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VISCO-ELASTO-PLASTIC MODELING ∗

JANA KOPFOVÁ, MÁRIA MINÁROVÁ AND JOZEF SUMEC

Abstract. In this paper we deal with the mathematical modelling of rheological models with
applications in various engineering disciplines and industry. We study the mechanical response of
visco-elasto-plastic materials. We describe the basic rheological elements and focus our attention to
the specific model of concrete, for which we derive governing equations and discuss its solution. We
provide an application of rheological model involving rigid-plastic element as well - mechanical and
mathematical model of failure of one dimensional construction member, straight beam. Herein, the
physical model is considered with a homogeneous isotropic material of the beam, quasi static regime
is supposed.
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Introduction. In mechanics, the constitutive relation between the stress σ and
the strain ε, is essential. Rheology deals with problems concerning deformation pro-
cesses of materials exhibiting different kinds of material response, e.g. elastic, viscous
and plastic behavior. Time dependent mechanical behavior is governed by constitu-
tive equations describing the relations between stress and strain variables and their
time derivatives. There exist materials that behave in a different way during loading
and unloading, some are and some are not able to recover. This phenomenon is called
hysteresis. Herein, and this it is very well known fact [9, 7, 2], the potential energy
plays important role. There are elementary matters, called also members or elements
involved in each model. Very elegant presentation of basic rheological models can an
interested reader find in the monograph [2]. There, the main focus is on elasto-plastic
materials, hysteresis phenomena being the main area of interest. For the description
of visco-plastic materials we refer to the book [1]. Corresponding models in electricity
are studied in detail in [3].

There are specific tests executed on material models by prescribed stress or strain
load action. The creep or relaxation of stress is recorded. Creep is a deformation
change in time under constant stress load being maintained, relaxation is a stress
change in time when a constant deformation is maintained. Boltzmann theory using
hereditary integrals is exerted, as well, [5].

In the paper the basic phenomena of rheology models are introduced together
with constitutive relation derivation techniques. Involving a viscous member in the
model yields the presence of derivatives in physical equations, plastic element brings a
variational inequality. Finally, the three of them - elastic, plastic and viscous members
are involved in a very simple model of concrete. The constitutive relation is derived.

1. Fundamental elements, compositions, relations. In agreement with De-
finition 1.1 in [2] we call a rheological element a system consisting of a constitutive
relation between stress σ and strain ε and a potential energy U ≥ 0. Along this paper
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Fig. 1.1. Stress - strain dependence in an a) elastic, b) viscous, c) rigid-plastic element.

we will deal with uniaxial thermodynamically consistent rheological models, which
means that the quantity called dissipation rate

q̇ = 〈ε̇, σ〉 − U̇ (1.1)

will be supposed to be non-negative in sense of distributions for all ε, σ, [2].

1.1. Fundamental elements of a visco-elasto-plastic model, physical
properties. [4, 2]

There are Newton’s viscous (N), Hook’s elastic (H) and Saint-Venant (StV) rigid-
plastic elements involved in a visco-elasto-plastic model.

Elastic element (H) is represented by an ideally elastic spring, where the stress -
strain relation is linear:

σ = Aε, (1.2)

with A an elastic modulus matrix, in the case of homogeneous isotropic material
it is replaced by a real number E - Young elastic modulus. In more dimensions it
includes both volumetric and deviatoric change. (H) is completely reversible, i.e.
all inner potential energy U gathered in the loading process is conserved and no
energy is dissipated. After loading stops all energy is used to reverse the previous
position. Potential energy is given by U = 1

2Eε
2 and it can be easily checked that

the thermodynamical consistency of the model is fulfilled.
Viscous element (N) is symbolized graphically by a piston. Here we have is a linear

relation between stress and strain rate, which can be expressed both in deviatoric and
volumetric components σdev = ηε̇dev, σvol = ζε̇vol, with η and ζ being deviatoric
and volumetric proportional coefficient respectively. For incompressible liquids only
deviatoric component comes into play and the stress-strain relation can be expressed
simply as

σ = η ε̇ (1.3)

No potential energy is stored, i.e. U = 0, the deformation process is irreversible.
Viscous elements act as dashpots.

Rigid plastic element (StV). Its graphical symbol is depicted as two touching
plates with certain friction between. When a (StV) is exposed to a load, it remains
rigid as long as the instantaneous stress does not reach the threshold. If so, material
becomes plastic immediately.

Let Z be the space of all admissible stress values with all thresholds situated in
its boundary ∂Z. The plasticity is governed by the following physical principles:

• σ ∈ int(Z) ensures the rigidity persisting of the body
• σ ∈ ∂Z (the plastic behavior is triggered)
• 〈ε̇, σ − σ̃〉 ≥ 0, ∀σ̃ ∈ Z

The last principle, the variational inequality, is called the maximal dissipation rate
principle with regard to admissible stress values. It states that while the threshold is
not reached, the deformation does not change, i.e. ∀σ ∈ int(Z) =⇒ ε̇ = 0, [9, 2].
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Fig. 1.2. Parallel and serial combination of fundamental elements.

In the uniaxial case Z = 〈−σC , σT 〉 and ∂Z = {−σC , σT }, where we assume
that σC , σT are two positive constants, so 0 ∈ Z, which corresponds to the natural
hypotheses that no deformation occurs for σ = 0. This condition is essential for the
thermodynamic consistency of the model.

In Fig 1.1c) an uniaxial representation of rigid-plastic body is performed. The
polygonal line graph is called three branch diagram. Herein, as Z is an interval, its
boundary are the endpoints called compressive threshold −σC and tension threshold
σT . In general σC 6= σT . When a threshold is reached, plasticity proceeds and takes
place until the magnitude decreases again and the rigidity comes back, permanent
(plastic) deformation persists. No potential energy is stored, i.e. U = 0 and no
recovery occurs. It has been observed that during plastic deformation the volume
change is negligible. [6]

In Fig. 1.1 the graphical symbols representing particular elementary matters and
graphical interpretation of the stress - strain relations are shown. Here P denotes the
tension force.

1.2. Configuration, geometry and corresponding relations. There are
two possible ways of connecting any couple of fundamental elements - either seri-
ally or in parallel, by using two auxiliary rigid slabs for this sake, as depicted in Fig.
1.2 a), the two slabs are represented by the upper and lower thick lines connecting
(H) and (N).

• Serial connection of elementary members
Under a load P , the resulting deformation of the system of serially connected
elementary matters is the sum of the deformations of particular members,
stress is distributed among the members equally:

ε = εH + εN , σ = σH = σN . (1.4)

Sub-indexes H, N, then SvV indicate an incidence with Hook elastic, Newton
viscous and Saint-Venant rigid-plastic matters.

• Parallel connection of elementary members
As two linking slabs are shifting vertically up or down without any rotation,
the deformation is the same, while the stress of the entire model is the sum
of stresses of particular members:

ε = εH = εN , σ = σH + σN . (1.5)

Having the two or more elementary matters at hand and utilizing both parallel
and serial connection, and considering the fundamental elements as simplest rheolog-
ical models, we can proceed in composing visco-elasto-plastic models recursively. By
connecting two simpler models serially or in parallel we compose the new, more com-
plex one. When we couple the geometry equations yielded by configuration with the
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fundamental element constitutive relations into account, we can derive the resulting
constitutive equation of the entire model.
For the sake of clear notation it is worth utilizing an abbreviations of such models.
Having, beside (N), (H) and (Stv) marks standing for the particular fundamental
elements, the vertical line standing for parallel and the horizontal line standing for
serial, we can assign a structural formula to each model. Accordingly, the structural
formulas of the two-element models in Fig. 1.2 are: (H)|(N) for the left one and
(H)− (N) for the right one respectively.

2. Creep and relaxation tests. Creep and relaxation tests are typical for
testing materials with the aim of their mechanical response prediction and materials’
mechanical behavior comparison. The special load is imposed to the material and the
response is recorded and monitored. Roughly speaking, creep-deformation change in
time under the constant stress load is maintained or relaxation-stress change in time
when a constant deformation is maintained.

Creep test is executed by inflicting an instantaneous stress keeping it constant in
a given time period. The immediate change is obviously followed by subsidiary one -
the creep. Resulting deformation response is recorded.

Relaxation test is executed by carrying out an instantaneous strain, keeping it
constant during a given time period. The immediate change of stress is obviously
followed by subsidiary one - the relaxation. Changes of stress are recorded.

3. Elasto-plasticity resulting in Hysteresis. Let us examine what happens
when we combine elastic and plastic element. First for the combination in paralel we
get

ε = εH = εStV , (3.1)

σ = σH + σStV , (3.2)

σH = E εH . (3.3)

Let us employ the Saint Venant variational inequality for the rigid-plastic matter

ε̇StV
(
σStV − σ̃

)
≥ 0 ∀σ̃ ∈ 〈−σC , σT 〉 (3.4)

and we have

ε̇ (σ − Eε− σ̃) ≥ 0 ∀σ̃ ∈ 〈−σC , σT 〉. (3.5)

For the potential energy we get U = 1
2Eε

2
H (the only contribution comes from the

elastic element) and the thermodynamical consistency of the model follows actually
from the variational inequality (3.5) (with σ̃ = 0).

For the combination in series we get similarly

ε = εH + εStV , (3.6)

σ = σH = σStV , (3.7)

σH = E εH . (3.8)

Let us now employ again the Saint Venant variational inequality for the rigid-
plastic matter

ε̇StV
(
σStV − σ̃

)
≥ 0 ∀σ̃ ∈ 〈−σC , σT 〉 (3.9)
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Fig. 3.1. a) Stop and b) Play operators

Fig. 4.1. Concrete beam under heavy transversal load, compressed and stretched fibres, crack,
rupture

and we have as a consequence(
ε̇− 1

E
σ̇

)
(σ − σ̃) ≥ 0 ∀σ̃ ∈ 〈−σC , σT 〉. (3.10)

The potential energy is again given by U = 1
2Eε

2
H and the thermodynamical

consistency follows from (3.10) (again taking σ̃ = 0).
The variational inequalities obtained in both cases (series or paralel) are both of

the same type and it was shown e.g. in [2], Theorem 1.9, that there exists a unique
solution of these variational inequalities, which is given by a hysteresis operator -
the so-called play or stop operator respectively. Hysteresis operators exhibit memory
effects (the current state depends on the previous history of the system) and they are
rate independent (this property allows us to draw diagrams as on Fig.3.1. For more
details in this direction we refer to [2] and the references therein.

4. Rheological model of concrete. There exists an exceptional group within
the rheology of composite materials on a silicate basis, group of concretes and rein-
forced concretes. Due to mechanical, chemo-mechanical or thermo-mechanical load
acting in concrete or steel-concrete constructions, some immediate, short-term and
long-term deformations evolve, the change lasting up to several years. When the
concrete mixture is poured into a form, it initiates the solidification together with
a chemical processes resulting in a volume contraction regardless the load imposed.
And, on the other hand, an imposed load activates a creep, hysteresis response in-
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Fig. 4.2. Parallel and serial connection of fundamental elements.

volved. Creep is the essential phenomenon that has to be investigated carefully as the
mechanical behavior of the designed structures and constructions can be predicted.

4.1. Concrete behavior under frequent heavy load. When the imposed
load is of magnitude within the range obvious in concrete constructions, the resulting
deformation as a consequence of creep will be several times greater than the initial
(immediate) one. In this context, the notion ”aging of concrete” is often used. [8]
Nevertheless, the mechanical response of the concrete construction is proportional to
the subjected load, accordingly the habitual operating load response of a construction
is derived by using the superposition principle. However, once unloaded, a permanent
deformation remains, [9].

Another essential fact concerning concrete has to be mentioned: Compressive
strength of concrete is much higher then tensile strength. Hence, concrete mechanical
response to tensile and to the compressive load of the same magnitude differs signifi-
cantly. That is why the reinforcement with material strong in tension is placed where
a tensile stress is supposed. In Fig. 4.1 the reinforcement is placed at the bottom
of the beam. Namely, it is supposed to be doubly supported at the ends and loaded
transversally by a pressure.

4.2. Simplified model of concrete - graphical representation structural
form, geometrical relations. As proposed by [7], the simplest model of concrete
can be set up by connecting viscous and rigid-plastic element in parallel and connect
an elastic member with this couple in series. The structural form is (H)−[(N)|(StV )].
The physical relations are considered as given in Section 1.1, E being Young elastic
modulus of (H), η the viscous coefficient of (N), σT and σC the stress tensile and
compressive thresholds of the stress in (StV).
In the following considerations, the subindexes of stress and strain variables will

be used to indicate the incidence with particular elementary members; e.g. εH will
stand for partial deformation of Hook elastic matter, etc. Geometric equations of the
(H)− [(N)|(StV )] model are:

ε = εH + εN (4.1)

εN = εStV (4.2)

σ = σH = σN + σStV , (4.3)
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where σStV ∈ 〈−σC , σT 〉.

Energy audit yields that the energy of elastic member is the only nonzero part of
the potential energy of the whole system

U =
1

2
Eε2H

and the thermodynamical consistency of the model

ε̇σ − 1

2
Eε̇2H ≥ 0

follows from the variational inequality (4.9) bellow, taking σ̃ = 0.
In the following we will deduce the constitutive relation of the model. We are

looking for the σ ∼ ε equation, describing the dependence between global stress and
global strain employing merely physical parameters of particular elementary members.
It means we want to exclude the sub-indexed stress and strain variables from the
dependence forms. Reminding elementary physical relations embedded in Section
1.1, we can proceed in the following way:

σH = E εH , σN = η ˙εN =⇒ εN = ε− εH = ε− 1

E
σH , (4.4)

σ = EεH = η ε̇N + σStV , (4.5)

σStV = σ − η ˙εN = σ − ηε̇+
η

E
σ̇. (4.6)

Let us employ the variational inequality of the Saint-Venant rigid-plastic matter

ε̇StV (σStV − σ̃) ≥ 0,∀σ̃ ∈ 〈−σC , σT 〉. (4.7)

Let us recall that

εStV = εN = ε− εH = ε− σ

E
. (4.8)

As a result we get the following variational inequality(
ε̇− σ̇

E

)(
σ − ηε̇+

η

E
σ̇ − σ̃

)
≥ 0 ∀σ̃ ∈ 〈−σC , σT 〉 (4.9)

When we denote v̇ = ε̇− σ̇
E , we can rewrite (4.9) in the form

v̇
(
σ − ηv̇ − σ̃

)
≥ 0 ∀σ̃ ∈ 〈−σC , σT 〉 (4.10)

Let us have a closer look at the variational inequality (4.10). First of all, if σ−ηv̇
is in the open interval (−σC , σT ), the second bracket can take positive or negative
values as σ̃ changes. Therefore we must have v̇ = 0.

Let us now aim our attention to the compressive marginal value σ − ηv̇ = −σC .
In such a case, it is apparent for all σ̃ ∈ 〈−σC , σT 〉 that the expression in brackets
on the left hand side of (4.10) is non-positive. This implies that in order to hold the
inequality (4.10) it must be hold v̇ ≤ 0, so:

ε̇− σ̇

E
≤ 0 (4.11)
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And accordingly, if σ − ηv̇ = −σT then it must be v̇ ≥ 0 or

ε̇− σ̇

E
≥ 0. (4.12)

This can be described by a single relation in terms of v

v̇ =
1

η
(σ − P(σ)), (4.13)

where P denotes the projection on the interval 〈−σC , σT 〉 (in the sense of convex
analyses).

Alternatively in terms of σ and ε we have

ε̇ =
σ̇

E
+

1

η
(σ − P(σ)). (4.14)

This is the constitutive relation we were looking for. It involves both stress on
strain and strain on stress dependence. It means that with such a constitutive relation
of the model at hand we can operate further and investigate and predict material
behavior depending on the kind and magnitude of the load. Either we impose stress
load, solving the corresponding linear non-homogenous differential equation in sense
of deformation, or vice versa, i.e. we impose a strain and compute stress response.
The initial condition have to be posed as well. The first equation is of course much
simpler to solve, we can get the solution by simple integration. Alternatively the
obtained differential equations can be solved easily e.g. numerically.

Creep and relaxation test are examples of material behavior investigation.

5. Conclusion. Nowadays, a lot of new material is developed and used in in-
dustry. Undoubtedly, the investigation prior to their usage is inevitable. Avoiding or
predicting the failure due to heavy or repeating load is essential. For this sake the
models with time dependent material behavior are utilized, each material matched
with its appropriate models. Then by using mathematical tools various theoretical
tests can be executed and response vs. load can be traced. Constitutive equations are
essential, visco-elasto-plastic models being of great importance and interest within
them.
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