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COMPUTATIONAL DESIGN OPTIMIZATION
OF LOW-ENERGY BUILDINGS ∗

JIŘÍ VALA †

Abstract. European directives and related national technical standards force the substantial
reduction of energy consumption of all types of buildings. This can be done thanks to the massive
insulation and the improvement of quality of building enclosures, using the simple evaluation as-
suming the one-dimensional stationary heat conduction. However, recent applications of advanced
materials, structures and technologies force the proper physical, mathematical and computational
analysis coming from the thermodynamic principles.

This paper shows the non-expensive evaluation of energy consumption of buildings with con-
trolled indoor temperature, decomposing a building, considered as a thermal system, into particular
subsystems and elements, coupled by interface thermal fluxes. We come to a rather large parabolic
system of partial differential equations, containing the nonlinearities i) from the surface Stefan -
Boltzmann radiation and ii) from the heating control; this can be handled using some properties
of semilinear systems. The Fourier multiplicative decomposition together with the finite element
technique enables us to derive a sparse system of ordinary differential equations, appropriate for
the input of climatic data (temperature, beam and diffuse solar radiation). For the approximate
solutions the spectral analysis is helpful; all nonlinearities can be overcome thanks to quasi-Newton
iterations.

All above sketched simulations have been implemented in MATLAB. An example shows the
validation of this approach, utilizing the time series of measured energy consumption from the real
family house in Ostrov u Macochy (30 km northern from Brno). Additional procedures for the support
of design of low-energy buildings come namely from the Nelder - Mead optimization algorithm.

Key words. Low-energy buildings, heat transfer, computational modelling, optimization tech-
niques, MATLAB software tools.
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1. Introduction. Knowledge of the position of Sun on the sky, used for natural
winter heating and summer shading, dates back to the antique architecture and to
the manuscripts by Aischylos and Socrates. However, the modern history of solar,
low-energy and similar houses starts from the global economical crisis in the 30ties
of 20th century, with the MIT “solar houses” (Massachusetts Institute of Technol-
ogy, USA), coupling the new trends in architecture and civil engineering with the
technological progress oriented to the reduction of energy requirements of buildings,
namely of the cost of artificial heating. The actual European concept of passive house,
forced by the directive [29] and national technical standards, is connected with the
project CEPHEUS (Cost Efficient Passive House as European Standard, 1998–2001),
whose ideas are explained in [8] in all details. All energy gains rely on the massive
insulation of the building enclosure, together with available technological equipments
(heat pumps, air recuperation, etc.) and certain exploitation of solar benefits; this is
reflected by the rather simple software tool [9].

The approach of [8] does not handle the thermal accumulation and available cli-
matic data properly, namely in the case of buildings with carefully controlled interior
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temperature in their particular zones and rooms, as in the freezing and cooling plants
where the substantial effect of decrease of energy consumption thanks to their optimal
design can be expected. Moreover, the inhabitants of family houses or block of flats
frequently prefer quite other criteria of well-being than the minimization of energy
cost, as reviewed in [4], to suppress (often intuitively) the “sick building syndrom”,
occurring just in advanced structures minimizing the heat loss without proper venti-
lation. Also some new experimental research outputs like [25] do not coincide with
traditional simplified calculation results. Software simulation packages for building
energy performance developed in the last 2 decades, introduced in [5], involve much
more physical processes than [9]; however, their complicated “black box” structure
with extensive direct computations is not very friendly to the design optimization
aims of architects and civil engineers.

In this paper we shall introduce a computational model of a building as a thermal
system, whose basic ideas come from [21] and [23]. The decomposition of a building
to building parts, as walls, roof, floor, ceilings, etc., as subsystems, with their own
interior structure, containing particular constructive, insulation and other layers, as
included subsystems, up to particular elements, incorporating selected physical pro-
cesses with necessary geometric and material characteristics, enables us to obtain a
compromise between model complexity and practically reliable, robust and inexpen-
sive computations, supporting the above mentioned optimization of various types.
The modular structure of the corresponding software in MATLAB respects such sys-
tem approach in our practical implementation. Unlike [12], referring to [15] and [24],
based on the analogy with the analysis of LC-electric circuits, coupling the finite dif-
ference approach with the Euler or similar time integration scheme, we shall work
with the finite element technique, the Fourier multiplicative decomposition and the
spectral properties of solutions, following some results of [13] (for direct computations)
and [14] (for optimization algorithms).

2. Physical and mathematical fundamentals. We shall demonstrate the ap-
proach sketched above on the rather simple case of non-stationary heat conduction in
the isotropic materials (at least macroscopically, not homogeneous in general), driven
by boundary heat transfer from external environment, as studied in [6], including
such interface transfer between adjacent subsystems, up to the level of particular el-
ements, occupying a domain Ω in the 3-dimensional Euclidean space R3. To avoid
technical difficulties, we assume certain regularity of Ω, sufficient for the validity of
standard Sobolev embedding and trace theorems in the sense of [20], p. 15; for possible
generalizations see [18], pp. 69, 160, 512. The development of similar considerations
with slightly stronger results in the Euclidean spaces of lower dimensions R1 and R2

are left to the patient reader. The following notations hold literally for constructive,
insulation, etc. elements of buildings, whereas their modification for empty rooms
(representing a majority of volume of a building) needs to set zero values of thermal
conductivity; potential generalizations will be mentioned later.

2.1. A simple model problem. Let R3 be supplied by some Cartesian coordi-
nate system x = (x1, x2, x3). Let the boundary ∂Ω of Ω in R3 having a local vector of
outward unit normal ν(x) = (ν1(x), ν2(x), ν3(x)) almost everywhere. The usual nota-
tion for the Hamilton operators ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3) will be used. Moreover,
let us consider a time interval J = [0, T ] with some real positive T (the limit passage
T →∞ is not prohibited); the upper dot symbol is reserved for partial derivatives with
respect to the time t ∈ J . The standard notation of Lebesgue, Sobolev, Bochner, etc.
(abstract) function spaces will be utilized in the following considerations, following
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[20], pp. 10, 22.
Let us introduce 2 basic material characteristics on Ω: the thermal conductivity

λ(x) (for the insulation ability) and the thermal capacity κ(x) (for the accumulation
ability, related to unit volume here). It is natural to suppose that λ and κ are functions
from L∞(Ω) (for homogeneous materials only constants), a. e. with values greater than
certain positive constant. The weak formulation of a heat transfer equation, using the
temperature ϑ(x, t) on Ω×J as the reference variable and working with some volume
sources f(x, t, ϑ(x, t)) on Ω× J and surface sources g(x, t, ϑ(x, t)) on ∂Ω× J , reads

(v, κϑ̇) + (∇v, λ∇ϑ) = (v, f) + 〈v, g〉 on J(2.1)

where (., .) denotes scalar products (for any fixed t) both in L2(Ω) and in L2(Ω)3,
〈., .〉 those in L2(∂Ω), v is an arbitrary test function from V and ϑ must be contained
in L2(J, V ), with certain ϑ̇ in L2(J,H); here we set H = L2(Ω), V will be specified
later due to the particular choice of f and g, crucial for the implementation of the
model. The Cauchy initial condition

ϑ(., 0) = ϑ0(2.2)

with a priori known ϑ0 ∈ V then completes the problem definition.
Let us notice that, regardless of (2.2), the formal application of the Green -

Ostrogradskij theorem (at least in the sense of distributions – cf. [28], p. 244), using
the central dots for the scalar products in R3, can convert (2.1) to its strong form

ε̇+∇ · q = f , ε = κϑ , q = −λ∇ϑ on Ω× J , q · ν = g on ∂Ω× J ,(2.3)

compatible with [1], pp. 5, 14: the 1st equation of (2.3) represents the principle of
conservation of energy ε related to unit volume, due to some thermal flux q, the 2nd
equation quantifies the thermal energy, the 3rd equation is the well-known empirical
Fourier constitutive relation between thermal fluxes and temperature gradients, finally
the 4th equation represents a general boundary (or interface) condition.

2.2. Fourier multiplicative decomposition. Following the approach of [3],
p. 346, let us consider the temperature ϑ on Ω × J in the form of multiplicative
decomposition

ϑ(x, t) = φi(x)θi(t)(2.4)

for any x ∈ Ω and t ∈ J where i denotes the Einstein summation index from {1, . . . , n}
for certain integer n, with the aim of the limit passage n→∞, and φ1(x), . . . , φn(x)
represents a basis of some finite-dimensional approximation Vn of V . For simplicity
let us assume Vn ⊂ V ; possible “variational crimes” violating such assumptions can be
handled by [27]. Consequently in (2.1) we are allowed to consider v = φj for arbitrary
j ∈ {1, . . . , n}, i. e.

(φj , κφi)θ̇i + (∇φj , λ∇φi)θi = (φj , f) + 〈φj , g〉 on J .(2.5)

The least squares minimization of (θkφk−ϑ0, κ(θiφi−ϑ0)), referring to (2.2), involving
also the Einstein summation over k ∈ {1, . . . , n}, yields

(φj , κφi)θi(0) = (φj , κϑ0) .(2.6)

The matrix form of (2.5), useful for an efficient software (e. g. MATLAB-based)
implementation, is

Mθ̇ +Kθ = F on J(2.7)

where M and K are positive definite symmetric square matrices from Rn×n, θ(t) =
(θ1(t), . . . , θn(t))T is a column vector from Rn for any fixed t, as well as F (t), covering
the whole right hand side of (2.5); however, its evaluation is not easy in general. (2.7)
forms a system of ordinary differential equations, which should by analysed analyti-
cally. Due to practical reasons for m equidistant time steps (where environmental data
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needed for the composition of F are measured usually) are introduced: θr = θ(rh)
with r ∈ {1, . . . ,m}, m being en integer number, h = T/m; this is compatible with
θ0 = θ(0) by (2.6). Also (2.6) can be rewritten as

Kθ0 = θ? ,(2.8)

with θ? (a column vector from Rn again) generated by the right hand side of (2.6).
Finite element approximations by [28], pp. 247, 427, work usually with some

continuous functions φi (i ∈ {1, . . . , n}) with values from [−1, 1] and small compact
support, not orthogonal exactly, unlike classical Fourier analysis. The Lebesgue mea-
sure of supports of such functions on Ω is not greater than c−1n−3 and their Hausdorff
measure on ∂Ω is not greater than c−1n−2 where c is a positive (sufficiently small)
constant independent of n. Moreover, we shall consider the integer upper bound
N for the number of functions φi supported on the same part of Ω or ∂Ω of non-
zero relevant measure. It is reasonable to suppose that this choice guarantees also
cn−3|a|2 ≤ a ·Ma ≤ c−1n−3|a|2, cn−1|a|2 ≤ a ·Ka ≤ c−1n−1|a|2, the last couple of
inequalities also for K constructed with λ = 1 everywhere instead of the correct λ
formally, for all a ∈ Rn (considered as column vectors) where |.| denotes the norm in
Rn (not only in R1); the central dots here are used for the scalar products also in Rn

(similarly to those in R3 by (2.3)).

2.3. Existence and uniqueness of solution. Let us start with the purely
linear (not very realistic) case f ∈ L2(J,H), g ∈ L2(J,X) where X = L4(∂Ω), with
f and g independent of ϑ; in this case we can take V = W 1,2(Ω). For any fixed t ∈ J
we can rewrite (2.7), supplied by θ0 from (2.8), as in two different forms as∫ t

0

θ′(τ) ·Mθ′(τ) dτ +
1

2
θ(t) ·Kθ(t) =

1

2
θ0 ·Kθ0 +

∫ t

0

θ′(τ) · F (τ) dτ ,(2.9)

with the prime symbol replacing the dot one for all time derivatives with respect to
τ instead of t. Utilizing the above introduced estimates, (2.9) yields

c

2n3

∫ t

0

|θ′(τ)|2 dτ+
c

2n
|θ(t)|2 ≤ 1

2cn
|θ0|2 +

c

4n3

∫ t

0

|θ′(τ)|2 dτ+
n3

c

∫ t

0

|F (τ)|2 dτ .(2.10)

For the last additive term of (2.10) we have∫ t

0

|F (τ)|2 dτ ≤
∫ t

0

∫
Ω

φi(x)f(x, τ) · φi(x)f(x, τ) dx dτ(2.11)

+

∫ t

0

∫
∂Ω

φi(x)g(x, τ) · φi(x)g(x, τ) ds(x) dτ ≤ µf‖f‖2L2(J,H) + µg‖g‖2L2(J,X) ,

utilizing the measures

µf = N

((
1

cn3

)1−1/2
)2

=
N

cn3
, µg = N

((
1

cn2

)1−1/4
)2

=
N

c3/2n3
.(2.12)

Combining (2.10), (2.11) and (2.12), we obtain the brief result∫ t

0

|θ′(τ)|2 dτ ≤ Cn3 , |θ(t)|2 ≤ Cn(2.13)

for some positive constant C independent of n. Thus, inserting (2.13) into (2.4), we
get

‖ϑ(., t)‖2H ≤
NCn3

cn3
=
NC
c
,

∫ t

0

‖∇ϑ(., τ)‖2H3 dτ ≤ NCn
cn

=
NC
c
.(2.14)

Let us notice that ϑ in (2.14) involves the dependence on n, inherited from (2.4),
generating certain sequences ϑ(n). Due to the reflexivity of both V and L2(J,H), the
Eberlein - Shmul’yan theorem (as introduced in [7], p. 66) yields, up to subsequences,



COMPUTATIONAL DESIGN OPTIMIZATION OF LOW-ENERGY BUILDINGS 269

the existence of a weak limit ϑ(., t) of ϑ(n)(t) in V for each t ∈ J , which is strong in
H (because of the existence of compact embedding of H into V ); simultaneously ϑ̇ is
a weak limit of ϑ̇(n) in L2(J,H). Such ϑ can be then identified with the solution of
(2.1) with (2.2).

Let ϑ̄ be the difference between 2 solutions of (2.1) with (2.2) and t an arbitrary
time from J . Then the choice v = ϑ̄(., t) gives

1

2
(ϑ̄(., t), κϑ̄(., t)) +

∫ t

0

(∇ϑ̄(., τ), λ∇ϑ̄(., τ)) dτ = 0 .(2.15)

Thanks to the positive-valued κ and λ, from (2.15) we receive ϑ̄ = 0 on J , which
implies the uniqueness of ϑ satisfying (2.1) with (2.2).

Similar arguments can be repeated also for the limit case λ→ 0: this is important
for the simplification of temperature development in empty rooms where no more
detailed information is available, unlike constructive and insulation building parts.
Consequently ϑ(., t) is constant for any fixed t ∈ J .

2.4. Realistic classes of thermal sources. More realistic cases for the choice
of f and g, needed in computational tools for thermal analysis of buildings, are:

i) g = β(ϑ∗ − ϑ) for the thermal transfer from external environment with some
prescribed external temperature ϑ∗ ∈ L2(J,X) and some known a. e. positive
transfer factor β ∈ L∞(∂Ω), taking the rigid body – air convection into ac-
count, later used also for the thermal transfer between two neighbour domain
through their interface analogously,

ii) f = α(ϑ∗−ϑ) for the obligatory ventilation by technical standards, similar to
i), but applied to the above mentioned case of constant ϑ(., t) for a fixed t ∈ J ,
with some known a. e. positive transfer factor α ∈ L∞(Ω): such simplified
“volumetric convection” is needed to include the heat exchange caused by
various installed equipments (without deeper analysis of their performance)
between rooms and external environment,

iii) g coming from the beam and diffuse components of solar radiation, occurring
just on the building envelope (not on internal interfaces) evaluable from the
climatic records of the so-called reference climatic year, due to the day and
year quasi-cycles, the mutual position of Sun and Earth, the geographical
location of our building object and on the slope and orientation of the rel-
evant building surface, under certain astronomical simplifications presented
(including numerous further references) in [13], with the resulting setting of
g ∈ L2(J,X),

iv) g = σ(ϑ4
∗ − ϑ4) for the thermal radiation on the building envelope due to

the physical Stefan - Boltzmann law and some known a. e. positive factor σ ∈
L∞(∂Ω), interpretable as the Stefan - Boltzmann constant (exact for the ideal
black body), modified by the empirical surface emissivity, which cannot be
incorporated to i) properly because of the presence of ϑ4,

v) f coming from the artificial heating (or air conditioning, too) in the case
similar to ii), but with the requirement of the type ϑ ≥ ϑ� for some prescribed
indoor temperature ϑ� ∈ V (depending on the room categories by technical
standards) at least in the least square sense, due to the real maximal power
of heating equipments and to their expected (summer, winter, etc.) different
regimes – for more details see [13] again.

All such volume sources f and surface sources g are able to generate additive contri-
butions to the right hand side of (2.1). However, it is useful to incorporate some their
parts to the left hand side of (2.1).
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Whereas i), ii) and iii) can be handled inside the theory of linear parabolic equa-
tions, iv) forces the redefinition of V and the inequalities in v) will be overcome using
some facts from the control theory. In i) and ii) g and f force 2 new additive terms
〈v, βϑ〉 and (v, αϑ) on the left hand side of (2.1); βϑ∗ and αϑ∗ can be then hidden
in g and f on the right hand side as above. Consequently K in (2.7) is replaced
by K + Kf + Kg formally with some sparse positive symmetrical matrices Kf from
ii) and Kg from i), even with certain regularizing effect. Due to the limited extent
of this paper, the detailed analysis can be performed by the patient reader without
substantial difficulties. Then iii) brings no new left hand side modification of (2.1)
unlike i) and ii); its significance lies in practical long evaluations, accounting for all
available environmental data: the temperature θ∗, needed in i) and ii), too, and both
relevant components of solar radiation. The repeated application of such data leads
to certain quasiperiodicity of the solution of (2.1), suppressing the effect of (2.2) for
increasing time.

For iv) the rough heuristic approximation (acceptable for the usual range of tem-
perature) ϑ4 − ϑ4

∗ = (ϑ2 + ϑ2
∗)(ϑ + ϑ∗)(ϑ − ϑ∗) ≈ 4ϑ3

∗(ϑ − ϑ∗) highlights certain
quasilinearity of the problem. Using the notation 〈., .〉 also for the duality between
L5(∂Ω) and L5/4(∂Ω), we are able to introduce V = {v ∈ W 1,2(Ω) : v ∈ L5(∂Ω)} (in
the sense of traces), supplied with the norm ‖v‖W 1,2(Ω) + ‖v‖L5(∂Ω) by [20], pp. 64,
253 (which generates a reflexive Banach space again), and, motivated by i), to add
〈v, σ|ϑ|3ϑ〉 to the left hand side and 〈v, σ|ϑ∗|3ϑ∗〉 to the right hand side of (2.1).
Consequently, in addition to the 2nd left-side additive term of (2.9), we have the
contribution of the type 1

5 |θ(t)|
3/2θ(t) · S|θ(t)|3/2θ(t), containing certain sparse posi-

tive symmetrical matrix S; the enrichment of the right side of (2.9) is evident. The
existence and uniqueness of solution of (2.1) with (2.2) can be then verified as above.

To handle v), the best choice is seemingly to convert (2.1) to the form of a vari-
ational inequality. However, the above sketched technical specifications bring serious
complications to the design of an efficient computational algorithm, thus another
approach, avoiding general optimization strategies, based on the careful control of a
heating equipment, is considered: ϑ ≥ ϑ� is satisfied in every time step just during the
correct (a priori prescribed) heating season, thanks to the controlled heating source f
in a corresponding room; the maximum value for the heating power is still considered
if this is insufficient.

2.5. Building as a thermal system. All generalizations i) – v) are useful for
the development of a model of thermal behaviour of buildings. Understanding Ω
as a building element at the lowest (most detailed) level, we are able to compose
substructrues at the finite number of levels, using the transfer conditions by i) and ii),
up to the whole structure. If ϑ∗ and consequently θ∗ refer to the external environment,
this contributes both to the matrix K in (2.7) (using the matrices Kf and Kg from
the preceding discussion) and to the right hand side F . Usually such conditions
are applied only in the case when some interface to the room is present, otherwise
it is acceptable to take α → ∞, i. e. to force the continuity of temperature on the
interface in the normal direction. Clearly iii) and iv) occur only on the external
interfaces (building claddings). The existence and uniqueness considerations, handling
all possible interface types, can be repeated without substantial difficulties.

Such computational model is open to various generalizations. In particular, let us
remind that physical and mathematical homogenization approaches, trying to involve
(even incomplete) information on material microstructure, lead to effective anisotropic
material characteristics even in the case of composites with isotropic components,
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due to their location, orientation, etc. (as typically in fibre concrete). Removing the
isotropy assumption, we come to the direction-dependent material characteristics λ
and κ on Ω and α, β and σ on ∂Ω, generating certain square matrices from L∞(Ω)3×3

or L∞(∂Ω)3×3 (using the notation from an introductory simple problem for brevity
again). At least for the case that all such matrices are a. e. symmetrical and positive
definite, the above sketched existence and uniqueness considerations can be repeated
with slight technical modifications.

Even more general case with the material characteristics λ(., ϑ), κ(., ϑ) on Ω and
α(., ϑ, ϑ∗), β(., ϑ, ϑ∗) σ(., ϑ, ϑ∗) on ∂Ω, important in building practice, can be handled
as a quasilinear problem, using selected results on pseudomonotone or weakly con-
tinuous mappings by [20], p. 321. However, some additional growth assumptions are
needed and all proofs become much more complicated, thus they are not presentable
in this short conference paper.

Deeper generalizations cover both the 1st thermodynamic principle of conserva-
tion of mass, (linear and angular) momentum and energy (not only of thermal energy
as above) and the 2nd thermodynamic principle, handling the irreversibility of some
thermal processes, as [22], pp. 145 (for closed systems) and 231 (for open systems).
Unfortunately, there is a lot of open questions in the mathematical analysis of cor-
responding systems of equations of evolutions and related inequalities, as well as in
the suggestion of computational algorithms constructing some sequences of reasonable
approximate solutions; this is still true even in the particular case of Navier - Stokes
equations (cf. the “mysteriously difficult problem” of [20], p. 257).

Fortunately, some simplified approaches for the analysis of parallel physical pro-
cesses, as heat and moisture transfer in porous media, are available: instead of ϑ
we have the couple of unknown variables (ϑ, u) where u evaluates certain moisture
content (related to the mass or volume unit), considering the conservation of mass
(moisture in pores) and (thermal) energy. The Fick constitutive relation between u
and some moisture flux η can be written in the similar way as the Fourier one between
ϑ and q in (2.3); however, in the complete system of 2 equations of evolution we need
(and must be able to identify in practice) additional material characteristics to handle
the Dufour effect (time redistribution of ϑ depends not only on q, but also on η) and
the Soret effect (time redistribution of u depends not only on η, but also on q). The
proper mathematical and numerical analysis is based on generalization of the results
sketched above to the system of 2 equations; practical computations must take the
slow moisture transfer in comparison with the thermal one into account.

3. Computational modelling and optimization. Computational tools, at
least for direct calculations, including those minimizing the energy consumption, can
be based on (2.7) with (2.8). Since some sources are frequently prescribed by their
time derivatives in practice, namely those by ii) and v), it is useful to consider the right
hand side of (2.7) as F (t) = Φ(t) + Ψ̇(t) for any t ∈ J , namely for t ∈ {h, 2h, . . . ,mh}
where h = T/m; the reliable construction of the limit passage m→∞ depends on the
environmental data by iii). To derive the semi-analytic formulae for the evaluation of
θ in time, the spectral decomposition MV Λ = KV with the generalized real diagonal
eigenvalue matrix Λ and the matrix of eigenvectors V is then helpful.

3.1. Direct calculations with heating control. For the brevity, let us con-
sider θ1, . . . θm instead of θ(h), . . . θ(mh) (a priori unknown temperatures) and also
Φ1, . . . ,Φm and Ψ1, . . . ,Ψm (characterizing all prescribed thermal sources) in the sim-
ilar sense. For the beginning, let us neglect all nonlinear thermal sources by iv) and v).
Applying the classical integral calculus, namely the method of variations of constants,
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for any time step index s ∈ {1, . . . ,m} we come to the direct evaluation formula

θs − V exp(−Λh)V TMθs−1 = V Λ−1V T Φs − V Λ−1 exp(−Λh)V T Φs−1(3.1)

+ V (I − exp(−Λh))

(
Λ−1V T Ψs −Ψs−1

h
− Λ−2V T Φs − Φs−1

h

)
,

exact for any Φ(t) and Ψ(t) with t ∈ J considered as a Lagrangian linear spline using
the nodes {0, h, 2h, . . . , T}. This holds for an arbitrary positive h, unlike the Euler
explicit or implicit, Crank - Nicholson, etc. discretization schemes.

To adopt (3.1) to handle iv), at least for sufficiently small h, we can add some
|θ|3/2S|θ|3/2 to K, inserting some reasonable estimate of θ, and apply the quasi-
Newton iterations inside each s-th time step; the exploitation of the inexact Newton
method is expected to reduce the number of algebraic operations. The same is true for
v) where, using the least squares approach, some G must be added to Ψ̇, to minimize
(if possible and required, due to technical specifications) |θ−θ�|2; this can be modified
by some prescribed weights for particular rooms if needed. Since G is just a vector of
constants Gs ∈ Rn for (s− 1)h < t ≤ sh, the total consumption of energy for heating
can be evaluated easily as

Q = h

m∑
s=1

Gs .(3.2)

Fortunately, both corrections iv) and v) can be unified in one iteration procedure;
its details (together with the instructive example), distinguishing between 4 typical
heating regimes, are discussed in [12].

The validation of this approach here works with the real living house and atelier
in Ostrov u Macochy (30 km northern from Brno), presented (as an example of low-
energy house from ecological materials) in [11], p. 146. This small experimental house,
designed by architect M. Hudec, built from wood and straw balls, contains 2 floors
and 4 rooms, whose 26 mutual interfaces, including those to external environment,
are assumed to consist of finite numbers of homogeneous isotropic layers. The design
temperature for all rooms is ϑ� = 20o C; θ� can be then set analogously to θ0 in (2.8).
The annual climatic records for h = 1 hour from the international airport Brno -
Tuřany need improvements using the incomplete data from the (colder and wetter)
Moravian Karst. The original software code implementing (3.1) and its iterative
generalizations has been written in MATLAB. Certain type of optimization is built
even in the seemingly direct computational algorithm, thanks to the least squares
technique in v). The 1st block of results in the following table documents the process
of validation of the algorithm; the comparative variable is Q by (3.2) everywhere.

3.2. Selection of design parameters. The work of architects and civil engi-
neers is far from the optimization of one physically transparent goal function under
some simple set of additional conditions: it contains aesthetic, artistic, ecological
and other criteria, whose deterministic quantification would be very complicated or
quite impossible. The resulting project is typically a result of discussion based on
comparison of a finite number of variants, supported by some auxiliary calculations.

As an example, we consider the principal motivation by the economy of heating
here, e. g. we are seeking for a sub-optimal (sufficiently small) value of Q, correspond-
ing to some of the prepared variants. The 2nd block in the table demonstrates the
effect of the installation of particular heating devices on every floor, or even in every
room, instead of one central device, as well as the effect of 2 types of possible replace-
ment of materials in walls. The computation works just with h = 1 hour, assuming
ϑ0 = 20o C everywhere, repeating the same climatic data for all considered years; it
finishes in the case of quasi-periodicity of results, here after 3 years in all cases.
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Table 3.1
Consumption of energy for heating by various methods including design optimization.

Q [MWh] evaluation method
1.881 new software, correction for building location
1.419 new software, original climatic data from Brno - Tuřany
1.897 software Energie 2009 (related to Czech technical specifications)
1.710 qualified estimate from time series of user payments for energy
1.915 heating on both floors: 2 devices, total power preserved
1.900 heating in all rooms: 4 devices, total power preserved
1.849 partial replacement of glass garden frontage by non-transparent one
3.039 replacement of straw balls in walls by clay blocks
1.841 Nelder - Mead optimization, 1 parameter: vertical rotation 20.81◦

1.769 Nelder - Mead optimization, 2 parameters: vertical rotation 21.37◦,
glass transparency factor 0.1

3.3. Nelder -Mead simplex algorithm. In the case of proper mathematical
optimization, no simple numerical evaluation of gradients like [2] is available, which
justifies the choice of the Nelder - Mead downhill simplex method, coming from [19]
originally. In the formulation of [26] this method works, in general, with the 5-step
algorithm, involving (after sorting simplex vertices) 1) reflection, 2) expansion, 3)
outer contraction, 4) inner contraction and 5) shrinkage. Theoretical convergence
results for this method are not quite satisfactory: namely by [16], assuming Q (in our
notation) as a strictly convex function of 1 or 2 parameters with bounded level sets,
the convergence is guaranteed just for 1 parameter, whereas for 2 parameters only the
simplex diameter tends to 0 (but need not converge to any minimizer); [17] presents
the computer-supported 25-page convergence proof for 2 parameters by contradiction,
but only for the restricted algorithm with missing step 2). However, some unpleasant
cases of total divergence or numerical stagnation of the algorithm, even for more
parameters, can be overcome using some ad hoc adaptive strategies, following [10].

The 3rd block in the table shows the application of this method, making use of
the MATLAB function fminsearch from the optimization toolbox (in addition to the
above sketched software code for direct calculations) for 1 and 2 parameters with
respect to their lower and upper bounds, included via simple penalty functions: the
1st parameter is the hypothetical vertical rotation of the house, the 2nd one is certain
glass transparency factor. More practical considerations and recommendations of this
type, including graphs, figures and further references, have been recently published
in [14].

4. Conclusion. The computer-supported design of high-performance buildings,
accenting their thermal behaviour, motivated by the development of new structures,
materials and technologies, as well as by the requirements of sustainable environmental
solutions for buildings, contributing to the health and well-being of their inhabitants,
reflected by [29], brings new challenges also for physicists, mathematicians, hardware
and software developers and other experts. Existing modelling and simulation tools,
even those declared as multi-physical, frequently predict other results then those ob-
served in situ; to identify all substantial sources of such differences is not easy.

The system approach, presented in this paper, can be helpful to meet the require-
ments of reliable and robust optimization with the work style of architects and civil
engineers, as well as with investors’ money, time and patience. Nevertheless, the need
of deeper interdisciplinary discussion is evident.
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[8] W. Feist, Gestaltungsgrundlagen Passivhäuser (in German), Das Beispiel, Darmstadt, 1999.
[9] W. Feist, R. Pfluger, B. Kaufmann, J. Schnieders and O. Kah, Passive House Planning Package,

Passive House Institute, Darmstadt, 2004.
[10] F. Gao and L. Han, Implementing the Nelder-Mead simplex algorithm with adaptive parame-

ters, Computer Optimizations and Applications, 99 (2010), pp. 111–222.
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