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AN EFFICIENT LINEAR NUMERICAL SCHEME FOR THE STEFAN
PROBLEM, THE POROUS MEDIUM EQUATION AND NONLINEAR

CROSS-DIFFUSION SYSTEMS

MOTLATSI MOLATI∗ AND HIDEKI MURAKAWA†

Abstract. This paper deals with nonlinear diffusion problems which include the Stefan problem,
the porous medium equation and cross-diffusion systems. We provide a linear scheme for these
nonlinear diffusion problems. The proposed numerical scheme has many advantages. Namely, the
implementation is very easy and the ensuing linear algebraic systems are symmetric, which show
low computational cost. Moreover, this scheme has the accuracy comparable to that of the well-
studied nonlinear schemes and make it possible to realize the much faster computation rather than
the nonlinear schemes with the same level of accuracy. In this paper, numerical experiments are
carried out to demonstrate efficiency of the proposed scheme.
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1. Introduction. In this paper, we propose an efficient linear scheme for the
following nonlinear diffusion problem: Find z = (z1, . . . , zM ) : Ω × [0, T ) → RM
(M ∈ N) such that





∂z

∂t
= ∆β(z) + f(z) in Q := Ω× (0, T ),

β(z) = 0 on ∂Ω× (0, T ),

z(·, 0) = z0 in Ω.

(1.1)

Here, Ω ⊂ Rd (d ∈ N) is a bounded domain with smooth boundary ∂Ω, T is a positive
constant, β = (β1, . . . , βM ), f = (f1, . . . , fM ): RM → RM and z0 = (z0

1 , . . . , z
0
M ) ∈

L2(Ω)M are given functions. Let (βi)j denote the derivative of the ith component of
β with respect to the jth variable. If there is a point s where (βi)i(s) = 0 for some
i, then the diffusion vanishes at that point. In this case, (1.1) is called a degenerate
parabolic system. This type of problem with M = 1 includes the Stefan problem
and the porous medium equation, and such problems have been widely studied for
a long time. In Problem (1.1), the diffusivity βi of the ith component depends not
only on the ith variable but also on the jth (j 6= i) variables in general. This mixture
of diffusion terms is called cross-diffusion. This type of problems appears in many
fields of applications. A typical example is called the Shigesada-Kawasaki-Teramoto
cross-diffusion system [9].

In this paper, we propose an efficient numerical scheme to approximate the so-
lutions of Problem (1.1). Our scheme has many advantages, e.g., it is very easy-to-
implement and stable, computational costs are low, the discretization matrices are
symmetric, and the accuracy is comparable to that of the widely studied nonlinear
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schemes. The contents of this paper are as follows. In the next section, we give a brief
introduction of numerical schemes for (1.1) which are covered in the literature. In
Section 3, we propose an efficient linear scheme, and give a brief summary of theoret-
ical results. In Section 4, the numerical experiments are carried out. The numerical
results illustrate the efficiency of the proposed scheme. Concluding remarks are made
in the final section of the paper.

2. Numerical schemes. Before proposing our scheme, let us summarize nu-
merical schemes in the literature (see references in [8]). We discuss discrete-time
approximations. They are simpler than fully discrete numerical schemes but play a
crucial role in developing numerical methods. Put τ = T/NT (NT ∈ N) be the time
step size. Let Z0 and Zn(n = 1, . . . , NT )denote the approximations of the initial
function z0 and the solution z(·, τn) at time t = τn, respectively. When we consider
the ‘equation’ (1.1), that is, the case where M = 1, we do not use boldfaced variables
and omit the subscript for the component. A lot of numerical schemes have been de-
veloped and analyzed for equation (1.1). Many researchers have considered nonlinear
schemes of the following type:





β−1
ε (Un)− β−1

ε (Un−1)

τ
= ∆Un + f(β−1

ε (Un)) in Ω,

Un = 0 on ∂Ω,

Zn := β−1
ε (Un) in Ω.

(2.1)

Here, the auxiliary functions Un represent approximations to β(z(·, τn)), and βε is a
smooth and strictly increasing function which regularizes the non-smooth and non-
strictly increasing function β. Nonlinear schemes of type (2.1) show better accuracy in
practice. For solving the corresponding nonlinear algebraic systems arising from fully
implicit schemes, some iterative methods such as the Newton method have to be used
to linearize the schemes. Therefore, it requires much time for numerical computation.
Incidentally, nonlinear schemes of type (2.3) stated below are also employed for the
degenerate parabolic equations. However, the algebraic systems arising in (2.3) are
non-symmetric, while those in (2.1) are symmetric. Thus, schemes of type (2.1) are
more convenient to handle than those of type (2.3), especially, in multi-dimensional
case.

Berger, Brezis and Rogers [2] proposed the following linear scheme for the degen-
erate parabolic equation:





µUn − τ∆Un = µβ(Zn−1) + τf(Zn−1) in Ω,

Un = 0 on ∂Ω,

Zn := Zn−1 + µ(Un − β(Zn−1)) in Ω.

(2.2)

Here, µ is a given positive constant. This is quite simple in that the scheme amounts
to solving linear elliptic equations in Un and then to performing explicit corrections
for Zn. After discretizing this scheme in space, we obtain an easy-to-implement
numerical method. Implementation and calculation time are almost the same as the
implicit method for the linear heat equation requires. However, the accuracy is low
compared with the nonlinear scheme because the nonlinear diffusion is approximated
by the linear diffusion with a constant diffusion coefficient.

The history of numerical analysis for the cross-diffusion systems is not long, and
the list of references is very short compared to the one for the degenerate parabolic
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Fig. 2.1. (a) Type of matrices arising in the nonlinear scheme (2.3) in one space dimension.
(b) Type of matrices arising in the linear schemes (2.4) and (3.1) in one space dimension. Here,
NX and M denote the numbers of spatial mesh points and components in (1.1), respectively.

equations. Most researchers have treated the following type of fully implicit nonlinear
schemes.





Zn −Zn−1

τ
= ∆β(Zn) + f(Zn) in Ω,

β(Zn) = 0 on ∂Ω.

(2.3)

The matrices generated by the discretization in space are large, sparse and non-
symmetric even in one space dimension (FIG 2.1(a)). The implementation is com-
plicated and the computational costs are high. In multi-component case and/or in
multi-dimensional space, this drawback becomes even bigger.

In references [5, 6, 7], the author proposed and analyzed the following linear
scheme for the cross-diffusion system (1.1):





µUn − τ∆Un = µβ(Zn−1) + τf(Zn−1) in Ω,

Un = 0 on ∂Ω,

Zn := Zn−1 + µ(Un − β(Zn−1)) in Ω.

(2.4)

This scheme is regarded as an extension of (2.2) to the system. Likewise, the scheme
amounts to solving M independent linear elliptic equations in Un and updating Zn

explicitly. The boundary condition becomes quite simple. The difficulty of imple-
mentation is almost the same as appears in the implicit method for the linear heat
equation. The computational cost is less than M times the computational cost of
the linear heat equation, because the ensuing linear algebraic system keeps the same
matrix for all time steps and for all i ∈ {1, . . . ,M}. The type of matrices is shown in
FIG 2.1(b).

3. Proposed linear scheme. Taking the advantages and disadvantages of the
nonlinear and the linear schemes into consideration, we modify the linear scheme
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(2.4), and then, propose an efficient linear scheme for Problem (1.1).
We rewrite equation (1.1) with M = 1 and the linear scheme (2.2) formally as

follows:





1

β′(z)
∂β(z)

∂t
= ∆β(z) + f(z),

∂z

∂t
=

1

β′(z)
∂β(z)

∂t
,





µ
Un − β(Zn−1)

τ
= ∆Un + f(Zn−1),

Zn − Zn−1

τ
= µ

Un − β(Zn−1)

τ
.

By comparing these expressions, the parameter µ can be regarded as an approxima-
tion to 1/β′(z). In practice, we usually choose µ = L−1

β , where Lβ is the Lipschitz
constant of β. But the accuracy of the numerical solutions is low, because of the
rough choice of µ. So, it is expected that a good approximation µ to 1/β′(z) gives
the numerical solution with high accuracy, for example, µ ≈ 1/β′(Zn−1). Along this
idea, Murakawa [8] proposed the following scheme for Problem (1.1).




µni U
n
i − τ∆Uni = µni βi(Z

n−1) + τfi(Z
n−1) in Ω,

Uni = 0 on ∂Ω,

Zni = Zn−1
i + µni (Uni − βi(Zn−1)) in Ω

(i = 1, . . . ,M). (3.1)

Here, µni = µni (x) (i = 1, . . . ,M) are given functions. Thus, we just change µ from
a constant to functions. This minor change makes the scheme more accurate. The
difficulty of implementation and computational costs do not greatly differ from those
of (2.2) and (2.4).

The shape of matrices arising in the scheme (3.1) is the same as in the implicit
scheme for the linear heat equation (FIG 2.1(b)). Since the matrices are symmetric, we
can employ efficient solver such as conjugate gradient method. On the other hand, the
matrices arising in the scheme (2.3) (FIG 2.1(a)) are large, sparse and non-symmetric
even in one space dimension. Moreover, computational costs are high.

Rates of convergence of (3.1) with respect to τ were derived theoretically in [8].
Since there is some difference between the handling of the degenerate-diffusion and
that of the cross-diffusion from mathematical points of view, it is difficult to treat
degenerate cross-diffusion systems in general settings. Therefore, we deal with each
case separately. The results can be summarized as follows. Let z be the weak solution
of (1.1), and U , Z be piecewise constant interpolations in time of a solution of (3.1).
We define the global error E by

E :=‖β(z)−U‖L2(Q)M +

∥∥∥∥
∫ t

0

(β (z)−U)

∥∥∥∥
L∞(0,T ;H1(Ω))M

+ ‖z −Z‖L∞(0,T ;H−1(Ω))M .

Then, the following orders were derived under some assumptions.
• For degenerate parabolic systems (without cross-diffusion),

z0 ∈ L2(Ω)M =⇒ E = O(τ1/4), (3.2)

z0 ∈ L∞(Ω)M , ∆β(z0) ∈ L1(Ω)M =⇒ E = O(τ1/2). (3.3)

• For (non-degenerate) cross-diffusion systems,

z0 ∈ L2(Ω)M =⇒ E + ‖z −Z‖L2(Q)M = O(τ1/2), (3.4)

z0 ∈ H1
0 (Ω)M =⇒ E + ‖z −Z‖L2(Q)M = O(τ). (3.5)
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The orders (3.3)–(3.5) are sharp on account of the global regularity in time. These
optimal error estimates (3.2)–(3.5) are the same as in the case where µ is a constant,
and were obtained by Magenes, Nochetto and Verdi [3] for the degenerate parabolic
equations and by Murakawa [6] for the cross-diffusion systems. However, actual errors
in numerical computation become significantly smaller if we choose µni (x) suitably.

4. Numerical experiments. In this section, we carry out numerical experi-
ments in one space dimension in order to demonstrate the performance of our scheme.
Both the nonlinear and the linear schemes are tried, and these schemes are discretized
in space by the standard finite difference method with a uniform mesh. All exper-
iments were performed on a Laptop equipped with Intel Core(TM) i7-3667U CPU
using a single thread. The C sources are complied by the GCC compiler with option
-O3.

We calculate the discrete relative L2(Q)M error Eβ(z), namely,

Eβ(z) =




∑

0≤j≤NX
1≤n≤NT

∣∣U j,n − β(z(xj , nτ))
∣∣2 /

∑

0≤j≤NX
1≤n≤NT

|β(z(xj , nτ))|2




1/2

.

Here, NX + 1 is the number of mesh points and xj (0 ≤ j ≤ NX) imply the spatial
grid points.

4.1. The porous medium equation. We deal with the following porous me-
dium equation, that describes the isentropic flow through a porous medium.

∂z

∂t
= ∆zm in Ω× (0, T ], (4.1)

where m > 1, Ω = (−L,L) = (−8, 8) and T = 10. With appropriately chosen initial
and boundary data, this problem has the following exact solution, which was derived
by Barenblatt [1]:

z(x, t) =
1

(t+ 1)m+1

[
1− (m− 1)x2

2m(m+ 1)(t+ 1)
2

m+1

] 1
m−1

+

.

Here, [·]+ implies the positive part. For the nonlinear scheme, the following approxi-
mate inverse function with ε = 10−4 is used:

β−1
ε (u) =




u

1
m if u ≥ ε m

m−1 ,

1

ε
u otherwise.

For the linear schemes, we set µ = 1/m in the fixed µ case, and choose µn as follows
in the case where µn are functions:

µn = 1/(10−3 + β′(Zn−1)).

The spatial mesh size is fixed as h = 2L/NX = 2−10 and we inquire into rates
of convergence with respect to the time step size τ . We consider the case where
m = 16. The Barenblatt solution is shown in FIG 4.1(a). FIG 4.1(b) illustrates errors
versus time step size with τ = 2−4, 2−5, . . . , 2−9. The errors in the proposed linear
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Fig. 4.1. (a) The Barenblatt solution of the porous medium equation (4.1) with m = 16 at
t = 0, 2, . . . , 10. (b), (c) Numerical results for the porous medium equation (4.1), where (i) repre-
sents the linear scheme (2.2), (ii) represents the linear scheme (3.1), (iii) represents the nonlinear
scheme (2.1).

scheme (3.1) and in the nonlinear scheme (2.1) are almost the same, and are quite
smaller than those in the linear scheme (2.2) with fixed µ. The errors are along a
straight line having slope 1, which implies that the numerical rate of convergence with
respect to τ is of order 1 for each scheme. This is much better than the theoretical
result (3.3). The proposed linear and the nonlinear schemes are compared in terms of
CPU time. The results are shown in FIG 4.1(c). The proposed linear scheme is about
50 times faster than the nonlinear scheme to achieve the same level of accuracy in
this experiment. These results indicate that the proposed linear scheme is superior in
speed to the nonlinear scheme even though the linear scheme is very easy-to-implement
and it is computationally less costly. These advantages become even more when we
deal with higher dimensional and/or multi-component problems.

4.2. The Shigesada-Kawasaki-Teramoto cross-diffusion system. We deal
with the following cross-diffusion system that was proposed by Shigesada, Kawasaki
and Teramoto [9] to understand temporal and spatial behaviours of two animal species
under the influence of the population pressure due to intra- and interspecific interfer-
ences:





∂z1

∂t
= ∆ [(a10 + a11z1 + a12z2)z1] + (c10 − c11z1 − c12z2)z1 + f1(x, t),

∂z2

∂t
= ∆ [(a20 + a21z1 + a22z2)z2] + (c20 − c21z1 − c22z2)z2 + f2(x, t).

(4.2)

Here, we set a10 = 1, a20 = 1/(3c12), c10 = 1, c11 = 1, c12 = 2.5, c20 = 1,
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c21 = 2 + 5c20/3− c20c12, c22 = 1, and

f1(x, t) =
1

32
sech

(
1

4
(t+
√
2x)

)4
(
− 4a11 + 2a12 + (2a11 − 5a12)tanh

(
1

4
(t+
√
2x)

)

+ cosh

(
1

2
(t+
√
2x)

)(
2a11 − a12 + (2a11 + a12)tanh

(
1

4
(t+
√
2x)

)))
,

f2(x, t) =
1

64
sech

(
1

4
(t+
√
2x)

)4(
−1 + tanh

(
1

4
(t+
√
2x)

))
×

(
− 7a21 + 10a22 + 3(a21 − 2a22)tanh

(
1

4
(t+
√
2x)

)

+ cosh

(
1

2
(t+
√
2x)

)(
5a21 − 4a22 + (3a21 + 4a22)tanh

(
1

4
(t+
√
2x)

)))
.

This problem has the following exact solution:

z1(x, t) =
1

2

(
1 + tanh

(
1

4
(t+
√

2x)

))
,

z2(x, t) =
1

4

(
1− tanh

(
1

4
(t+
√

2x)

))2

.

(4.3)

The functions f1 and f2 are determined so that (z1, z2) defined in (4.3) is a solution
of system (4.2).

We carry out numerical experiments with a11 = 0, a12 = 10, a21 = 10, a22 = 0
in space Ω = (0, 10) and in time interval (−10,−5). The spatial mesh size is fixed as
h = 2−8. The initial and the Dirichlet boundary data are given by the exact solution.
The solution is shown in FIG 4.2(a). Looking at the shapes of matrices arising in the
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Fig. 4.2. (a) The solution of (4.2) at t = −10,−9, . . . ,−5. (b) Numerical results for (4.2),
where (i) and (ii) represent the linear schemes (2.4) and (3.1), respectively.

schemes, which are shown in FIG 2.1, it is easy to imagine that the linear scheme (3.1)
is superior than the nonlinear scheme (2.3) in terms of simplicity of implementation
and computational costs. We treat only the linear schemes (2.4) and (3.1) in the case
where µ is fixed as µ = 0.1 and in the case where µni are functions, respectively. Using
Zn−1, we define µni as follows:

µni (x) = 1/(βi)i(Z
n−1(x)).
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In the fixed µ case, if we choose µi larger than 0.1, then the numerical solutions be-
come unstable. FIG 4.2(b) shows the numerical results with τ = 2−4, 2−5, . . . , 2−9.
Numerical convergence rate with respect to τ is observed to be of order 1, which cor-
responds to the theoretical result. The proposed scheme (3.1) shows higher accuracy
compared to the fixed µ case. The difference (about three times difference) is not so
large in this experiment. This difference becomes considerably large in the problem
of which solution shows the profile with sharp peaks (see Section 5.4 in [8]).

4.3. A degenerate convection-reaction-diffusion equation. We deal with
the following degenerate convection-reaction-diffusion equation in one space dimen-
sion:

∂z

∂t
=

∂

∂x2
β(z)− ∂

∂x
(b1z − b2β(z))− c(z − β(z)), (4.4)

where b1, b2, c ∈ R. The function β is defined as follows.

β(s) := [[s]]
m

:=

{
sm if s ≥ 0,

− (−s)m if s < 0.

This problem has the following exact solution [4].

z(x, t) = k1 exp

(
−ct− b2(x− b1t)

2m

)[[
cos

(
1

2
(x− b1t− k2)

√
4c− b22

)]]1/m

,

where k1 and k2 are arbitrary constants. Since cos(
√
−1x) = coshx, the value in the

bracket on the right hand side can be determined for arbitrary parameters.
The linear scheme (3.1) can be applied to this problem because (4.4) is linear in

z and β(z). Therefore, we have the following linear scheme for (4.4).



µn
Un − β(Zn−1)

τ
=

∂

∂x2
Un − ∂

∂x
(b1Z

n − b2Un)− c(Zn − Un),

Zn = Zn−1 + µn(Un − β(Zn−1)).

Substituting the second equation into the first one, we have




((1 + τc)µn − τc)Un − τ ∂

∂x2
Un + τ

∂

∂x
((b1µ

n − b2)Un)

= (1 + τc)µnβ(Zn−1)− τcZn−1 − τb1
∂

∂x
(Zn−1 − µnβ(Zn−1)),

Zn = Zn−1 + µn(Un − β(Zn−1)).

(4.5)

This scheme, which consists of solving the linear problem in Un and explicit correction
for Zn, is quite simpler than nonlinear schemes.

We carry out numerical simulations for (4.4). We set m = 10, b1 = 2mc/b2,
b2 = c = k2 = 1, k1 = 3π/4, Ω = (0, L) = (0, 10), (0, T ) = (0, 0.05). The exact
solution is presented in FIG 4.3(a). Because of the appearance of the convection
term, we set τ = h/(4L) and used the standard upwind technique. We deal with the
linear schemes with fixed µ and with varying µn(x). These parameters are chosen to
be the same as used in Subsection 4.1. FIG 4.3(b) shows the numerical results with
h = 2−6, 2−7, . . . , 2−10, which demonstrates numerical convergence of both linear
schemes. The numerical rates of convergence with respect to h (and/or τ) is slightly
less than 1. The scheme with varying µ shows higher accuracy than the linear scheme
with fixed µ.
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Fig. 4.3. (a) The solution of (4.4) at t = 0, 0.01, . . . , 0.05. (b) Numerical results for (4.4),
where (i) represents the linear scheme (4.5) with fixed µ, (ii) represents the linear scheme (4.5) with
varying µn(x).

5. Conclusion. The linear scheme with simple implementation has been pro-
posed instead of the widely used nonlinear schemes for the nonlinear diffusion prob-
lem (1.1). The motivation is based on the fact that the proposed linear scheme (3.1),
which is an improvement of the linear scheme (2.4), retains the same accuracy as
obtained from the nonlinear schemes (2.1) and (2.3) with less difficulty of the imple-
mentation. The difficulty is much the same as for the linear heat equation, whereas
the advantages are many. For instance, the type of linear algebraic systems in (3.1)
is the same as in the implicit method for the linear heat equation. Moreover, it is
easy to set the parameters appropriately and the computational costs are low. These
advantages and those mentioned earlier work as well even for multi-dimensional and
multi-component systems. On the other hand, in general, the nonlinear schemes are
complicated to implement and require high computational costs. Taking account of
accuracy, efficiency, stability and computational cost into consideration, we proposed
the linear scheme with simple implementation, of which advantages are proved in
complicated problem such as (4.4).
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