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AN ELEMENTARY PROOF OF ASYMPTOTIC BEHAVIOR OF
SOLUTIONS OF U ′′ = V U ∗

MOTOHIRO SOBAJIMA† AND GIORGIO METAFUNE‡

Abstract. We provide an elementary proof of the asymptotic behavior of solutions of second
order differential equations without successive approximation argument.
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1. Introduction. The asymptotic behavior of the solutions of the ordinary dif-
ferential equation

u′′(x) = V (x)u(x), x ∈ (0,∞) (1.1)

is an important tool in various fields of mathematics and mathematical physics, in
particular when special functions are involved. It can be found in [3, Section 6.2] and
partially in [1, Chapter 10] and in [2, Chapter IV] that if V (x) = f(x) + g(x), that is,

u′′(x) =
(
f(x) + g(x)

)
u(x), x ∈ (0,∞) (1.2)

and

ψf,g := |f |− 1
4

(
− d2

dx2
+ g

)
|f |− 1

4 is absolutely integrable in (0,∞), (1.3)

then two solutions of (1.2) behave like

u(x) ≈ |f |−1/4e±
∫ x
0
|f(s)|1/2 ds, u(x) ≈ |f |−1/4e±i

∫ x
0
|f(s)|1/2 ds.

The proof is usually done treating first the cases f = ±1 and then reducing to them
the general case, by the Liouville transformation. We follow the same approach but
simplify the cases f = ±1 by using Gronwall’s Lemma, instead of successive ap-
proximations. In order to keep the exposition at an elementary level, we avoid also
Lebesgue integration and dominated convergence (which could shorten some proofs);
note that we only use the notation f ∈ L1(I) when f is absolutely integrable in I.
We consider both the behavior at infinity and near isolated singularities and apply
the results to Bessel functions. We also recall that the general case

u′′(x) + g(x)u′(x) = V (x)u(x)

can be reduced to the form (1.1) (with another V ) by writing u = 1
2 (exp

∫
g)v.
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This kind of analysis can be applied to the spectral analysis for Schrödinger
operator with singular potentials (for example S = −∆ + V (|x|) with V (r) ∼ r−δ

near the origin). Actually, the essential selfadjointness of the Schrödinger operator S
can be treated by using the limit-point and limit-circle criteria (see e.g., Reed–Simon
[4]) which require the behavior of two solutions to u − u′′ + N−1

r u + V u = 0. The
behavior of two solutions above leads also to resolvent estimates for S. From this
view-piont, the elemental consideration in the present paper helps in understanding
various spectral phenomena for second-order differential operators.

2. Behavior near infinity in the simplest cases. First we consider the cases
f ≡ 1 and f ≡ −1 and we prove the following results to which the general case
reduces.

Proposition 2.1. If f = 1, g ∈ L1(0,∞), then there exist two solutions u1 and
u2 of (1.2) such that, as x→∞,

e−xu1(x)→ 1, e−xu′1(x)→ 1, (2.1)

exu2(x)→ 1, exu′2(x)→ −1. (2.2)

Proposition 2.2. If f = −1, g ∈ L1(0,∞), then there exist two solutions v1

and v2 of (1.2) such that, as x→∞,

e−ixu1(x)→ 1, e−ixu′1(x)→ i, (2.3)

eixu2(x)→ 1, eixu′2(x)→ −i. (2.4)

By variation of parameters, every solution of (1.2) can be written as

u(x) = c1e
ζx + c2e

−ζx +
1

2ζ

∫ x

a

(eζ(x−s) − e−ζ(x−s))g(s)u(s) ds, x ∈ [a,∞), (2.5)

with c1, c2 ∈ C, ζ = 1, i,−i and a > 0. In the following Lemma we choose c1 = 1, c2 =
0 to construct a solution which behaves like eζx as x→∞, ζ = 1, i,−i.

Lemma 2.3. Let ζ ∈ {1, i,−i}, a > 0 and g ∈ L1(a,∞). If u ∈ C2([a,∞))
satisfies

u(x) = eζx +
1

2ζ

∫ x

a

(eζ(x−s) − e−ζ(x−s))g(s)u(s) ds, x ∈ [a,∞),

then z(x) := e−ζxu(x) satisfies

|z(x)| ≤ e
∫ x
a
|g(r)| dr, x ∈ [a,∞) (2.6)

‖zg‖L1(a,∞) ≤ e‖g‖L1(a,∞) − 1. (2.7)

Proof. Note that

z(x) = 1 +
1

2ζ

∫ x

a

(1− e−2ζ(x−s))g(s)z(s) ds, x ∈ [a,∞).

Since |1− e−2ζ(x−s)| ≤ 2 for s ≤ x, we see that for x ≥ a,

|z(x)| ≤ 1 +

∣∣∣∣ 1

2ζ

∫ x

a

(1− e−2ζ(x−s))g(s)z(s) ds

∣∣∣∣ ≤ 1 +

∫ x

a

|g(s)| |z(s)| ds.
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Thus Gronwall’s lemma implies (2.6), in particular z is bounded on [a,∞) and then
zg ∈ L1(a,∞). Moreover we have

‖zg‖L1(a,∞) ≤
∫ ∞
a

|g(s)| e
∫ s
a
|g(r)| dr ds = e‖g‖L1(a,∞) − 1.

Proof of Proposition 2.1. Let a > 0 such that ‖g‖L1(a,∞) < log 2 and let u
be in Lemma 2.3 with ζ = 1. Then u is one solution of (1.2) with f = 1. Set
z(x) = e−xu(x). Then noting that as x→∞,∣∣∣∣∫ x

a

e−2(x−s)g(s)z(s) ds

∣∣∣∣ ≤ ∫ a+x
2

a

e−2(x−s)|g(s)z(s)| ds+

∫ x

a+x
2

|g(s)z(s)| ds

≤ e−x+a‖gz‖L1(a,∞) + ‖gz‖L1( a+x
2 ,∞) → 0,

we see that z satisfies

z(x)→ z∞ := 1 +

∫ ∞
a

g(s)z(s) ds as x→∞,

z′(x) =

∫ x

a

e−2(x−s)g(s)z(s) ds→ 0 as x→∞.

By (2.7), we deduce that ‖zg‖L1(a,∞) < 1. Therefore |z∞ − 1| ≤ ‖zg‖L1(a,∞) < 1 and

hence z∞ 6= 0. The function u1(x) := z−1
∞ exz(x) satisfies (2.1). Moreover, since u−2

1

is integrable near ∞, another solution of (1.2) is given by

u2(x) = 2u1(x)

∫ ∞
x

1

u1(s)2
ds. (2.8)

Integrating by parts we deduce that, as x→∞,

exu2(x) = 2z∞e
2xz(x)

∫ ∞
x

1

e2s[z(s)]2
ds

= z∞e
2xz(x)

(
−
[

1

e2s[z(s)]2

]s=∞
s=x

− 2

∫ ∞
x

z′(s)

e2s[z(s)]3
ds

)
→ 1

and

[exu2(x)]′ = 2z∞e
2xz′(x)

∫ ∞
x

1

e2s[z(s)]2
ds+ 2exu2(x)− 2z∞

z(x)
→ 0.

�
Proof of Proposition 2.2. Let a > 0 such that ‖g‖L1(a,∞) < log 2 and let ũ1 and

ũ2 be as in Lemma 2.3 with ζ = i and with ζ = −i, respectively. Noting that both ũ1

and ũ2 satisfy (1.2) with f = −1, and setting z1(x) = e−ixũ1(x) and z2(x) = eixũ2(x),
we have as x→∞

e2ix

(
z1(x)− 1− 1

2i

∫ ∞
a

g(s)z1(s) ds

)
→ 1

2i

∫ ∞
a

e2isg(s)z1(s) ds,

e−2ix

(
z2(x)− 1 +

1

2i

∫ ∞
a

g(s)z2(s) ds

)
→ − 1

2i

∫ ∞
a

e−2isg(s)z2(s) ds
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and

e2ixz′1(x)→
∫ ∞
a

e2isg(s)z1(s) ds, e−2ixz′2(x)→
∫ ∞
a

e−2isg(s)z2(s) ds.

It follows that ũ1 ≈ ξ1e
ix + ξ2e

−ix, ũ′1 ≈ iξ1e
ix − iξ2e−ix and ũ2 ≈ η1e

ix + η2e
−ix,

ũ′2 ≈ iη1e
ix − iη2e

−ix as x→∞ where

ξ1 = 1 +
1

2i

∫ ∞
a

g(s)z1(s) ds, ξ2 = − 1

2i

∫ ∞
a

e2isg(s)z1(s) ds,

and similarly for η1, η2. From (2.7) we see that |ξ1| > 1/2, |ξ2| < 1/2, |η1| < 1/2 and
|η2| > 1/2 and hence |ξ1η2−ξ2η1| > 0 and ũ1 and ũ2 are linearly independent. There-
fore we can construct solutions u1 and u2 which satisfy (2.3) and (2.4), respectively.
�
We consider now the case f = 0, assuming extra conditions on g.

Proposition 2.4. Assume that xg ∈ L1(0,∞). Then there exist two solutions
u1 and u2 of

u′′(x) = g(x)u(x) (2.9)

such that

x−1u1(x)→ 1, u′1(x)→ 1,

u2(x)→ 1, xu′2(x)→ 0

as x→∞, respectively.
Proof. Set u(x) := xz(x). Then z′′ + (2/x)z′ = gz and, assuming z′(a) = 0 we

obtain

z′(x) = x−2

∫ x

a

s2g(s)z(s) ds. (2.10)

Then assuming z(a) = 1

|z(x)− 1| ≤
∫ x

b

t−2

(∫ t

a

s2|g(s)z(s)| ds
)
dt

=

∫ x

a

(∫ x

s

t−2 dt

)
s2|g(s)z(s)| ds ≤

∫ x

a

s|g(s)z(s)| ds. (2.11)

Gronwall’s lemma yields

|z(x)| ≤ e
∫ x
a
s|g(s)| ds

hence z is bounded and z′ ∈ L1(a,∞) by (2.10). As in the proof of Proposition 2.1,
z(x)→ z∞ 6= 0 if a is sufficiently large. Moreover, since as x→∞,

|xz′(x)| ≤
√
a

x

∫ √ax
a

s|g(s)z(s)| ds+

∫ x

√
ax

s|g(s)z(s)| ds→ 0,

u1(x) := z−1
∞ xz(x) satisfies the statement. Another solution u2 of (1.2) is given by

u2(x) := u1(x)

∫ ∞
x

1

u1(s)2
ds.

As in the proof of Proposition 3.1 we can verify that u2 satisfies u2(x) → 1 and
xu′2(x)→ 0 as x→∞. �
Observe the integrability condition for xg near∞ is necessary. In fact, if g(x) = cx−2

the above equation has solutions xα if α2 − α = c.
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3. Behavior near infinity in the general case. We recall that the function
ψf,g is defined in (1.3) and set vj(x) = |f |1/4uj(x), j = 1, 2 if u1, u2 are solutions
of (1.2). The hypothesis |f |1/2 not summable near ∞ guarantees that the Liouville
transformation Φ of Lemma 3.3 maps (a,∞) onto (0,∞), so that the results of the
previous section apply. When it is not satisfied Φ maps (a,∞) onto a bounded interval
(0, b) and the behavior of the solutions of (3.5) near b is more elementary (in some
cases one can use Proposition 2.4).

Proposition 3.1. Assume that f(x) > 0 in (a,∞), |f |1/2 6∈ L1(a,∞) and
ψf,g ∈ L1(a,∞). Then there exist two solutions u1 and u2 of (1.2) such that as
x→∞

e−
∫ x
a
|f(r)|1/2drv1(x)→ 1, |f(x)|−1/2e−

∫ x
a
|f(r)|1/2drv′1(x)→ 1, (3.1)

e
∫ x
a
|f(r)|1/2drv2(x)→ 1, |f(x)|−1/2e

∫ x
a
|f(r)|1/2drv′2(x)→ −1. (3.2)

Proposition 3.2. Assume that f(x) < 0 in (a,∞), |f |1/2 6∈ L1(a,∞) and ψf,g ∈
L1(a,∞). Then there exists two solutions u1 and u2 of (1.2) such that asx→∞

e−i
∫ x
a
|f(r)|1/2drv1(x)→ 1, |f(x)|−1/2e−i

∫ x
a
|f(r)|1/2drv′1(x)→ i, (3.3)

ei
∫ x
a
|f(r)|1/2drv2(x)→ 1, |f(x)|−1/2ei

∫ x
a
|f(r)|1/2drv′2(x)→ −i. (3.4)

The proof is based on the well-known Liouville transformation that we recall
below.

Lemma 3.3. Let a > 0 and assume that f ∈ C2([a,∞)) satisfies |f(x)| > 0,
|f |1/2 6∈ L1(a,∞). Define Φ ∈ C2([a,∞)) by

Φ(x) :=

∫ x

a

|f(r)|1/2 dr, x ∈ [a,∞).

Then Φ−1 : [0,∞)→ [a,∞) and if u satisfies (1.2) the function

w(y) := |f(Φ−1(y))|1/4u(Φ−1(y)), y ∈ [0,∞)

satisfies

w′′(y) =

(
f(Φ−1(y))

|f(Φ−1(y))|
+

ψf,g(Φ
−1(y))

|f(Φ−1(y))|1/2

)
w(y). (3.5)

Proof. Note that Φ′(x) = |f(x)|1/2 and d(Φ−1)
dy (y) = |f(Φ−1(y))|−1/2. Setting
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w(y) = |f(Φ−1(y))|1/4u(Φ−1(y)) (and using ξ = Φ−1(y) for simplicity), we have

w′(y) =
d

dx

[
|f |1/4u

]
(ξ)

d(Φ−1)

dy
(y)

= |f(ξ)|−1/4u′(ξ) +

[
|f |−1/2 d

dx
|f |1/4

]
(ξ)u(ξ)

=

[
|f |−1/4u′ − d

dx
(|f |−1/4)u

]
(ξ),

w′′(y) =
d

dx

[
|f |−1/4u′ − d

dx
(|f |−1/4)u

]
(ξ)

d(Φ−1)

dy
(y)

= |f(ξ)|−3/4u′′(ξ)−
[
|f |−1/2 d

2

dx2
|f |−1/4

]
(ξ)u(ξ)

= |f(ξ)|−1(f(ξ) + g(ξ))w(y)−
[
|f |−3/4 d

2

dx2
|f |−1/4

]
(ξ)w(y).

Thus we obtain (3.5). �
Proof. [Proof of Propositions 3.1 and 3.2] It suffices to apply Propositions 2.1 and

2.2 to the respective cases f > 0 and f < 0. Set h(y) = ψf,g(Φ
−1(y))|f(Φ−1(y))|−1/2.

Then ∫ b

0

|h(y)| dy =

∫ ∞
a

|ψf,g(x)| dx.

Therefore Propositions 2.1 and 2.2 are applicable to w′′ = ±w+hw, respectively. Fi-
nally, using Lemma 3.3 and taking u(x) = |f(x)|−1/4w(Φ(x)), we obtain the respective
assertions in Propositions 3.1 and 3.2.

4. Behavior near interior singularities. If f and g have local singularities at
x0, then the behavior of solutions near x0 is also considerable. For simplicity, we take
x0 = 0. The following propositions are meaningful when |f |1/2 is not integrable near
0, in particular when |f |1/2 = cx−1. We recall that vj(x) = |f(x)|1/4uj(x), j = 1, 2.

Proposition 4.1. Assume that f(x) > 0 in (0,∞) and ψf,g ∈ L1(0,∞). Then
there exist two solutions u1 and u2 of (1.2) such that as x ↓ 0

e−
∫ 1
x
|f(r)|1/2drv1(x)→ 1, |f(x)|−1/2e−

∫ 1
x
|f(r)|1/2drv′1(x)→ −1,

e
∫ 1
x
|f(r)|1/2drv2(x)→ 1, |f(x)|−1/2e

∫ 1
x
|f(r)|1/2drv′2(x)→ 1.

Proposition 4.2. Assume that f(x) < 0 in (0,∞) and ψf,g ∈ L1(0,∞). Then
there exist two solutions u1 and u2 of (1.2) such that as x ↓ 0

e−
∫ 1
x
|f(r)|1/2drv1(x)→ 1, |f(x)|−1/2e−

∫ 1
x
|f(r)|1/2drv′1(x)→ −i,

e
∫ 1
x
|f(r)|1/2drv2(x)→ 1, |f(x)|−1/2e

∫ 1
x
|f(r)|1/2drv′2(x)→ i.

Proof of Propositions 4.1 and 4.2. Setting w(s) := su(s−1) we see that

w′′(s) = s−3u′′(s−1)

= s−3(f(s−1) + g(s−1))u(s−1) = s−4(f(s−1) + g(s−1))w(s).
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Let f̃(s) := s−4f(s−1) and g̃(s) := s−4g(s−1). Noting that

ψf̃ ,g̃(s) = s|f(s−1)|−1/4

(
− d2

ds2
+ s−4g(s−1)

)(
s|f(s−1)|−1/4

)
= s−2|f(s−1)|−1/4

(
− d2

dx2
|f |−1/4 + g|f |−1/4

)
(s−1)

= s−2ψf,g(s
−1),

we have ψf̃ ,g̃ ∈ L1((0,∞)), and hence Propositions 3.1 and 3.2 can be applied. Since∫ s

1

|f̃(r)|1/2dr =

∫ 1

1/s

|f(t)|1/2dt,

we obtain the respective assertions in Propositions 4.1 and 4.2. �

5. Examples from special functions. Some examples illustrate the applica-
tion of the results of the previous sections.

Example 1 (Modified Bessel functions). We consider the modified Bessel equa-
tion of order ν

u′′ +
u′

r
−
(

1 +
ν2

r2

)
u = 0, (5.1)

All solutions of (5.1) can be written through the modified Bessel functions Iν and
Kν . Both Iν and Kν are positive, Iν is monotone increasing and Kν is monotone
decreasing (see e.g., [3, Theorem 7.8.1]). Proposition 2.1 and Proposition 4.1 give the
precise behavior of Iν and Kν near ∞ and near 0, respectively. In fact, (5.1) can be
written as

(
√
ru)′′ =

(
1 +

4ν2 − 1

4r2

)
(
√
ru). (5.2)

Since 1/r2 is integrable near ∞, choosing f = 1 and g = 4ν2−1
4r2 , we see from Propo-

sition 2.1 that

√
re−rIν(r)→ c1 6= 0 and

√
rerKν(r)→ c2 6= 0 as r →∞.

Moreover, if ν 6= 0, then choosing f(r) = ν2

r2 and g(r) = 1− 1
4r2 , that is, ψf,g(r) = r/ν,

from Proposition 4.1 we have

r−νIν(r)→ c3 6= 0 and rνKν(r)→ c4 6= 0 as r ↓ 0.

If ν = 0, then putting w(s) = u(e−s) we obtain

w′′(s) = e−2sw(s), s ∈ R.

Therefore using Proposition 2.4 with g̃(s) = e−2s and taking u(x) = w(− log x), we
have

I0(r)→ c5 6= 0 and | log r|−1K0(r)→ c6 6= 0 as r ↓ 0.
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Example 2 (Fundamental solution of λ−∆). For n ≥ 3, λ ≥ 0 the fundamental
solution vλ of λ−∆ can be computed by integrating the heat kernel:

vλ(r) =

∫ ∞
0

1

(4πt)n/2
e−λt−

r2

4t dt,

where r = |x|. Clearly vλ(r) ≤ v0(r) = cr2−n, vλ(r) → 0 as r → ∞. The function
v = vλ satisfies

v′′ +
n− 1

r
v′ = λv

or, setting v = r(1−n)/2w,

w′′ =

(
λ+

n2 − 1

4r2

)
w.

Proceeding as in the example above we see that r2−nv(r) → c1 6= 0 as r → 0 and

r(n−1)/2e
√
λrv(r)→ c2 6= 0 as r →∞.

Example 3 (Bessel functions). Next we consider the Bessel equation of order ν

u′′ +
u′

r
+

(
1− ν2

r2

)
u = 0, (5.3)

or equivalently,

(
√
ru)′′ =

(
−1 +

4ν2 − 1

4r2

)
(
√
ru).

All solutions of (5.3) can be written through the Bessel functions Jν and Yν . As in
Example 1, from Propositions 4.1 (for ν > 0) and 2.4 (for ν = 0) we obtain the
behavior of Jν and Yν near 0

r−νJν(r)→ c1 6= 0, and rνYν(r)→ c2 6= 0 as r ↓ 0

and if ν = 0,

| log r|J0(r)→ c3 6= 0, and Y0(r)→ c4 6= 0 as r ↓ 0.

In view of Proposition 2.2 the behavior of Jν and Yµ near ∞ is given by

|
√
rJν(r)− c5 cos(r + θ1)| → 0, and |

√
rYν(r)− c6 cos(r + θ2)| → 0,

as r →∞, where c5 6= 0, c6 6= 0 and θ1, θ2 ∈ [0, π) satisfy θ1 6= θ2.
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