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A GENERALIZATION OF THE KELLER–SEGEL SYSTEM TO
HIGHER DIMENSIONS FROM A STRUCTURAL VIEWPOINT∗

KENTAROU FUJIE† AND TAKASI SENBA‡

Abstract. We consider initial boundary problems of a two-chemical substances chemotaxis
system. In the four-dimensional setting, it was shown that solutions exist globally in time and
remain bounded if the total mass is less than (8π)2, whereas the solution emanating from some
initial data of large magnitude may blows up.

This result can be regarded as a generalization of the well-known 8π problem in the Keller–Segel
system to higher dimensions. We will compare mathematical structures of the Keller–Segel system
and our system and discuss the difference.
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1. Problem. Consider the following fully parabolic system:
ut = ∆u− χ∇ · (u∇v) in Ω× (0,∞),

τ1vt = ∆v − v + w in Ω× (0,∞),

τ2wt = ∆w − w + u in Ω× (0,∞),

(1.1)

in a bounded domain Ω ⊂ Rn (n ∈ N) with smooth boundary ∂Ω, where the param-
eters τ1, τ2, and χ are positive. Suppose that the boundary condition:

∂u

∂ν
− χu∂v

∂ν
= v = w = 0 on ∂Ω× (0,∞). (1.2)

Moreover assume that

u(·, 0) = u0, v(·, 0) = v0, w(·, 0) = w0 in Ω, (1.3)

where the initial data (u0, v0, w0) satisfies
u0 ∈ C0(Ω), u0 ≥ 0 in Ω,

v0 ∈ C2(Ω), v0 ≥ 0 in Ω,

w0 ∈ C2(Ω) u0 ≥ 0 in Ω

(1.4)

and the boundary condition

v0 = w0 = 0 on ∂Ω× (0,∞). (1.5)
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2. Background and motivation. In 1970 Keller and Segel ([17]) proposed a
mathematical model describing a movement of cells, which is the following reaction-
diffusion system: {

ut = ∆u− χ∇ · (u∇v),

vt = ∆v − v + u.
(2.1)

Here functions u and v represent the population of cells and the density of a chemical
substance, respectively. The term −χ∇ · (u∇v) represents the chemotaxis effect.

From a mathematical view point, the type of (2.1) has been studied well (see
surveys [14, 12, 1]). Under suitable boundary conditions, smooth solutions of (2.1)
conserve the total mass, i.e., ‖u(t)‖L1(Ω) = ‖u0‖L1(Ω) for all t > 0. Considering the
simplified system of (2.1) such as

{
ut = ∆u− χ∇ · (u∇v),

vt = ∆v + u

in Rn, we can confirm that the above system is invariant by the standard scaling
uλ(x, t) = λ2u(λx, λ2t) and vλ(x, t) = v(λx, λ2t) with λ > 0 and

‖uλ(·, t)‖L1(Rn) = λ2−n‖u(·, t)‖L1(Rn) t > 0.

Hence in the above sense, the two-dimensional setting is the critical case. Moreover, in
[10, 19], it is shown that the system (2.1) has the particular mathematical structure,
the Lyapunov functional:

d

dt
F(u(t), v(t)) +D(u(t), v(t)) = 0 for all t ∈ (0, T ),

where

F(u, v) =

∫
Ω

(u log u− χuv) +
χ

2

∫
Ω

|∇v|2 +
χ

2

∫
Ω

v2,

D(u, v) =

∫
Ω

u|∇(log u− χv)|2.

This Lyapunov functional is the key ingredient in the study of behaviors of solutions
to the Keller–Segel system (2.1) ([19, 15, 25]). The Trudinger–Moser inequality ([5]):
for all ε > 0 there exists some Cε > 0 such that for all u ∈ H1(Ω),

log

(∫
Ω

e|u(x)| dx

)
≤
(

1

2 · 8π
+ ε

)
‖∇u‖2L2(Ω) + Cε‖u‖L1(Ω),

plays a role of judgement of the balance of terms in the Lyapunov functional in the
critical case n = 2. This combination implies “8π-problem”, which seems to be one
of the main topic in the study of the Keller–Segel system ([16, 3, 18, 2]). Precisely, in
the two-dimensional and radially symmetric setting, the behavior of radial solutions
to the Neumann problem of (2.1) is classified as follows:

• if ‖u0‖L1Ω < 8π/χ then the solution exists globally and remains bounded
([19]).
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• there exists some initial data with ‖u0‖L1Ω > 8π/χ such that the correspond-
ing solution blows up in finite [11, 13].

As to nonradial solutions, the critical constant changed to 4π/χ ([19, 15]). Here the
critical constants 8π/χ and 4π/χ come from the critical constants in the Trudinger–
Moser inequality. As to the subcritical case, in [20] it was established that for all reg-
ular initial data the system (2.1) has global bounded solution in the one-dimensional
setting. As to the supercritical case, that is, the higher dimensional case n ≥ 3,
solutions of (2.1) exist globally in time and converge to the constant steady state
provided that ‖u0‖Ln

2 (Ω)
+ ‖∇v0‖Ln(Ω) is sufficiently small ([4]). Moreover there are

many finite time blowup radial solutions with ‖u0‖L1(Ω) = m for all m > 0 ([25]).

Motivation. The motivation of this study is to give a generalization of the
Keller–Segel system (2.1) to higher dimensions in the sense of a mathematical struc-
ture. Indeed, the system (1.1) has a similar structural properties as the Keller–
Segel system. Smooth solutions of (1.1) conserve the total mass, i.e., ‖u(t)‖L1(Ω) =
‖u0‖L1(Ω) for all t > 0. We confirm that the simplified system of (1.1) such as

ut = ∆u− χ∇ · (u∇v),

τ1vt = ∆v + w,

τ2wt = ∆w + u

in Rn is invariant by the following standard scaling
uλ(x, t) = λ4u(λx, λ2t),

vλ(x, t) = v(λx, λ2t),

wλ(x, t) = λ2w(λx, λ2t) (λ > 0).

Moreover we have

‖uλ(·, t)‖L1(Rn) = λ4−n‖u(·, t)‖L1(Rn) t > 0.

Hence the four-dimensional setting is the critical case in the above sense. Moreover the
system (1.1) has a Lyapunov functional, which seems to be a natural generalization
of one of the Keller–Segel system (2.1):

d

dt
F(u(t), v(t)) +D(u(t), v(t)) = 0 for all t ∈ (0, T ),

where

F(u, v) =

∫
Ω

(u log u− χuv) +
τ1τ2χ

2

∫
Ω

|vt|2 +
χ

2

∫
Ω

|(−∆ + 1)v|2,

D(u, v) = χ(τ1 + τ2)

∫
Ω

(
|∇vt|2 + |vt|2

)
+

∫
Ω

u|∇(log u− χv)|2.

Now, in the critical case n = 4, an Adams type inequality, which is a generalization
of the Trudinger–Moser inequality to higher derivatives, plays a key role to decide
the balance of the Lyapunov functional in the same way that the Trudinger–Moser
inequality does in the study of the Keller–Segel system. Hence the system (1.1) has
a generalized mathematical structure of the Keller–Segel system.
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3. Main results. Our main results read as follows.
Theorem 3.1 ([8]). Let n ≤ 3. Suppose that (u0, v0, w0) satisfies (1.4) and

(1.5). Then the problem (1.1)–(1.2)–(1.3) has a unique classical positive solution,
which exists globally in time. Moreover the solution is uniformly bounded in time in
the sense that

sup
t∈[0,∞)

(
‖u(t)‖L∞(Ω) + ‖v(t)‖W 2,∞(Ω) + ‖w(t)‖W 1,∞(Ω)

)
<∞.

Remark 3.2. This result corresponds to the study of the Keller–Segel system
in the one-dimensional case. In [20] it is shown that for all regular initial data the
Keller–Segel system (2.1) has global and bounded solution.

Theorem 3.3 ([8]). Let n = 4. Suppose that the initial data (u0, v0, w0) satisfies
(1.4), (1.5) and ∫

Ω

u0 <
(8π)

2

χ
.

Then the problem (1.1)–(1.2)–(1.3) has a unique classical positive solution, which
exists globally in time. Moreover the solution is uniformly bounded in time in the
sense that

sup
t∈[0,∞)

(
‖u(t)‖L∞(Ω) + ‖v(t)‖W 2,∞(Ω) + ‖w(t)‖W 1,∞(Ω)

)
<∞.

Remark 3.4. As to the initial-boundary problem of the Keller–Segel system with
the mixed boundary condition, nonradial solutions exist globally in time and remain
bounded if ‖u0‖L1(Ω) < 8π/χ. Hence the above theorem is regarded as a generalization
of the study of the Keller–Segel system.

Remark 3.5. By the standard compactness methods, we can show asymptotic
behavior of the globally bounded solutions in Theorem 3.1 and Theorem 3.3. Precisely,
there exists some increasing sequence Tk ∈ (0,∞) such that (u(Tk), v(Tk), w(Tk))
converges to a solution of the stationary problem.

We consider blowup solutions to (1.1)–(1.2)–(1.3). The following is the definition
of blowup of solutions.

Definition 3.6. We say that a solution (u, v, w) to (1.1) blows up, if the solution
satisfies

lim sup
t↗Tmax

(‖u(t)‖L∞(Ω) + ‖v(t)‖L∞(Ω) + ‖w(t)‖L∞(Ω)) =∞,

where Tmax is the maximal existence time of the classical solution (u, v, w).
Theorem 3.7 ([9]). Suppose n = 4, Ω be a convex bounded domain and Λ ∈

((8π)2/χ,∞)\{(8π)2/χ}N. Then there exist blowup solutions (u, v, w) to (1.1)–(1.2)–
(1.3) satisfying ‖u(t)‖L1(Ω) = Λ.

Remark 3.8. By Theorem 3.3 and Theorem 3.7, we established that the case
where n = 4 and

∫
Ω
u0 = (8π)2/χ is critical and that this case is corresponding to the

case n = 2 and
∫

Ω
u0 = 8π/χ of the Keller–Segel system.
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4. Strategy and mathematical challenge. As compared with the Keller–
Segel system, we should control the power balance between the terms

∫
Ω
u log u +

(χ/2)
∫

Ω
|(−∆+1)v|2 and χ

∫
Ω
uv. Instead of the Trudinger–Moser inequality, we will

apply the Adams type inequality ([21, 24]): for all ε > 0 there exists some Cε > 0
such that for all u ∈ H2(Ω),

log

(∫
Ω

e|u(x)| dx

)
≤
(

1

2(8π)2
+ ε

)
‖(−∆ + 1)v‖2L2(Ω) + Cε.

We remark that the critical constant of the Adams type inequality implies the constant
(8π)2/χ. Invoking the smallness of the mass, we can combine these estimates and
deduce the lower estimate for the Lyapunov functional.

The mathematical challenge is also in regularity estimates. After deriving the
energy estimate from the lower estimate for the Lyapunov functional, we will proceed
to deduce Lp estimate for u. We cannot adopt the approach in the study of the
Keller–Segel system to our system (1.1) because the four-dimensional setting disturbs
the relationships of exponents in the Sobolev inequality. Moreover the particular
structure of (1.1), i.e., the system (1.1) consists of three parabolic equations, causes
a difficulty. From this reason, we use the localizing method, which is introduced in
[22, 23, 6, 7].

As to the blowup result, our method has the same spirit in [13, 15]. We first
consider a blowing up sequence of stationary solutions. Stationary solutions (u, v, w)
to (1.1)–(1.2)–(1.3) satisfy that

0 = ∆u− χ∇ · (u∇v) in Ω,

0 = ∆v − v + w in Ω,

0 = ∆w − w + u in Ω,

u ≥ 0, v ≥ 0, w ≥ 0 in Ω,
∂u

∂ν
− χu∂v

∂ν
= v = w = 0 on ∂Ω.

(4.1)

Put Λ = ‖u‖L1(Ω) ∈ (0,∞). The system (4.1) can be rewritten as the following:
(−∆ + 1)2v =

Λ∫
Ω
eχv

eχv in Ω,

u =
Λ∫

Ω
eχv

eχv, w = −∆v + v in Ω,

v = ∆v = 0 on ∂Ω.

(4.2)

Here and henceforth, we say that (u, v, w,Λ) is a solution to (4.2), if the function
(u, v, w) and the positive constant Λ satisfies (4.2). The following proposition plays a
key role in our analysis. This claim is about a quantization property of solutions to
(4.2).

Proposition 4.1 ([9]). Let Λ > 0. Suppose that solutions {(uk, vk, wk,Λ)}k to
(4.2) satisfy that limk→∞ ‖vk‖L∞(Ω) = ∞. Then J = Λχ/(8π)2 is a positive integer
and there is a set of points {Q(j)}Jj=1 ⊂ Ω satisfying that

uk →
J∑
j=1

(8π)2

χ
δQ(j) in M(Ω) as k →∞,
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where δQ(j) is the delta function whose support is the point Q(j) and M(Ω) is a set

of Radon measures on Ω.
For Λ > 0 put the set S(Λ) as{

(u, v, w) ∈ C2(Ω) : (u, v, w) is a stationary solution to (1.1)–(1.2)–(1.3)

with ‖u‖L1(Ω) = Λ
}
.

The following lemma is an immediate consequence of Proposition 4.1.
Lemma 4.2 ([9]). For Λ ∈ (0,∞) \ {(8π)2/χ}N, there exists a constant C > 0

satisfying

sup{‖(u, v, w)‖L∞(Ω) : (u, v, w) ∈ S(Λ)} ≤ C

and

F∗(Λ) := inf{F(u, v, w) : (u, v, w) ∈ S(Λ)} ≥ −C.

In order to find a blowup solution, we construct a triplet of nonnegative functions
(u0, v0, w0) satisfying

F(u0, v0, w0) < F∗(Λ) for Λ > (8π)2/χ with Λ 6∈ {(8π)2/χ}N.

5. Further comments and conjectures. Let us first give some comments on
Neumann boundary case. Suppose that the following boundary conditions:

∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
= 0 on ∂Ω× (0,∞) (5.1)

and the initial data satisfies the boundary condition

∂v0

∂ν
=
∂w0

∂ν
= 0 on ∂Ω× (0,∞). (5.2)

Moreover we assume the radial symmetry:

Ω = B(R) = {x ∈ R4 | |x| ≤ R} with R > 0 and

(u0, v0, w0) : radial symmetry.

Theorem 5.1 ([8]). Let n = 4, Ω = B(R) = {x ∈ R4 | |x| ≤ R} (R > 0).
Suppose that (u0, v0, w0) is radially symmetric and satisfies (1.4), (5.2) and∫

Ω

u0 <
(8π)

2

χ
.

Then the problem (1.1)–(5.1)–(1.3) has a unique classical positive solution, which
exists globally in time. Moreover the solution is uniformly bounded in time in the
sense that

sup
t∈[0,∞)

(
‖u(t)‖L∞(Ω) + ‖v(t)‖W 2,∞(Ω) + ‖w(t)‖W 1,∞(Ω)

)
<∞.
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Remark 5.2. Comparing with the study of the two-dimensional Keller–Segel
system, the critical constant is changed from 8π/χ to (8π)2/χ.

Remark 5.3. We used the assumption of radial symmetry to deduce an Adams
type inequality in [8]. We conjecture that without this assumption the threshold con-
stant seems to be (8π)2/2χ.

As to blowup of solution, at least, the following questions have been left as an
open (especially, the second one is related to the result [25]):

• does the blowup in Theorem 3.3 occur at finite time or infinite time?;
• does the solution blows up independently of the size of the initial data in the

super critical case (n ≥ 5)?
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