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CONTINUOUS DEPENDENCE FOR BV-ENTROPY SOLUTIONS
TO STRONGLY DEGENERATE PARABOLIC EQUATIONS
WITH VARIABLE COEFFICIENTS *

HIROSHI WATANABET

Abstract. We consider the Cauchy problem for degenerate parabolic equations with variable
coefficients. The equation has nonlinear convective term and degenerate diffusion term which depends
on the spatial and time variables. In this paper, we prove the continuous dependence for entropy
solutions in the space BV to the problem not only initial function but also all coefficients.

Key words. strongly degenerate parabolic, continuous dependence, BV -entropy solution

AMS subject classifications. 35K65, 35K55, 35165

1. Introduction. Let 0 < T < oo and N € N be constants. We consider the
Cauchy problem for a degenerate parabolic equation of the form

{ Ou+V - Az, t,u) + Bz, t,u) = AB(z,t,u), (x,t) € RY :=RY x (0,T), ®)

u(x,0) = up(z), uo € L¥(RY)N BV (RN).

Here 0; := 0/0t, V := (0/0x1,...,0/0zy) and A := ZZI\; 0?/0z? are the spatial
nabla and the laplacian in R, respectively. A(z,t,&) = (Al ..., AN)(x,t,£) is an RN-
valued function on RY x [0, 7] x R and B(z,t,&) and B(z,t,£) are R-valued functions
on RY x [0, T] x R. The function 3(z,t,£) is supposed to be monotone nondecreasing
and locally Lipschitz continuous with respect to ¢ for any (x,t) € RY. Therefore, the
set of points & where d¢3(z,t, &) = 0 may have a positive measure for any (z,t) € RY.
In this sense, we say that the equation posed as (P):

Ou+ V- Az, t,u) + Bz, t,u) = AB(z,t,u) (1.1)

is a strongly degenerate parabolic equation. The equation (1.1) can be applied to
several mathematical models; hyperbolic conservation laws, porous medium, Stefan
problem, filtration problem, sedimentation process, traffic flow, and so on. More-
over, (1.1) is regarded as a linear combination of the time dependent conservation
laws (quasilinear hyperbolic equation) and the porous medium equation (nonlinear
degenerate parabolic equation). Thus, (1.1) has both properties of hyperbolic equa-
tions and those of parabolic equations. In particular, up to the assumptions on S,
”parabolicity” of (1.1) and ”hyperbolicity” of it are not necessarily comparable.

Our mathematical treatment of the equation (1.1) is L!-framework. More specif-
ically, we consider (1.1) in the space L'(R") and construct solutions to (1.1) in the
space L'(RN) N L>®(RY). Here, solutions to (1.1) should be defined in generalized
sense. To ensure the existence and uniqueness of it, it is necessitate to consider dis-
tributional solutions satisfying a special condition. This framework was first treated
by Vol'pert-Hudjaev [9]. In fact, it is well known that the Fréchet-Kolmogorov com-
pactness theorem in the space BV and the Kruzkov’s doubling variable method [8]
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are available. Under the above framework, the existence and uniqueness of entropy
solutions to (1.1) are given ([3, 4, 5, 7, 10, 11, 12, 13]). Here, entropy solutions are
weak solutions satisfying an entropy inequality which is derived by Kruzkov [8]. In
particular, Watanabe [11] proved the existence and uniqueness of entropy solutions
to (P) in the space BV.

In this paper, we prove the continuous dependence of the BV -entropy solution
to (P) not only initial data but also coefficients A, B and (. Feature of the present
paper is to consider the equation (1.1) with variable coefficients. In particular, the
equation with variable diffusion coefficients is treated in few literatures. For example,
Chen-Karlsen [4] considered the equation with a separation variable type convective
term and a quasi-linear type diffusion term. Notice that, these coefficients do not
depend on time variable. In this article, we consider the time dependent nonlinear
type convection V - A(z,t,u) and diffusion AB(z,t,u). To prove desired estimate, we
modify the choice of entropy triplet and the calculation in [4].

Throughout this paper, we employ the following notations and terminologies. For
1 < p < o0, the Lebesgue space of real-valued Lebesgue-measurable functions on RY
equipped with the usual norm || - ||, is denoted by LP(RY). The space of functions
of bounded variation in RY is denoted by BV (RY) and the total variation on RY is
denoted by TV (-) (cf. [2, 6, 14]). The space C§°(R™)T is the class of nonnegative
valued C§°(RY)-functions. The function sgn(¢) means the usual signum function.

2. Assumptions and the main result. In this section, we present some as-
sumptions and the main result. Before that, we write the nabla of the function
A(z,t,u) and the laplacian of the function B(z, ¢, u) as follows:

V- Az, t,u) = [V - Al(x, t,u) + [0:Al(z, t,u) - Vu
and
AB(z,t,u) =V - ([VB](z,t,u) + [0e)(x, t,u) - Vu)
= [AB](z,t,u) + 2[0: V] (x, t,u) - Vu + [8?6](:c7t,u)|Vu|2 + [0¢B](z, t, u) Au
for (z,t) € RY and some regular function u. These are based on the chain rule
formulas in [1] (see also [2, Theorem 3.99], [14, Theorem 2.1.11]).
Throughout this paper, we impose the following assumptions on the functions
A, B,  and ug. Here, we write 0,, := 0/0,, fori = 1,...,N, Opy,, = 0, V :=
(015021 Oy Ozyyy) and U := [=U,U] for any U > 0. For any U > 0, the
following conditions hold:
{A0} wy(z) € L=®@RN) N BV (RY);
Ae LY RY x U)N N Lo(RY x U)N N L (U; L2 (RY)Y,
{A1} RN N N N (RN
OcAe L'RY xU)Y NL®Ry xU)Y, V-A 0:V-Ae L' (Ry xU);
Be L'RY xU)NLPRY xU) N L®U; L'(RY)),
VBl € LU LYRY)), 0B € L=(RY x U);
Be LYRY xU)n L=(RY x U),
{A3} VB e LYRY xtU)N n Lo U; L2RY)N, 0,8 € L=>U; LY (RY)),
OB € LXRY xU), 0:VB € LY RY xU)N, AB, 0:AB € LYRY x U);
{A4} B(z,t,0) =0 and VB(z,t,0) — A(z,t,0) = 0 for (z,t) € RY;
{A5} Let U(z,t,§) :=V-A(z,t,§)—AB(x,t,8)+B(x,t,£). Then, there exist positive
constants c¢g, ¢; such that

sup |\Ij(x7ta0)| S Co, sup (—85\11($7t,§)) S C1;
(x,t)ERY (z,t,6) RN xR

{A2} {
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{A6} Fori=1,2,...,N+1,
0:0,,(VB — A) € L(RY xU)N
V- (VB = A), [V(AB -V - A)| € L=U; L'(RY));
{AT7} For (z,t,€) € R¥ xU and A = (A,...,An41) € RVFL there exists a constant
x > 0 such that

S (OB, t, NN — r(Dr, 0B, 8, €)A;)%) = 0.

The conditions {A1}-{A3} are regularity assumptions for the functions A, B and 8
with respect to =, t and . {A4}-{A6} are used to prove L>°, L' and BV-estimates
for approximate solutions. {A6} is also interpreted the regularity assumptions for the
flux A(x,t,&) — VB(z,t,€) to (1.1). The condition {AT7} fulfills to get a BV -estimate
with respect to z and t for approximate solutions to (P).

REMARK 1. By the assumption {A7}, it is deduced that

Oef(w,t,6) >0 for (v,t,&) € RY x U. (2.1)

More specifically, B(x,t,£) degenerate on nondegenerate intervals with respect to &.
In particular, if B(x,t,&) = B(E), then {A7} is equivalent to (2.1).

We also impose an additional regularity assumption to prove the uniqueness of
BV-entropy solutlon for any i,5 =1,..., N,

858:1;114 0¢ 04,04, 8 € L>( RT ><Z/{ \VOef, Op,\/0cf € LYRY x U),

{A8} g
02,068, Op;\/0cf, 02,00,/ 0B € L>( RY xu).
Next, we introduce generalized solutions to (P). Usually, the weak solution is in-
terpreted as a generalized solution to equations with divergence form. Then, the
existence and uniqueness of it may be shown. However, we can not prove the unique-
ness of weak solutions to (P) in general. Because, discontinuities break out from
the nonlinear convective term V - A(z,t,u) and the uniqueness of weak solutions are
possibly broken because of it. Therefore, we formulate the weak solution satisfying a
special condition. It is called by the name entropy solution. To define it, we state the
concept of entropy:

DEFINITION 2.1. Let n(§) € C*(R) and q(z,t,€),7(z,t,&) € LY(RY x R)Y
L®(RY xR)N satisfying q(z,t,-),r(x,t,-) € C]R)YN for (x,t) € RY. A triplet (n,q,7)
is entropy triplet to (P) if it satisfies

8EQ<:I;7t’E) = nl<£)a€A($7ta§)7 (957”(33,15,6) = ﬁ/(f)agvﬁ(%tag)

for a.e. (x,t,&) € RY xR. Then, n is called entropy and (q,r) is called entropy fluz.
DEFINITION 2.2. Let ug € L®°RN) N BV(RY). A function u € L*®(RY) N

BV (RY) is called an BV -entropy solution to (P), if it satisfies the two conditions

below:

(1) we C([0,T]); LX(RYN)) and L*-limgjou(t) = uo;

(IT) B(z,t,u) € L2(0,T; HY(RY)), and for all p € C°(RY)T,

/]RN {U(U)aﬂﬂ + (Q($>tvu) - 7“(337?5, u)) ) V‘P + ([V : q](l‘,t, u) - [V ’ T](337t, u))‘ﬁ

—W/(U)(Vﬂ(xv t, u) - [Vﬂ}(l’, i, u)) ! VSO
- (u)([V - Al(z, t,u) — [AB)(x,t,u) + B(z,t,u))p}drdt

> / " ()| /B, £, w) Dul pddt.
RY
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The existence and uniqueness of the BV-entropy solution to (P) is given by
Watanabe [11] as follows:

THEOREM 2.3 (Watanabe [11]). We assume the conditions {A0}-{A7}. Then,

the following statements hold:

(I) There exists a BV -entropy solution u to (P). Moreover, if we take U > 0
satisfying (||uo||p @y + coT)erT < U for the positive constants co and cy
in {A5}, then it follows that u(z,t) € U for (z,t) € RY. Additionally, there
exist positive constants Cy and Cy which depend on T such that TV (u(-,t)) <
eCt(TV (ug) + C1) fort € (0,T);

(II) We additionally impose the assumption {A8}. Let u, v be a pair of BV -
entropy solutions to (P) with initial values ug and vy, respectively. Then,
there exist a positive constant Cy which depend on T such that

[ tutet) = v 0lds < e [ ug(a) — vy(w)lde,
RN RN

where o = ||0¢B||pee may xury for t € (0,T). In particular, for each initial
value ug, a BV -entropy solution is uniquely determined.

In the above result, we give the assumptions {A0}-{A7} to prove the existence
of BV-entropy solutions. In this paper, we prove the continuous dependence of the
BV-entropy solution to the function ug, A, B and  under the additional assumption:
for any i,7=1,..., N,

(As) VOeB, 0u,\/0cB € L'(RY xU), 04,0¢B, 0u,1/0cB € L= (RY x U),
0., B, V- A, amjaziAi7 AB, 0:0z,04, 8, &rjaib’ € L (LY,

where L>®°(LY) := L>((0,T) x U; L*(RY)). Notice that, since we consider nonlinear

type coefficients, we need stronger regularity assumption than separation variable and

quasilinear diffusion case [4].

THEOREM 2.4. Let u; be the BV -entropy solution to (P) with initial functions
w0 and coefficients A;, B;, Bi satisfying the assumptions {A0}-{A7} and {A8} for
i =1,2, respectively. For anyt € (0,T), the following inequality holds:

/ o/ti
[lua (2, 8) —ua (@, )l L@y < e luro = uzollLr @) + 1B = Ball= )

Ve - Ar] = [Va - Aollpe 1) + [[[AeB1] = [AaBell|Loe L1y
+eU TV (uo) + C1) (1106 VaBi] — [0eVaBalll )y + [[0e A1) — O Aa || nooy

v2||vov/@eRl|| || VBT - V||, )
VIR - /eRa||

for some positive constants C and o/ = max;=12{||0¢B;||p=}. Here, TV (ug) =
max;—1 2{TV (u;0)}, L := L= (RN x (0, T) xU), L>°(L') := L>((0,T) xU; L (RY))
and Cy, Cy are positive constants in Theorem 2.3 (I).

3. Proof of Main Theorem. Step 0. Let ¢ € C°(RY)T. In addition, we
introduce a symmetric function 6 € C§°(R)™ satisfying [;, 0(¢)dt = 1 and supp[6(t)] C
{|t| < 1}. Similarly, we use a spherically symmetric function w € C§°(R™)* satisfying
Jpn w(@)dz = 1 and supplw(z)] C {|z| < 1}. Let dp,0 > 0 and define 5, (t) =
(1/60)0(t/0) and ws(x) = (1/6N)w(x/d). These are smooth functions on R and RY,
respectively, and satisfy

+é\/ieo/t

T
lim/ 05, () p(x,t)dt = p(x,0), lim ws(z)p(z, t)dx = p(0,1)
3040 /o 510 Jpn



CONTINUOUS DEPENDENCE 319

for (z,t) € RY. Moreover, let v, 7 € (0,T) with v < 7. For any ag > 0, we define
t
Pa(t) 1= Hoy(t = V) = Hoy(t = 7). Hoo(t) = [ Ou(o)dor

Then, we now employ the test function gbgo’o‘g defined by

35 (@, .1, ) 1= oy (Hws(x — )05, (t — 5) 3.1)

for 0 < ap < min(y,T — 7) and (z,t,y,s) € (R¥)2 Then, the following property
holds

i — z—y —
161%1 e |z — yl |ws (£52) ] dady = 0

and there exists a constant C > 0 such that

i — z—y zty

%FOI RY xRN & y||(9ziw<s( S2)| o (552, t) dadydt < C " o(z, t)dzdt,

: 2 T—y Tty

151?01 RY xRN |z =yl |5xi8xjw<s( 5 )|<p(—2 ,t) dzdydt < C " o(z, t)dzdt

for 1 <i,5 < N. Moreover, it follows that
(s + 0)03% = (Bag (t = 1) = b (£ = 7)), (¢ — s)ws(@ =), (Va+ V,)g5" " =0,

In this section, the proof of Theorem 2.4 is presented. Hereafter, we give the entropy
triplet in the following concrete form:

) = npfu) = [ e =1
q(z,t,u) = gp(x, t,u) = /k sgnp(f — k)[0e Al (x, t,&)dE, (3.2)
r(z,t,u) =r,(z,t,u) = /ku sgn, (€ — k)[0:V B](w,t,&)dE

for k € R. Here, we use the approximated signum function sgn,(§) for p > 0 by
sgn,(§) = sgn(¢) for [{| > p and sgn,,(§) = sin (ig) for |€] < p. Then, it can be seen
that

np(u) = |lu—kl, qp(z,t,u) — sgn(u — k)(A(z, t,u) — Az, t, k)),

(ot 1) > sgn(u — K)(VB)(zt,w) — [V)(z,t, ) 33
as p — 0. Moreover, we set
V- gt i= [ s, (€~ DO - Al €)de
i (3.4)
V) (.t ) = /k sgn, (€ — k)0 AB)(x, 1, £)de.
Then, it can be also seen that
V- q)(z,t,u) = sgn(u—k)([V - Al(z,t,u) — [V - Az, t, k), (3.5)

[V -rpl(x, t,u) = sgn(u — k) ([AB](x, t,u) — [AB](x,t, k))
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as p — 0. Then, the entropy inequality in the definition of BV -entropy solutions
implies that

[, 010+ (at0) = ryla ) - Vo (9 - gl ) = [ 7o)

—sgn,(u—k)(VB(z,t,u) — [VB](z,t,u) - Vo
—sgn,(u—k)([V - Al(z,t,u) — [AB](x,t,u) + B(z,t,u))p}drdt

2/ sgn’, (u — k)|\/[0¢ 8] (x, t, u) Dul|*pdxdt.
RN

Step 1. Let u; be the BV-entropy solution to (P) with w; o, A;, B;, 5; satisfying
{A0}-{AT} and {A8}. We put k = ua(y, s) and ¢ = (b&”’ao (x,y,t,8) (see (3.1)) in the
definition of BV -entropy solution u;. Integrating the inequality on RY with respect
to (y, s), then it follows that

/( {Up(u1)5t¢60’ O+ (gpa(x,tyur) —rpi(z,t,ur)) - Vmaﬁﬁ“’““
RN

v, Qo) (2, 1,11) = [V - rpa] (@, 8, u1)) 95"
— sgnp(ul(x,t) —uz(y, 8))((Vabr(z, t,u1) — [V bi)(z,t,ur)) - V ¢6O’a° (3.6)
(Ve - Ai)(@, t, 1) — [AuBi](@,t,ur) + Ba(, t,u1)) 65> ™) Ydxdy

2/ sgn), (u1(w,t) — ua(y, 5))|\/[0:B1] (2, t, ur) Dyus |? ¢60’a°dxdy
(RY)?

Here, we write that dx = dxdt and dy = dyds. Moreover, q, 1, [Va - qp1], 751 and
[Vg - rp1] are defined in (3.2) and (3.4) using A; and (1, respectively. Similarly, we
define the inequality (3.6)" using the definition of another BV-entropy solution us.
Moreover, we then set (EI) := (3.6) + (3.6)" in what follows. The desired result is
obtained by combining the estimates for (EI). In fact, using the same way in [11,
Section 4] (see also [4, Section 4]), (EI) implies that

/ Sgn(ul - UQ){(ul - UQ)(at + as)¢go1a0 + (Bl(xatvul) - BQ(ZJ? 5»“2))41720’&0
(RY)?

+((A1(xatau1) - Al(mvtvuﬁ)) + (A2<ya 57“2) - AQ(yv s?“l))) \Z ¢50,ao
: A1]($,t,ﬂ2) - [vy : AQ](yv 87u1)> go,ao

—([Va

—([VaBil(, t,u1) — [Vapil(@,t,u2)) - (Vaws)ag s,
+([VyBal(y, s,u1) — [VyBal(y, s,u2)) - (Vaws)Pa,bs,
~([AyB2](y, 5,u1) — [AuBr](, 1, u2)) 30" }xdy

2/ < sgn(§ — uz)e(z,t,y, 8, §) df) Paols, (Va - Vyws)dxdy
(
of ( / sgn(g—u2>vye<x,t,y,s,s>d§)-<vxwa>%e%dxdy
]qu\f 2 U
4 /( i ( / sgn(gu2>vms<z,t,y,s,s>ds> (V05 B iy
]RTIY 2 U

+ / ( / sgn(f—uz)vx-vys<x,t,y7s,§>d£) CooBawsdxdy
RY)?2 \Ju
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by (3.2)-(3.5) and the properties of qﬁgo’ao. Here, we set:

s(x,t,y, 575) = [8551](1',t,§) - 2\/[8551](xatvg)\/[aéﬂﬂ(ya 575) + [aEﬂQ](yv 875)

To derive (3.7), we make the following terms:

{=(VaBi(z, t,ur) = [VaBal(z,t,u1))
+H(VyBa(y, 5,u2) — [VyB2](y, 5,u2))} - (Vi + V) §5
H(VabBi(z, t,ur) — [VoBil(@,t,ur)) - Vydgo™
—(VyBaly, s,us) — [VyBal(y, 5,u2)) - Va3 ™.
After that, we move the last two terms in (3.8) to the right-hand side in (EI) and use
the notation &(z,t,y, s,£). Detailed calculation is referred to [4, 11].

Step 2. We investigate the diffusion terms in (3.7). First, the right-hand side of
(3.7) is equal to

(3.8)

—/ L, sen(un —u)e(z,8,y, 5, u1)Paq ()05, (t = 5)Vyw, - Durdtdy

(RY)?

—/ sgn(ur — u2)Pay (t)0s, (t — s)w,Vye(z, t,y, s,u1) - Duqdtdy = Réo o
(RY)?

using the Gauss divergence theorem. Therefore, it is deduced that

ap—050—0

lim lim 1%50’0‘0 > — / / le(z,t,y, s,u1)||Vyws(z — y)||Dui|dydt
RN)Z

st et Dl = B+ 7

By Jon [Vyws(z — y)|dy < § for some constant C' > 0 independent of §, we have

LER TN IR ez e com)

+ (VBRI F) — VORI frn)) V(e — )| Dy

> 2 Ly T el H\/aﬁﬁl 6562]HL0C(RM)
+CO(t —v) sup TV (ui(-,t)) > ;- 1‘ am\/MH

te(v,7) L= (R ‘i))

Here, we set R?L’LT{) =R x (v,7) x U. In addition, it follows that

e |
]RN)2

> =2(r—v) sup TV (uy(:
te(v,T)

x(||V/I0eB] - wagﬂz]H

[0 B2](y, 8, ul)’
‘\/8561 (x,t,up) — \/[8§B2](y,t uy) ‘ |ws(z — y)||Duy |dydt

|

Lo (]RNM N

+5N |a \/@@H

Loo(]RéVij)) L°°(]RN -
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On the other hand, the diffusion terms of the right-hand side in (3.7) are calculated
as follows:

/(RN)2 sgn(ur — u2)({—([VaBi](z, t,ur) — [VaBil(@, t,uz))
T )

+([vyﬂ2](ya S, ul) - [vyﬂﬂ(% S, UQ) } Zw5( - )‘Pozo (t)950 (t - 5)
—([AyB2)(y, s,u1) — [AuPr](z, T, u2))d O’QO)dXdy

= /( : sgn(uy — ug) 30 ([0 Vo fi](, t,ur) — [0V, B2] (y, 8,u1)) - Duqdtdy
RN)2

7/]RN . sgn(ui — u2){([AyB2)(y, s, u1) — [AyB1](y, s, u1))
' -l-([AyBl](y,s,ul) [AzB1](z, ul))}¢50’a0dxdy — Léo’aﬂ,

Then, we can see that

algglo 510121 Ly 0 0 < (1 = v)||[AyBa] — [AyBilll Lo (wor) xtsL1 YY)

+0(1 = 1) N1 10,02, Bl Low (i) xts 1t ()
+(r—v) sup TV (u1(,0)l[0Vohi] = [0 Valalll oo mivie 1

te(v,7)
A=) s TV 0) S 102260, Bl s,
e(v,T v

Step 3. We investigate the convection terms in (3.7) as follows:

/(]RN)2 sgn(u1 - U/2){((A1((E7t7u1) — A1(l‘,t,u2))

+(Az(y, 5,u2) — As(y, s,u1))) - Vg™
~([Vo - A1) (x, t,uz) — [V, Ao](y, 5,u1)) 5> ydxdy

= —/ sgn(u1 — ug) ([0 A1](x, t,u1) — [0 A2](y, s, u1)) 5°’a°Du1dtdy
(RY)?

+ /( s (9, A2, 5.) = (9 42w 5m)
RN)?
H([Vy - Ad)(y, 5,u1) — [V - Ad(z, t,un)) o0 dxdy =: L5
Hence, we deduce that

lim lim L‘s”f” <(r—v) sup TV (ui(-1))||[0cA1] — [agAg]HLoo(Révu,l:))N

ap—0359—0 3, te(v,T)
+(r = V)|[[Vy - Aa] = [Vy - Al oo () xra:21 ®Y))
N i
(7 = v) 225 51 1102, 00, A | Loe (v, 7) v, (Y )) -

On the other hand, it can be seen that
[ = wal(@ + 0.) 65 dxdy
(RY)?

— /(RN)Q(m(x,t) —ur(y, t)| + lui(y, t) — uz(y, t)] + |ua(y, t) — ua(y, s)|)
X(‘gao (t— V) — Oy (t— T))950 (t— s)wg(aj — y)dxdy — Lgmao.
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Then, it is deduced that

lim lim L‘SO’O‘0
ap—050—0

- /(RN)2(|U1(x, v) —u(y,v)| — lw(z,7) —ui(y, 7)|)ws(z — y)dzdy
+ /(RN)2(|U1(y7 v) —us(y,v)| — ui(y, 7) — ua(y, 7)|)ws(z — y)dady
<26 s(up)TV(m(-,t)) + ||ut (y, v) — ua(y, v)|| ey
te(v,t

w1y, 7) - u2(y77')||L1(]RN)~

Finally, we obtain

lim lim sgn(uy — ug) (B (z,t,u1) — Ba(y, s,uQ))¢§°’a°dxdy

apg—05p—0 (R,IZY)Z
< (1= )|IB1 = Ballpoe (umyxats i @ny) + 8(7 = ) S 10, Ball oo () xtas 1 (V)
—i—HaEBQHLOO(RN,u )/ / |u1 — u2|dx.
(v,7) v RN

Step 4. According to the above estimates and Theorem 2.3 (I), we see that

ur (y, 7) = w2(y, Tl @ny < Mui(y, v) — ua(y, V)l L@y) + (a7 + a5 7o) (T —v)
+||a§BQ||Lw(Ré\7,u>) / /N |u1 — u2|dX + 25eCoT(TV(’UJ170) + 01)
vT v JR

el - /e 2

where of'" and ay'" are constants depending v and 7 which are defined as follows

+@€COT(TV(U1,0) + )

)

L (Rfvy'f;{) )

oy = |[B1 = Bal|eo (v ryxusp @y + |[Vy - A1l = [Vy - Aol oo () xtanr @)
+H|[AyB1] — [AyBalll oo () xtaspr wvyy + €07 (TV (ur0) 4+ C1)
{10 Vahr] = 10cVabolll oo ve yn + [0 A1] = [0 Aoll| oo (gve v

12|V, /5| VBB - P | }

oo (N.U
L (]R(‘M_))

Lo (RY)N ’

and

V7T Pp—

N N i
Qg 1= Zl 1 Ha:rlB2||L°°((u-r xU; LY (RN)) +Zij 1 HamjaIiA HL°° (v,7)xU; LY (RN))
+Z” 1 102,02, B1l| Lo ((v,my xuas L @y y) + €907 (TV (ug,0) + Ch)
{1 102,960, Ball| e vie , + L |00 v/ Oea |

B, + o o v

Loo RNZA

Lo (RN u
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Here, we set § = /T — v H\/[agﬁl] - \/[8562]“ . Then, we obtain

o NU
L (R(Vj))

[Ju1(y, 7) — u2(y77')||L1(]RN) < ui(y,v) — u2(y7’/)||L1(]RN)

+H8€B2HL°"(RZ‘Z’)) / /RN luy — ug|dadt + " (1 —v) + VT — v

X(af7 (7 = v) 4 (C + D (TV (ur0) + C) ||/ 0eB] — /e |

ERELT)

Consequently, we conclude that

[ (y,t) — uz(y, )] 1 @ny < e Hlur(y, 0) — ua(y, 0)|| 1@y + Ead”

+CVEet ||\/[0¢B] — \/[‘9552}“

NU
LM(R(O)T))

- ~._ 0T C
where o' := 21121?,’)5{|\8§Bi\|L00(R%,};))} and C:=ay” T+ (C +2)e“°T(TV (uy,0) + C1).
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