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EXPONENTIAL CONVERGENCE TO THE STATIONARY
MEASURE AND HYPERBOLICITY OF THE MINIMISERS FOR

RANDOM LAGRANGIAN SYSTEMS. ∗

ALEXANDRE BORITCHEV †

Abstract. We consider a class of 1d Lagrangian systems with random forcing in the space-
periodic setting:

φt + φ2x/2 = Fω , x ∈ S1 = R/Z.

These systems have been studied since the 1990s by Khanin, Sinai and their collaborators [7, 9,
11, 12, 15]. Here we give an overview of their results and then we expose our recent proof of the
exponential convergence to the stationary measure [6]. This is the first such result in a classical
setting, i.e. in the dual-Lipschitz metric with respect to the Lebesgue space Lp for finite p, partially
answering the conjecture formulated in [11]. In the multidimensional setting, a more technically
involved proof has been recently given by Iturriaga, Khanin and Zhang [13].
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1. Introduction and setting. We are concerned with 1d random Lagrangian
systems of the mechanical type, i.e. of the form:

Lω(x, v, t) = v2/2 + Fω(x, t), x ∈ S1 = R/Z,

where Fω(x, t) is a smooth function in x and a stationary random process in t (of the
kick or white force type: see Section 1.1). The Legendre-Fenchel transform gives us
the corresponding Hamiltonian Hω(x, p, t) = p2/2−Fω(x, t), and the Hamilton-Jacobi
equation:

φt + φ2
x/2 = Fω. (1.1)

Here, we consider only 1-periodic solutions φ. In this case the function u = φx satisfies
the randomly forced inviscid Burgers equation:

ut + uux = (Fω)x, x ∈ S1 = R/Z. (1.2)

Note that it is equivalent to consider a solution of (1.2) and a solution of (1.1) defined
up to an additive constant. Under the assumptions which are specified below, both
of these equations are well-posed and their solutions define Markov processes. The
existence and uniqueness of a corresponding stationary measure has been proved by
E, Khanin, Mazel and Sinai in the white force case in the seminal work [9]. For more
general (multi-d) results, see papers by Khanin and his collaborators [7, 11, 12, 15].
Note that in these papers, there are no explicit estimates on the speed of convergence
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to the stationary measure; nevertheless, an exponential bound locally in space away
from the shocks has been obtained by Bec, Frisch and Khanin in [1]. All these papers
use Lagrangian techniques; except in [11] the authors do not consider the equation
(1.2) with an additional viscous term νuxx. Note that for ν > 0 there is exponential
convergence to the stationary measure, but the speed of convergence is not a priori
uniform in ν [16].

In [6], we prove an exponential bound for the speed of convergence to the station-
ary measure for solutions of (1.2) for ν = 0 in the natural dual-Lipschitz metric with
respect to Lp, p ∈ [1,∞). This gives a partial answer in the 1d case to the conjecture
stated in [11, Section 4]. This bound is the natural SPDE analogue to the results on
the exponential convergence of the minimising action curves [7, 9]. The part of the
conjecture in [11] which remains open is proving that if we add a positive viscosity
coefficient ν, this exponential bound still holds, uniformly in ν.

It is very likely that the estimate we obtain is sharp since it coincides with the op-
timal one obtained in the generic nonrandom case by Iturriaga and Sanchez-Morgado
[14]. Note that the metrics are also optimal since it is impossible to obtain such an
estimate in the Lipschitz-dual space corresponding to L∞. Indeed, solutions of (1.2)
are discontinuous with a positive probability.

Finally, we would like to emphasize that our work is part of a series of papers
giving a stochastic version of the weak KAM theory developed by Fathi and Mather
[10]. In particular, there is a striking correspondence between the scheme of our proof
and the one in [14], which follows a general rule: the results which hold in the random
case under fairly weak assumptions are similar to the results which hold in the non-
random case under more stringent genericity assumptions. For more on this subject
and the link with the Aubry-Mather theory, see [12].

Remark 1.1. Our results extend to the case where φ, instead of being periodic
in space, satisfies φ(x + 1) = φ(x) + b, x ∈ R. Indeed, we use the results of [7,
9], which hold for all values of b. Moreover, our results extend to a class of non-
mechanical convex in p Hamiltonians of the type H(p) + Fω(t, x) with Fω as above,
under assumptions of the Tonelli type [10].

Remark 1.2. After the manuscript [6] has been submitted, Iturriaga, Khanin
and Zhang published a preprint containing more general results including also the
multidimensional case [13]. Their methods are more technically involved.

1.1. Random setting. We consider the mechanical Hamilton-Jacobi equation
with two different types of additive forcing in the right-hand side and a continuous
initial condition φ0. We begin by formulating the assumptions on potentials, which
are (except 1.1 (i) where we add an additional assumption for moments of the random
variable) the same as in the paper [7]:

Assumption 1.1. In the kicked case, we assume that:

(i) The kicks at integer times j are of the form Fω(j)(x) =
∑K
k=1 c

ω
k (j)F k(x),

where F k are C∞-smooth potentials on S1 = R/Z. The vectors (cωk (j))1≤k≤K are in-
dependent identically distributed RK-valued random variables defined on a probability
space (Ω,F ,P). Their distribution on RK , denoted by λ, is assumed to be absolutely
continuous with respect to the Lebesgue measure, and all of its moments are assumed
to be finite.

(ii) The potential 0 belongs to the support of λ.
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(iii) The mapping from S1 to RK defined by x 7→ (F 1(x), ..., FK(x)) is an embedding.

Assumption 1.2. In the case of the white force potential, we assume that:

(i) The forcing has the form Fω(x, t) =
∑K
k=1 (Wω

k )t(t)F
k(x), where F k are C∞-

smooth potentials on S1, and (Wω
k )t are independent white noises defined on a proba-

bility space (Ω,F ,P), i.e. time derivatives of independent Wiener processes Wω
k (t).

(ii) The mapping from S1 to RK defined by x 7→ (F 1(x), ..., FK(x)) is an embedding.

Remark 1.3. For both types of forcing, our results extend to the case of infinite-
dimensional noise, as long as it remains smooth in space (for example independent
white noises on each Fourier mode with the amplitude of the noise decreasing expo-
nentially with the wavenumber).

1.2. Functional spaces and Sobolev norms. Consider an integrable function
v on S1. For p ∈ [1,∞], we denote its Lp norm by |v|p. The L2 norm is denoted
by |v|, and 〈·, ·〉 stands for the L2 scalar product. Subindices t and x, which can be
repeated, denote partial differentiation with respect to the corresponding variables.
We denote by v(m) the m-th derivative of v in the variable x. For brevity, the function
v(t, ·) is denoted by v(t).

For a nonnegative integer m and p ∈ [1,∞], Wm,p stands for the Sobolev space
of zero mean value functions v on S1 with finite homogeneous norm |v|m,p =

∣∣v(m)
∣∣
p
.

In particular, W 0,p = Lp for p ∈ [1,∞]. We will never use Sobolev norms with m ≥ 1
for non-zero mean functions: in particular, for solutions of (1.1) we will only consider
the Lebesgue norms. On the other hand, C0 (resp. C∞) will denote the space of
C0-smooth (resp. C∞-smooth) (not necessarily zero mean value!) functions on S1.

Since the length of S1 is 1, we have:

|v|1 ≤ |v|∞ ≤ |v|1,1 ≤ |v|1,∞ ≤ · · · ≤ |v|m,1 ≤ |v|m,∞ ≤ . . .

We denote by L∞/R the space of functions in L∞ defined modulo an additive
constant endowed with the norm:

|u|L∞/R = inf
c∈R
|u− c|∞

The quantities denoted by K, M or M ′ are positive constants which only depend
on the general features of the system (i.e. the statistical distribution of the forcing):
they are nonrandom and do not depend on the initial condition. Moreover the con-
stants K(p) depend on the Lebesgue exponent p ∈ [1,∞).

There are two quantities, denoted respectively by C̃ and C̃p, which are time-
independent random variables with all moments finite, which do not depend on the
initial condition, but only ”pathwise” on the forcing; moreover the quantity C̃p de-
pends on the parameter p.

Quantities denoted by C are time-dependent random variables, which also have
finite moments and do not depend on the initial condition, but only ”pathwise” on the
forcing ω. Moreover, these random variables are stationary in the sense that C(s, ω)
coincides with C(s+ t, θtω) for every t, where θt denotes the time shift [9].

We will always denote by φ(t, x) a solution of (1.1) and by u(t, x) its derivative,
which solves (1.2), respectively for initial conditions φ0 and u0 = φ0

x. We will denote
accordingly the solutions for two initial conditions φ0, φ0.
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2. Dynamical objects and stationary measure. Here we introduce the La-
grangian dynamical objects. Note that the results in Sections 2.2 hold under much
more general assumptions; nevertheless these hypotheses will be extremely important
for the results which will be given in Section 2.3. For more details see [11, 12].

2.1. Lagrangian formulation and minimisers. Definition 2.1. For a time
interval [s, t] and x, y ∈ S1, we say that a curve γy,xs,t (τ) is a minimiser if it minimises
the action

A(γ) =
1

2

t∫
s

γt(τ)2dτ +
∑
n∈(s,t]

(
F (n)(γ(n))

)
in the ”kicked” case and the action

A(γ) =
1

2

t∫
s

γt(τ)2dτ +

t∫
s

(
γt(τ)

(∂G
∂x

(γ(τ), s)− ∂G

∂x
(γ(τ), τ)

))
dτ

+
(
G(γ(t), t)−G(γ(t), s)

)
in the white force case, respectively, over all absolutely continuous curves γ such that
γ(t) = x and γ(s) = y. Here G denotes a primitive in space of F . Note that in the
kicked case, minimising curves are linear on intervals [n, n+ 1] for integer values of
n.

Definition 2.2. For a time interval [s, t], x ∈ S1 and a continuous function
φ : S1 → R, we say that a curve γxs,t,φ(τ) : [s, t] → S1 is a φ-minimiser if it
minimises A(γ) + φ(γ(s)) over all absolutely continuous curves on [s, t] such that
γ(t) = x. In particular, all φ-minimisers are minimisers.

Now we can define the (pathwise) solution to (1.1) for a given ω ∈ Ω and a given
continuous initial condition.

Definition 2.3. For a time interval [s, t] and a continuous initial condition
φ(s) : S1 → R, for every ω by definition the (pathwise) solution φ : [s, t]×S1 → R of
(1.1) is defined using the ω-dependent action A by the Hopf-Lax formula:

φ(τ, x) = A(γ) + φ(s, γ(s)), τ ∈ [s, t],

where γ = γxs,τ,φ(s) is an ω-dependent φ(s)-minimiser defined on [s, τ ] satisfying

γ(τ) = x.

Remark 2.4. It is easy to check that the solution φ verifies the semigroup prop-
erty: in other words, one can define a solution operator

Σt2t1 : φ(t1) 7→ φ(t2), s ≤ t1 ≤ t2 ≤ t,

such that for t1 ≤ t2 ≤ t3, Σt3t2 ◦ Σt2t1 = Σt3t1 . In particular, for any τ ∈ (s, t),
the restriction of any φ(s)-minimiser defined on [s, t] to the time interval [τ, t] is a
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Στsφ(s)-minimiser.

Remark 2.5. Note that the solution φ is the limit in C0 of the strong solutions
to the equation obtained if we add a viscous term νφxx to (1.1) and then make ν tend
to 0 (see [11]).

Definition 2.6. For a time t and a point x ∈ S1, we say that a curve γx,+t (τ) :
[t,+∞) 7→ S1 is a forward one-sided minimiser if it minimises A(γ) over all absolutely
continuous curves such that γ(t) = x for compact in time perturbations.

Namely, we require that if for a curve γ̃ such that γ̃(t) = x there exists T such
that γ̃(s) ≡ γ(s) for s ≥ T , then A(γ)−A(γ̃) ≤ 0 (this difference is well-defined since
it is equal to the difference of the actions on the finite interval [t, T ]).

2.2. Stationary measure and related issues. Here we give a few results
which hold under weak assumptions and are sufficient to ensure that the stationary
measure corresponding to (1.2) exists and is unique. Up to some natural modifications
due to the fact that the forcing is now discrete in time, the convergence estimates can
be generalised to the kick force case in 1d [2] and to the multidimensional setting [5].

The flow corresponding to (1.2) induces a Markov process, and then we can define
the corresponding semigroup denoted by S∗t , acting on Borel measures on any Lp, 1 ≤
p <∞. A stationary measure for (1.2) is a Borel probability measure defined on Lp,
invariant with respect to S∗t for every t. A stationary solution of (1.2) is a random
process v defined for (t, ω) ∈ [0,+∞)×Ω, satisfying (1.2) and taking values in Lp, such
that the distribution of v(t) does not depend on t. This distribution is automatically
a stationary measure. Existence of a stationary measure for (1.2) is obtained using
uniform bounds for solutions in BV , which is compactly injected into Lp, p ∈ [1,∞),
and the Bogolyubov-Krylov argument. It is more difficult to obtain uniqueness of
a stationary measure, which implies uniqueness for the distribution of a stationary
solution.

Remark 2.7. The most natural space for our model would be the space L∞/R (for
the solutions to the equation (1.1)). Moreover, this is the space in which exponential
convergence to the unique stationary solution is proved in the deterministic generic
setting in [14]. However, this space is not separable, which makes dealing with the
stationary measure a delicate issue.

Definition 2.8. Fix p ∈ [1,∞). For a continuous function g : Lp → R, we
define its Lipschitz norm as

|g|L(p) := |g|Lip + sup
Lp

|g|,

where |g|Lip is the Lipschitz constant of g. The set of continuous functions with finite
Lipschitz norm will be denoted by L(p).

Definition 2.9. For two Borel probability measures µ1, µ2 on Lp, we denote by
‖µ1 − µ2‖∗L(p) the Lipschitz-dual distance:

‖µ1 − µ2‖∗L(p) := sup
g∈L(p), |g|L(p)≤1

∣∣∣ ∫
S1

gdµ1 −
∫
S1

gdµ2

∣∣∣.
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The following result proved in [2, 3, 5] is, as far as we are aware, the first explicit
estimate for the speed of convergence to the stationary measure of the equation (1.2)
with an additional viscous term νuxx which is uniform with respect to the viscosity
coefficient ν and is formulated in terms of Lebesgue spaces only.

Theorem 2.10. There exists δ > 0 such that for every p ∈ [1,∞), we have:

‖S∗t µ1 − S∗t µ2‖∗L(p) ≤ K(p)t−δ/p, t ≥ 1,

for any probability measures µ1, µ2 on Lp.

2.3. Main results and scheme of the proof. Now we are ready to state the
main result of the paper.

Theorem 2.11. For every p ∈ [1,∞), we have:

‖S∗t µ1 − S∗t µ2‖∗L(p) ≤ K(p)exp(−M ′t/p), t ≥ 0, (2.1)

for any probability measures µ1, µ2 on Lp.

The proof is, in the spirit, similar to the proof of [14, Theorem 1]. In that paper
the authors use the objects of the weak KAM theory which do not have any directly
available counterparts in our setting. However, there is a straightforward dynamical
interpretation of their method.

Namely, consider a mechanical Lagrangian v2/2−V (x) such that the determinis-
tic potential V is smooth and generic (i.e. it has a unique nongenerate maximum at a
unique point y0). An action-minimising curve on [0, T ] remains in a small neighbour-
hood of y0 on [C, T−C]. We obtain by linearising the Euler-Lagrange equation that at
the time T/2, all minimisers (independently of the initial condition) are C exp(−CT )-
close to y0, and then we conclude that for any initial conditions φ0, φ0, the solutions
of (1.1) at time T are C exp(−CT )-close up to an additive constant.

There are two main ingredients in the proof. On one hand for a given initial
condition φ0, the φ0-minimisers corresponding to different final points concentrate
exponentially. On the other hand, one-sided minimisers, which are the limits of φ0

T -
minimisers on [0, T ] as T → +∞ for any set of initial conditions

{
φ0
T

}
, also concen-

trate exponentially.
Now we introduce some definitions.

The diameter of a closed set Z can be thought of as the minimal length of a closed
interval on S1 containing Z.

Definition 2.12. Consider a closed subset Z of S1. Let a(Z) denote the maximal
length of a connected component of S1 − Z. We define the diameter of Z as d(Z) =
1− a(Z).

Definition 2.13. For −∞ < r < s ≤ t < +∞ and for a fixed function φ0 :
S1 → R, let Ωr,s,t,φ0 be the set of points reached, at the time s, by φ0-minimisers on
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[r, t]:

Ωr,s,t,φ0 = {γxr,t,φ0(s), x ∈ S1}.

Now we give two key estimates. The first one is - up to notation - [7, Corollary
2.1]. The second one is a forward-in-time version of [9, Lemma 5.6 (a)].

Lemma 2.14. We have the inequality:

sup
φ0∈C0

d(Ω0,s,s+s′,φ0) ≤ C(s′) exp(−Ks′).

Lemma 2.15. We have:

sup
γ̃1,γ̃2∈Γ

|γ̃1(t)− γ̃2(t)| ≤ C̃ exp(−Kt), t ≥ 0. (2.1)

where Γ is the set of all forward one-sided minimisers defined on the time interval
[0,+∞).

Corollary 2.16. Consider an initial condition φ0 and a time t > 0. Then for
any φ0-minimiser γ : [0, 2t]→ S1 and any forward one-sided minimiser δ : [0,+∞)→
S1 we have:

|γ(t)− δ(t)| ≤ C(t) exp(−Kt). (2.2)

Proof of Corollary 2.16: Extracting a subsequence of minimisers (for example
φ0-minimisers) on [0, s] and taking the limit while letting s go to +∞ (which is possible
because of the bounds on the velocity of the minimisers: see Lemma 3.1), one gets
a forward one-sided minimiser. In particular, for every ε there exists s(ε) ≥ 2t, a
φ0-minimiser γ̃ defined on [0, s] and a forward one-sided minimiser δ̃ on [0,+∞) such
that:

|γ̃(t)− δ̃(t)| ≤ ε.

By Lemma 2.15 we have:

|δ(t)− δ̃(t)| ≤ C̃ exp(−Kt),

and by Lemma 2.14, since the restriction γ̃|[0,2t] is a φ0-minimiser, we have:

|γ(t)− γ̃(t)| ≤ C exp(−Kt).

Combining these three inequalities and then letting ε go to 0, we get (2.2).

3. Proof of Theorem 2.11. First we state some useful estimates. For the proof
of the first lemma, see [12, Lemma 6].

Lemma 3.1. For t ≥ 1, we have:

sup
φ0∈C0

|φx(t)|1,1 ≤ C(t); sup
s∈[t,t+1],γ∈Γ

|γt(s)| ≤ C(t),
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where Γ is the set of minimisers defined on [0, t+ 1].

Lemma 3.2. Consider two minimisers γ1, γ2, both defined on [t, T ], T ≥ t + 1,
and satisfying γ1(T ) = γ2(T ). If for ε > 0 we have |γ1(t) − γ2(t)| ≤ ε, then we have
the following inequality for the actions of the minimisers:

|A(γ1)−A(γ2)| ≤ C(t)(ε+ ε2).

Proof: By symmetry, it suffices to prove that:

A(γ2) ≤ A(γ1) + C(ε+ ε2). (3.1)

We consider the curve γ̃1 : [t, T ]→ S1 defined by:

γ̃1(s) = γ1(s) + (t+ 1− s)(γ2(t)− γ1(t)), s ∈ [t, t+ 1].

γ̃1(s) = γ1(s), s ∈ [t+ 1, T ].

Using Definition 2.1 and Lemma 3.1, we get:

A(γ̃1) ≤ A(γ1) + C(ε+ ε2).

On the other hand, since γ̃1 has the same endpoints as the minimiser γ2, we get
A(γ2) ≤ A(γ̃1). Combining these two inequalities yields (3.1).

The proof of the following lemma follows the lines of [14].

Lemma 3.3. Consider two solutions φ and φ of (1.1) defined on the time interval
[0,+∞). Then we have:

|φ(t)− φ(t)|L∞/R ≤ C(t) exp(−Mt), t ≥ 0.

Proof of Lemma 3.3: Consider two solutions φ and φ to (1.1) corresponding
to the same forcing and different initial conditions at time 0. Using Definition 2.3, we
get for any t ≥ 1 and x ∈ S1:

φ(2t, x)− φ(2t, x) = φ(t, γ1(t)) +A(γ1|[t,2t])− φ(t, γ2(t))−A(γ2|[t,2t]), (3.2)

where γ1 and γ2 are respectively a φ0- and a φ0-minimiser on [0, 2t] ending at x. By
Corollary 2.16, we have:

|γi(t)− y| ≤ C exp(−Kt), i = 1, 2, (3.3)

where we fix any point y such that y = δ(t) for a one-sided minimiser δ defined on
[0,∞). By Lemma 3.1, this inequality yields that:

|φ(t, γ1(t))− φ(t, γ2(t))−R| ≤ (|φx(t)|∞|γ1(t)− y|+ |φx(t)|∞|γ2(t)− y|)
≤ 2C exp(−Kt),

where R = φ(t, y) − φ(t, y). On the other hand, using (3.3), by Lemma 3.2 we get
that:

|A(γ1|[t,2t])−A(γ2|[t,2t])| ≤ C exp(−Kt).
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Therefore, by (3.2), we get:

|φ(2t)− φ(2t)|L∞/R ≤ sup
x∈S1

|φ(2t, x)− φ(2t, x)−R| ≤ C exp(−Kt).

This proves the lemma’s statement.

Corollary 3.4. Consider two solutions u and u of (1.2) defined on the time
interval [0,+∞). Then for any p > 0 we have:

|u(t)− u(t)|p ≤ C̃p exp(−Mt/2p), t ≥ 0.

Proof: This result follows from Lemma 3.3 using the Gagliardo-Nirenberg in-
equality [8] and Lemma 3.1.

Proof of Theorem 2.11: By the Fubini theorem, it suffices to prove this result
in the case when the measures µ1 and µ2 are two Dirac measures concentrated at the
initial conditions u0, u0 ∈ Lp.

It follows from Corollary 3.4 that if we denote by B the event

B = {ω ∈ Ω | |u(t)− u(t)|L(p) ≥ exp(−Mt/4p)},

then we have:

P(B) ≤ exp(−Mt/4p) E C̃p, t ≥ 0.

Now consider a function g defined on Lp which satisfies |g|L ≤ 1. We have for t ≥ 0:

E (|g(u(t))− g(u(t))|p)
≤ P(B) E (|g(u(t))− g(u(t))|p | B) + P(Ω−B) E (|g(u(t))− g(u(t))|p | Ω−B)

≤ 2P(B) + P(Ω−B) exp(−Mt/4p) ≤ (2E C̃p + 1) exp(−Mt/4p).

Remark 3.5. The estimate in Lemma 3.3 is uniform with respect to the initial
conditions: in other words, we have

E sup
φ0,φ0∈C0

|φ(t)− φ(t)|L∞/R ≤ K exp(−Mt), t ≥ 0.

A similar statement holds for the estimate in Corollary 3.4.
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