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NONEXISTENCE OF SOLUTIONS OF SOME INEQUALITIES WITH
GRADIENT NONLINEARITIES AND FRACTIONAL LAPLACIAN∗

EVGENY GALAKHOV† AND OLGA SALIEVA‡

Abstract. We obtain sufficient conditions for nonexistence of nontrivial solutions for some
classes of nonlinear partial differential inequalities containing the fractional powers of the Laplace
operator.
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1. Introduction. The necessary conditions of solvability of nonlinear partial
differential equations and inequalities has been recently studied by many authors.

In particular, in [4, 1, 2] (see also references therein) such conditions were ob-
tained for some classes of nonlinear elliptic and parabolic inequalities, in particular
containing integer powers of the Laplacian, using the test function method developed
by S. Pohozaev [5]. However, for similar inequalities with fractional powers of the
Laplacian the problem remained open. For such inequalities with nonlinear terms of
the form uq it was considered in [6].

In the present paper we obtain sufficient conditions for nonexistence of solutions
for a class of elliptic inequalities with fractional powers of the Laplacian and nonlinear
terms of the form |Du|q, as well as for elliptic systems of the same type.

The rest of the paper consists of three sections. In §2 we obtain some auxiliary
estimates for the fractional Laplacian used further. In §3, we prove a nonexistence
theorem for single elliptic inequalities with fractional powers of the Laplacian, and in
§4, for systems of such inequalities.

2. Auxiliary estimates. We define the operator (−∆)s by the formula

(−∆)su(x)
def
= cn,s · p.v.

∫
IRn

(−∆)[s]u(y)− (−∆)[s]u(x)

|x− y|n+2{s} dy,(2.1)

where

cn,s
def
=

2{s}Γ
(
n+{s}

2

)
πn/2

∣∣∣Γ(−{s}2 )∣∣∣
(see, e.g., [3]).

We will use definition (2.1) for the proof of the following Lemmas.
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Lemma 2.1. Let s ∈ IR+, α ∈ IR and q, q′ > 1,
1

q
+

1

q′
= 1. Consider a function

ϕ1 : IRn → IR defined by

ϕ1(x)
def
=

 1 (|x| ≤ 1),
(2− |x|)λ (1 < |x| < 2),
0 (|x| ≥ 2)

(2.2)

with λ > [s] + 2q′. Then one has∫
IRn

|(−∆)sϕ1(x)|q
′
(1 + |x|)−

αq′
q ϕ1−q′

1 (x) dx <∞.(2.3)

Remark. In the Mitidieri–Pohozaev approach such estimates were established
by direct calculation of the iterated Laplacian of the test functions. This does not
work for the fractional Laplacian, so we need to establish some additional estimates.

Proof. Let 3
2 < |x| < 1. Use (2.1) with notation f(x, y) =

∆[s]ϕ1(x)−∆[s]ϕ1(y)

|x− y|n+2{s} :

|(−∆)sϕ1)(x)| = cn,s

∣∣∣∣∣∣
∫
IRn

f(x, y) dy

∣∣∣∣∣∣ = cn,s

∣∣∣∣∣∣
2∑
i=1

∫
Di

f(x, y) dy

∣∣∣∣∣∣ ,(2.4)

where

D1
def
= {y ∈ IRn : |x− y| ≥ (2− |x|)/2},

D2
def
= {y ∈ IRn : |x− y| < (2− |x|)/2}

(here and below the singular integrals are understood in the sense of the Cauchy
principal value).

For any ε ∈ (0, 2{s}), since we have |x− y| ≥ (2− |x|)/2 in D1, we get∫
D1

f(x, y) dy =

∫
D1

(−∆)[s]ϕ1(x)− (−∆)[s]ϕ1(y)

|x− y|n+2{s} dy ≤

≤ (−∆)[s]ϕ1(x)

∫
D1

dy

|x− y|n+2{s} ≤

≤ (−∆)[s]ϕ1(x) ·
(

2− |x|
2

)ε−2s ∫
D1

dy

|x− y|n+ε
≤ c1(2− |x|)λ+ε−2s

(2.5)

with some constant c1 > 0.
Finally, the Lagrange Mean Value Theorem implies that∫

D2

f(x, y) dy =

=
1

2

∫
D̃2

2(−∆)[s]ϕ1(x)− (−∆)[s]ϕ1(x+ z) + (−∆)[s]ϕ1(x− z)
|z|n+2s

dz ≤

≤ c2 · max
z∈D̃2

|((2− |x+ z|)λ−[s])′′|
∫
D̃2

|z|2

|z|n+2{s} dy
=

= c3 · max
z∈D̃2

(2− |x+ z|)λ−[s]−2 ·
∫
D̃2

dz

|z|n+2{s}−2 ,
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where D̃2 = {z ∈ IRn : |z| < (2− |x|)/2}, with constants c2, c3 > 0.
For z ∈ D̃2 we have

2− |x+ z| = 2− |x|+ |x| − |x+ z| ≤ (2− |x|) + |z| ≤ 3

2
(2− |x|).

Hence ∫
D2

f(x, y) dy ≤ c4(2− |x|)λ−[s]−2(2.6)

with some constant c4 > 0.
Combining (2.4)–(2.6), we obtain

|(−∆)sϕ1(x)| ≤ c5(2− |x|)λ−[s]−2(2.7)

and consequently

|(−∆)sϕ1(x)|q
′
(1 + |x|)−

αq′
q ϕ1−q′

1 (x) ≤

≤ c6(2− |x|)(λ−[s]−2)q
′−λ(1−q′) = c6(2− |x|)λ−([s]+2)q′

with some constants c5, c6 > 0 independent of x, which implies (2.3).

Lemma 2.2. Let s ∈ IR+, α ∈ IR and q, q′ > 1,
1

q
+

1

q′
= 1. For a family of

functions ϕR(x) = ϕ1

( x
R

)
, where R > 0, one has∫

IRn

|(−∆)sϕR(x)|q
′
(1 + |x|)−

αq′
q ϕ1−q′

R (x) dx ≤ cRn−2q
′s−αq

′
q(2.8)

for any R > 0 and some c > 0 independent of R.

Proof. By (2.1) and a change of variables ỹ =
y

R
, we have

(−∆)sϕR(x) = R−2s(−∆)sϕ1(x).(2.9)

Substituting (2.9) into the left-hand side of (2.8) and applying Lemma 2.1, we obtain
the claim.

3. Single elliptic inequalities. Now consider the nonlinear elliptic inequality

(−∆)su ≥ c|Du|q(1 + |x|)α (x ∈ IRn),(3.1)

where s > 1, c > 0, q > 1 and α are real numbers.
Definition 3.1. A weak solution of inequality (3.1) is a function u ∈W 1,q

loc (IRn)
such that for any nonnegative function ϕ ∈ C∞0 (IRn) there holds the inequality

−
∫
IRn

(Du,D((−∆)s−1ϕ)) dx ≥ c
∫
IRn

|Du|q(1 + |x|)αϕdx.(3.2)
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Theorem 3.2. Inequality (3.1) has no nontrivial (i.e., distinct from a constant
a.e.) weak solutions for α > 1− 2s and

1 < q ≤ n+ α

n− 2s+ 1
.(3.3)

Proof. Introduce a test function ϕR(x) = ϕ1

( x
R

)
, where ϕ1 ∈ C∞0 (IRn) is non-

negative and

ϕ1(x) =

{
1 (|x| ≤ 1),
0 (|x| ≥ 2).

(3.4)

Substituting ϕ(x) = ϕR(x) into (3.1) and applying the Hölder inequality, we get

c

∫
IRn

|Du|q(1 + |x|)αϕR dx ≤ −
∫
IRn

(Du,D((−∆)s−1ϕ))ϕR dx ≤

≤
∫
IRn

|Du| · |D((−∆)s−1ϕR)| dx ≤

∫
IRn

|Du|q(1 + |x|)αϕR dx

 1
q

×

×

 ∫
supp|DϕR|

|(−∆)sϕR|q
′
(1 + |x|)

αq′
q ϕ1−q′

R dx


1
q

,

(3.5)

where
1

q
+

1

q′
= 1. Hence,

∫
IRn

|Du|q(1 + |x|)αϕR dx ≤ c
∫
IRn

|D((−∆)s−1ϕR)|q
′
(1 + |x|)

αq′
q ϕ1−q′

R dx.(3.6)

From Lemma 2.2 we have∫
IRn

|(−∆)sϕR|q
′
(1 + |x|)

αq′
q ϕ1−q′

R dx ≤

cRn−q
′(2s−1)−αq

′
q

∫
IRn

|(−∆)sϕ1(y)|q
′
(1 + |y|)

αq′
q ϕ1−q′

1 (y) dy,
(3.7)

where y =
x

R
. Combining (3.6) and (2.3), since the integral on the right-hand side of

(3.7) converges for an appropriate choice of ϕ1(y), we obtain∫
IRn

|Du|q(1 + |x|)αϕR dx ≤ cRn−q
′(2s−1)−αq

′
q .

Taking R→∞, in case of strict inequality in (3.3) we come to a contradiction, which
proves the claim. In case of equality, we have∫

IRn

|Du|q(1 + |x|)α dx <∞,
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whence ∫
supp|DϕR|

|Du|q(1 + |x|)αϕR dx→ 0 for R→∞

and by (3.5) ∫
IRn

|Du|q(1 + |x|)α dx = 0,

which completes the proof in this case as well.

4. Systems of elliptic inequalities. Here we consider a system of nonlinear
elliptic inequalities{

(−∆)s1u ≥ c1|Dv|q1(1 + |x|)α1 (x ∈ IRn),
(−∆)s2u ≥ c2|Du|q2(1 + |x|)α2 (x ∈ IRn),

(4.1)

where s1 > 1, s2 > 1, q1 > 1, q2 > 1, α1 and α2 are real numbers.
Definition 4.1. A weak solution of system of inequalities (3.7) is a pair of

functions (u, v) ∈ W 1,q2
loc (IRn) × W 1,q1

loc (IRn) such that for any nonnegative function
ϕ ∈ C∞0 (IRn) there hold the inequalities∫

IRn

(Du,D((−∆)s1ϕ)) dx ≥ c1
∫
IRn

|Dv|q1(1 + |x|)α1ϕdx,∫
IRn

(Dv,D((−∆)s2ϕ)) dx ≥ c2
∫
IRn

|Du|q2(1 + |x|)α2ϕdx.
(4.2)

Denote

β1 = q1((2s2 − 1)q2 − (2s1 − 1)− α2)− α1,
β2 = q2((2s1 − 1)q1 − (2s2 − 1)− α2)− α2.

We will prove the following
Theorem 4.2. System (4.1) has no nontrivial (i.e., distinct from constants a.e.)

weak solutions for

n(q1q2 − 1) ≤ max{β1, β2}.(4.3)

Proof. Introduce a test function ϕR(x) as in the proof of the previous theorem.
Similarly to (3.5), we get

c1

∫
IRn

vq1(1 + |x|)α1ϕR dx ≤

∫
IRn

|Du|q2(1 + |x|)α2ϕR dx

 1
q2

×

×

 ∫
supp|DϕR|

|D((−∆)s2ϕR)|q
′
2(1 + |x|)

α2q
′
2

q2 ϕ
1−q′2
R dx


1
q′
2

,
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c2

∫
IRn

uq2(1 + |x|)α2ϕR dx ≤

∫
IRn

|Dv|q1(1 + |x|)α1ϕR dx

 1
q1

×

×

 ∫
supp|DϕR|

|D((−∆)s1ϕR)|q
′
1(1 + |x|)

α1q
′
1

q1 ϕ
1−q′1
R dx


1
q′
1

,

where
1

q1
+

1

q′1
=

1

q2
+

1

q′2
= 1. Estimating the second factors on the right-hand sides

of the obtained inequalities similarly to (2.3), we get

∫
IRn

|Dv|q1(1 + |x|)α1ϕR dx ≤ cR
n
q′
2

−(2s2−1)−
α2
q2

∫
IRn

uq2(1 + |x|)α2ϕR dx

 1
q2

,(4.4)

∫
IRn

|Du|q2(1 + |x|)α2ϕR dx ≤ cR
n
q′
1

−(2s1−1)−
α1
q1

∫
IRn

vq1(1 + |x|)α1ϕR dx

 1
q1

(4.5)

and, substituting (4.5) into (4.4) and vice versa,∫
IRn

|Dv|q1(1 + |x|)α1ϕR dx ≤ cRn−
q1((2s2−1)q2−(2s1−1)−α2)−α1

q1q2−1 ,

∫
IRn

|Du|q2(1 + |x|)α2ϕR dx ≤ cRn−
q2((2s1−1)q1−(2s2−1)−α1)−α2

q1q2−1 .

Passing to the limit as R→∞, we complete the proof of the theorem similarly to the
previous one.
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