector
functions (1.6) from the alternative numerical schemes (1.3) or (1.4) and address the
question of which of the schemes converges faster.

To realize this goal, we investigate exact formulas for the errors

eki (t) = xi(t)− xki (t), i = 1, 2, k = 0, 1, . . . (3.1)

and

Eki (t) = xi(t)− yki (t), i = 1, 2, k = 0, 1, . . . , (3.2)

which are provided through the following theorem.

Theorem 3.1. Let

w(ξ) =

∞∑
k=1

ξk

k!

k−1∑
i=0

ak−1−i11 ai22. (3.3)
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Then the errors (3.1) are given by the formulas

ek1(tk+1) = ak12a
k−1
21

∫ tk+1

0

∫ tk

0

. . .

∫ t2

0

ea11(tk+1−tk)
k−1∏
j=1

w(tj+1 − tj) (3.4)

e02(t1)dt1dt2 . . . dtk,

ek2(tk+1) = ak12a
k
21

∫ tk+1

0

∫ tk

0

. . .

∫ t2

0

k∏
j=1

w(tj+1 − tj) (3.5)

e02(t1)dt1dt2 . . . dtk,

where 0 < t1 < t2 < · · · < tk+1 and k = 1, 2, . . .
Proof. From (1.1)–(3.1), we have

d

dt
ek+1
1 (t) = a11e

k+1
1 (t) + a12e

k
2(t),

d

dt
ek+1
2 (t) = a21e

k+1
1 (t) + a22e

k+1
2 (t),

(3.6)

and

ek1(0) = ek2(0) = 0.

Therefore, the error ek(t) = (ek1(t), ek2(t))T is given recursively by

ek+1(t) =

∫ t

0

exp

(
(t− s)

[
a11 0

a21 a22

])[
0 a12

0 0

]
ek(s)ds, (3.7)

for k = 0, 1, 2 . . . . It can be proved by induction that

[
a11 0

a21 a22

]k
=


ak11 0

a21

k−1∑
j=0

ak−1−j11 aj22 ak22

 ,
for k = 1, 2, . . . This leads to

exp

(
(t− s)

[
a11 0

a21 a22

])
=

[
1 0

0 1

]
+

(t− s)1

1!

[
a11 0

a21 a22

]
+ · · ·+

(t− s)i

i!


ai11 0

a21

i−1∑
j=0

ai−1−j11 aj22 ai22

+ . . .

=


∞∑
i=0

ai11(t− s)i

i!
0

a21

∞∑
i=1

(t− s)i

i!

i−1∑
j=0

ai−1−j11 aj22

∞∑
i=0

ai22(t− s)i

i!


=

 ea11(t−s) 0

a21w(t− s) ea22(t−s)

 ,
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which gives

exp

(
(t− s)

[
a11 0

a21 a22

])[
0 a12

0 0

]
=

[
0 a12e

a11(t−s)

0 a12a21w(t− s)

]
.

From this and from (3.7) we have

ek+1
1 (t) = a12

∫ t

0

exp
(
a11(t− s)

)
ek2(s)ds, (3.8)

ek+1
2 (t) = a12a21

∫ t

0

w(t− s)ek2(s)ds, (3.9)

for k = 0, 1, . . . . We now use (3.9) to prove (3.5). It is easy to check that (3.9) for
k = 0 implies (3.5) for k = 1, (here, t2 = t and t1 = s). Assuming (3.5) holds for
some k, we will prove it for k + 1. From (3.9) we have

ek+1
2 (tk+2) = a12a21

∫ tk+2

0

w(tk+2 − tk+1)ek2(tk+1)dtk+1

= ak+1
12 ak+1

21

∫ tk+2

0

w(tk+2 − tk+1)

∫ tk+1

0

∫ tk

0

. . .

∫ t2

0

k∏
j=1

w(tj+1 − tj)×

e02(t1)dt1dt2 . . . dtkdtk+1

= ak+1
12 ak+1

21

∫ tk+2

0

∫ tk+1

0

∫ tk

0

. . .

∫ t2

0

k+1∏
j=1

w(tj+1 − tj)e02(t1)dt1dt2 . . . dtkdtk+1,

which proves (3.5). We now use (3.5) and (3.8) to prove (3.4). From (3.5) and (3.8)
we have

ek+1
1 (tk+2) = a12

∫ tk+2

0

exp
(
a11(tk+2 − tk+1)

)
ek2(tk+1)dtk+1

= ak+1
12 ak21

∫ tk+2

0

exp
(
a11(tk+2 − tk+1)

)∫ tk+1

0

∫ tk

0

. . .

∫ t2

0

k∏
j=1

w(tj+1 − tj)×

e02(t1)dt1dt2 . . . dtkdtk+1,

which finishes the proof of the theorem.

We now apply Theorem 3.1 to (1.4) and compare the errors arising in both
schemes, (1.3) and (1.4). Since

k−1∑
i=0

ak−1−i11 ai22 =

k−1∑
i=0

ak−1−i22 ai11,
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from (3.4) and (3.5), we have

Ek2 (tk+1) = ak21a
k−1
12

∫ tk+1

0

∫ tk

0

. . .

∫ t2

0

ea22(tk+1−tk) ×
(3.10)

k−1∏
j=1

w(tj+1 − tj)E0
1(t1)dt1dt2 . . . dtk,

Ek1 (tk+1) = ak21a
k
12

∫ tk+1

0

∫ tk

0

. . .

∫ t2

0

k∏
j=1

w(tj+1 − tj)×

(3.11)
E0

1(t1)dt1dt2 . . . dtk,

for k = 1, 2, . . . and tk+1 > 0.
Remark. Note that the starting function x01(t) has no influence on the conver-

gence of the scheme (1.3) and the starting function y02(t) has no influence on the
convergence of the scheme (1.4).

The formulas (3.4)–(3.5), for the scheme (1.3), and the formulas (3.10)–(3.11),

for the scheme (1.4), show how the starting error e
(0)
2 = x2 − x(0)2 propagates in (1.3)

and how the starting error e
(0)
1 = x1 − y(0)1 propagates in (1.4).

To choose the faster scheme, we compare (3.4)–(3.5) with (3.10)–(3.11) in the
following Corollary.

Corollary 3.2. If

e02 ≡ E0
1 . (3.12)

and

a11 < a22 and |a12| < |a21|, (3.13)

then scheme (1.3) converges faster than scheme (1.4). If (3.12) holds and the inequal-
ities in (3.13) are reversed then scheme (1.4) converges faster than scheme (1.3).

Corollary 3.2 shows that if (3.13) holds, then even though (1.3) and (1.4) are
initiated with the same error, it propagates differently in both schemes.

Results for higher-dimensional systems are developed in [5].

4. Using parameters in the derivation of error bounds. Applying the
variation of constants formula it is easy to obtain the following classical error bound

‖ek(t)‖ ≤ 1

k!

(
exp(t‖L+D‖)‖U‖

)k
max{‖e0(s)‖ : 0 ≤ s ≤ t},

see [2]. However, sharper error estimation can be obtained by using the exact formulas
(3.4) and (3.5).

Theorem 4.1. Let

Sk =
1

k!

( |a12a21|
|a11|+ |a22|

)k ∫ t

0

sk exp
(
s(|a11|+ |a22|)

)
ds max

s∈[0,t]
|e02(s)|, (4.1)

for k = 0, 1, . . . . Then

|ek1(t)| < |a12|Sk−1, (4.2)

|ek2(t)| < |a12a21|
|a11|+ |a22|

Sk−1, (4.3)
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for k = 1, 2, . . . . Moreover

lim
k→∞

Sk = 0. (4.4)

Proof. Let w be defined as in Theorem 3.1 and α = |a11|+ |a22|. Since

0 < t1 < t2 < · · · < tk < tk+1

in (3.4) and (3.5), then from the definition (3.3) we have∣∣∣w(tj+1 − tj)
∣∣∣ ≤ ∞∑

k=1

(tj+1 − tj)k

k!

k−1∑
i=0

|a11|k−1−i|a22|i

≤
∞∑
k=1

(tj+1 − tj)k

k!

k−1∑
i=0

(
k − 1

i

)
|a11|k−1−i|a22|i

=

∞∑
k=1

(tj+1 − tj)k

k!
αk−1 <

1

α
exp

(
α(tj+1 − tj)

)
,

and∣∣∣ k−1∏
j=1

w(tj+1 − tj)
∣∣∣ =

k−1∏
j=1

∣∣∣w(tj+1 − tj)
∣∣∣ < k−1∏

j=1

1

α
exp

(
α(tj+1 − tj)

)
=

1

αk−1
exp

(
α(tk − t1)

)
.

This, together with (3.4), implies that

|ek1(tk+1)| ≤ |a12|k|a21|k−1
∫ tk+1

0

∫ tk

0

. . .

∫ t2

0

exp
(
a11(tk+1 − tk)

)
1

αk−1
exp

(
α(tk − t1)

)
|e02(t1)|dt1dt2 . . . dtk

≤ |a12|k|a21|k−1α1−k max
0≤τ≤tk+1

|e02(τ)|
∫ tk+1

0

∫ tk

0

. . .

∫ t2

0

exp
(
α(tk+1 − t1)

)
dt1dt2 . . . dtk.

We now show that∫ tk+1

0

∫ tk

0

. . .

∫ t2

0

exp
(
α(tk+1−t1)

)
dt1dt2 . . . dtk =

1

(k − 1)!

∫ tk+1

0

sk−1eαsds. (4.5)

Since

1

k − 1

∫ t

0

sk−1eαsds =

∫ t

0

eα(t−z)
∫ z

0

sk−2eαsdsdz,

the right-hand side of (4.5) is

1

(k − 1)!

∫ tk+1

0

tk−1k eαtkdtk =
1

(k − 2)!

∫ tk+1

0

eα(tk+1−tk)
∫ tk

0

tk−2k−1e
αtk−1dtk−1dtk =

1

(k − 3)!

∫ tk+1

0

eα(tk+1−tk)
∫ tk

0

eα(tk−tk−1)

∫ tk−1

0

tk−3k−2e
αtk−2dtk−2dtk−1dtk = . . .

1

1!

∫ tk+1

0

eα(tk+1−tk)
∫ tk

0

eα(tk−tk−1)

∫ tk−1

0

eα(tk−1−tk−2) . . .

∫ t3

0

t2e
αt2dt2 . . . dtk−2dtk−1dtk =∫ tk+1

0

∫ tk

0

∫ tk−1

0

. . .

∫ t3

0

t2e
α(tk+1−t3+t2)dt2 . . . dtk−2dtk−1dtk =∫ tk+1

0

∫ tk

0

∫ tk−1

0

. . .

∫ t3

0

(t3 − t2)eα(tk+1−t2)dt2 . . . dtk−2dtk−1dtk.
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This, together with∫ t3

0

(t3 − t2)eα(tk+1−t2)dt2 =

∫ t3

0

(t3 − t2)
( d

dt2

∫ t2

0

eα(tk+1−t1)dt1

)
dt2 =[

(t3 − t2)

∫ t2

0

eα(tk+1−t1)dt1

]t2=t3
t2=0

+

∫ t3

0

∫ t2

0

eα(tk+1−t1)dt1dt2,

implies (4.5) and the proof of (4.2) is finished. The proof of (4.3) is similar. We now
show (4.4). Since

0 ≤ Sk
Sk−1

≤ t

k

|a12a21|
|a11|+ |a22|

,

it follows that

lim
k→∞

Sk
Sk−1

= 0,

which proves (4.4) and finishes the proof of the theorem.

5. Numerical experiments. In this section, we present results of numerical
experiments for (1.1). We apply the alternative schemes (1.3) and (1.4) to (1.1) and
compare their corresponding errors. To integrate (1.3) and (1.4) in time, we apply
BDF3 with the step size h = 10−3. Time integration gives rise to the numerical
approximations

xk1,n ≈ x1(tn), xk2,n ≈ x2(tn),

for (1.3) and

yk1,n ≈ x1(tn), yk2,n ≈ x2(tn),

for (1.4), at the grid-points tn = nh, n = 0, 1, . . . . We measure the errors

max
i=1,2

{
|xi(tn)− xki,n|

}
, (5.1)

max
i=1,2

{
|xi(tn)− yki,n|

}
, (5.2)

and observe the convergence of the schemes (1.3) and (1.4) by plotting (5.1) and (5.2)
as functions of k = 0, 1, . . . for a fixed n.

The errors (5.1) and (5.2) resulting from the different schemes ((5.1) corresponds
to (1.3) and (5.2) corresponds to (1.4)) are plotted in Figures 5.1 and 5.2 for n = 1000.
In both figures, the dotted line presents the error (5.1) and the solid line presents the
error (5.2).

Figure 5.1 presents the errors for problem (1.1)–(1.2) with g1 ≡ g2 ≡ 0 and
the initial values x1,0 = 0 and x2,0 = 0. Figure 5.2 presents the errors for problem
(1.1)–(1.2) with the initial values x1,0 = 1 and x2,0 = 0 and the inhomogeneous
functions g1(t) and g2(t) defined in such a way that the exact solution to this problem
is x1(t) = cos t, x2(t) = sin t, cp. [1, Sec. 203].

Figures 5.1 and 5.2 illustrate that scheme (1.3) converges faster than scheme (1.4).
Note that condition (3.13) is satisfied by the scheme whose error is presented by the
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Fig. 5.1. Numerical errors (5.1) using (1.3) (dotted) and numerical errors (5.2) using (1.4)
(solid) for (1.1)–(1.2) in the homogeneous case with g1 ≡ g2 ≡ 0.

dotted line and is not satisfied by the scheme whose error is presented by the solid
line. This illustrates the conclusion derived in Corollary 3.2 in both homogeneous and
non-homogeneous cases.

The errors presented in Figures 5.1 and 5.2 were obtained by running numerical
experiments with different coefficients, which we list above each subfigure in the order
a11, a12, a21, a22. Note that all these lists of coefficients satisfy condition (3.13) and,
therefore, Corollary 3.2 implies that for all these problems (each problem with a
different list of aij) scheme (1.3) convergerges faster than scheme (1.4).

Note that the error (5.1) (presented by the dotted lines), that is,(
xi(tn)− xki (tn)

)
+
(
xki (tn)− xki,n

)
,

is composed of two components: the error xi(tn) − xki (tn) of the iteration and the
error xki (tn)− xki,n of the ODE solver. Since integration in t is exact for the problem

considered in Figure 5.1, the only non-zero component of (5.1) is the error eki (tn) of
the iteration presented in Figure 5.1. The same conclusion can be derived for the
error (1.4) presented by the solid lines.

In Figure 5.2, the error (5.1) (dotted lines) has two non-zero components: the
iteration error eki (tn), which tends to zero as k → ∞, and the time integration error
xki (tn)− xki,n which is illustrated by the persistent horizontal lines in Figure 5.2. The
same conclusion can be derived for the error (1.4) (solid lines).
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Fig. 5.2. Numerical errors (5.1) using (1.3) (dotted) and numerical errors (5.2) using (1.4)
(solid) for (1.1)–(1.2) in the non-homogeneous case with non-zero source functions g1(t) and g2(t).

6. Concluding remarks and future work. In this paper, we addressed the
question of whether the convergence of dynamic iterations depends on the magnitudes
of the coefficients multiplied by present and previous iterates. From Sections 3, 4, and
5, we conclude that the order of the differential equations given in a larger dimensional
system may slow down or speed up the convergence of the dynamic iterations applied
to it. Therefore, we conclude that the order of the equations should be thoughtfully
optimized before dynamic iterations are used. The conclusions derived from Sections
3, 4, and 5 give suggestions for choices of present and previous iterates in larger
dimensional systems. Our future work [5] addresses the questions raised in this paper
in the case of higher-dimensional systems.
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