
Proceedings of EQUADIFF 2017
pp. 237–246

STABILITY OF ALE SPACE-TIME DISCONTINUOUS GALERKIN
METHOD

MILOSLAV VLASÁK∗, MONIKA BALÁZSOVÁ† , AND MILOSLAV FEISTAUER‡

Abstract. We assume the heat equation in a time dependent domain, where the evolution
of the domain is described by a given mapping. The problem is discretized by the discontinuous
Galerkin (DG) method in space as well as in time with the aid of Arbitrary Lagrangian-Eulerian
(ALE) method. The sketch of the proof of the stability of the method is shown.
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1. Introduction. Although many theoretical results are devoted to the numer-
ical analysis of parabolic PDEs within a fixed domain, there are number of areas with
many important applications of parabolic PDEs with time dependent domain. We
can mention, for example, problems with moving boundaries, where the motion of the
boundary is either prescribed or given by the PDE itself.

There are several approaches how to deal with problems in time dependent do-
mains, e.g. fictitious domain method, see e.g. [21], or immersed boundary method, see
e.g. [4]. A very popular technique is Arbitrary Lagrangian-Eulerian (ALE) method
that is based on a one-to-one ALE mapping of the reference domain on the cur-
rent one. ALE method is often applied in connection with conforming finite element
method (FEM) in space and lower order time discretizations (backward Euler method,
Crank-Nicolson method, BDF2) in time, see e.g. [18] or [19].

The class of discontinuous Galerkin methods seems to be one of the most promis-
ing candidates to construct high order accurate schemes for solving convection-diffu-
sion problems, where narrow layers and steep gradients of the solution may appear.
For a survey about DG space discretization, see [1], [10], [11]. The discontinuous
Galerkin method could be applied for time discretization as well. For a survey about
DG time discretization, see e.g. [23]. The discontinuous Galerkin method in space
with BDF time discretization was applied with success to time dependent problems,
see e.g. [7] or [22]. Moreover, in [8] space-time DG discretization was applied to the
vibration of an airfoil problem and the results were compared with BDF time dis-
cretization. According to this comparison, DG time discretization seems to be more
robust and accurate than BDF.
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Numerical analysis of stability and a priori error estimates of time dependent
problems with divergence free domain velocity and discretized by the conforming
FEM in space and by DG in time could be found in [5] and [6]. Finally, the stability
analysis of space-time DG discretization of nonlinear convection-diffusion problems
is studied in [2] for lower degree polynomial approximations in time and in [3] for
general polynomial degree.

2. Continuous problem. Let T > 0. We consider the following initial–
–boundary value problem

∂u

∂t
−∆u = f in Ωt × (0, T ),(2.1)

u = 0 in ∂Ωt × (0, T ),

u = u0 in Ω0,

where Ωt ⊂ Rd (d = 1, 2, 3) is a bounded polyhedral time dependent domain with a
Lipschitz continuous boundary ∂Ωt. We assume that the initial condition u0 ∈ L2(Ω0)
and the right-hand side f ∈ L2(0, T, L2(Ωt)). We denote by (., .)t and ‖.‖t the L2(Ωt)
scalar product and norm, respectively.

The evolution of the domain Ωt in time is described by a given regular one-to-one
ALE mapping

A : Ω0 × [0, T ]→ Ωt,(2.2)

where Ω0 or Ωt are closures of Ω0 or Ωt, respectively. For the purpose of the proof of
the stability we introduce following regularity assumptions on the ALE mapping A:

A ∈W 1,∞(0, T,W 1,∞(Ω0)), A−1 ∈W 1,∞(0, T,W 1,∞(Ωt)).(2.3)

Moreover, we denote the Jacobi matrix of A by B = dA
dX , the corresponding determi-

nant by J = det(B) and the domain velocity by ω = ∂A
∂t ◦ A

−1. From the regularity
assumptions (2.3) it is possible to show that B, B−1, J , J−1, ω and ∇·ω are bounded,
i.e. there exists a constant CA > 0 such that

max(‖B‖L∞(0,T,L∞(Ω0)), ‖B−1‖L∞(0,T,L∞(Ω0)), ‖J‖L∞(0,T,L∞(Ω0))(2.4)

‖J−1‖L∞(0,T,L∞(Ω0)), ‖ω‖L∞(0,T,L∞(Ωt)), ‖∇ · ω‖L∞(0,T,L∞(Ωt))) ≤ CA.

Problem (2.1) is usually transformed into the ALE formulation. To this end, we
introduce ALE derivative

Dtu =
∂u

∂t
+ ω · ∇u.(2.5)

Now we introduce the ALE formulation equivalent to problem (2.1)

Dtu−∆u− ω · ∇u = f in Ωt × (0, T ),(2.6)

u = 0 in ∂Ωt × (0, T ),

u = u0 in Ω0.
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3. Discretization. In this section, we describe the interior penalty discontinu-
ous Galerkin discretization in space variables together with the discontinuous Galerkin
time discretization in the ALE framework.

We consider a space partition Th,0 consisting of a finite number of closed, d -
dimensional simplices K with mutually disjoint interiors and covering Ω0. We assume
conforming properties, i.e. neighbouring elements share an entire edge or face. We
set hK = diam(K) and h = maxKhK . We assume that the mesh is quasi-uniform, i.e.
there exists a constant CQ > 0 such that hK ≤ CQhK̄ for all neighbouring elements
K and K̄. By ρK we denote the radius of the largest d-dimensional ball inscribed into
K. We assume shape regularity of elements, i.e. hK/ρK ≤ C for all K ∈ Th, where
the constant does not depend on Th,0 for h ∈ (0, h0). By Γh,0 we denote the set of
all edges of Th,0. We define a unit normal vector n to arbitrary edge from Γh,0. For
inner edges the direction is arbitrary, for outer edges we assume that n is the unit
outer normal vector.

Since the domain Ω0 evolves into Ωt = A(Ω0, t), we define similarly the evolution
of the mesh Th,t = A(Th,0, t), the evolution of the edges Γh,t = A(Γh,0, t) .

We introduce the space for the semidiscrete solution on Ω0

Vh = {v ∈ L2(Ω0) : v|K ∈ P p(K)},(3.1)

where P p(K) denotes the space of polynomials up to the degree p ≥ 1 on K. Functions
from the space Vh are discontinuous across the edges of Th,0. For this reason we define
one-sided limits

vL(x) = lim
s→0+

v(x− ns), vR(x) = lim
s→0+

v(x+ ns),(3.2)

jumps and mean values

[v] = vL − vR, 〈v〉 =
vL + vR

2
.(3.3)

For outer edges we define

[v] = 〈v〉 = vL = lim
s→0+

v(x− ns).(3.4)

In order to discretize problem (2.6) in time, we consider a time partition 0 = t0 <
t1 < . . . < tr = T with time intervals Im = (tm−1, tm), time steps τm = tm − tm−1

and τ = maxm=1,...,r τm. We define the solution space

V τh = {v ∈ L2(0, T, L2(Ωt)) : (v ◦ A)|Im ∈ P q(Im, Vh)}.(3.5)

For a function v ∈ V τh we define the one–sided limits

vm± = v(tm±) = lim
t→tm±

v(t)(3.6)

and the jumps

{v}m = vm+ − vm− , m ≥ 1 and {v}0 = v0
+ − u0.(3.7)

We approximate the diffusion term by the discontinuous Galerkin interior penalty
form

ah,t(u, v) =
∑

K∈Th,t

∫
K

∇u · ∇vdx−
∑
e∈Γh,t

∫
e

(〈∇u〉 · n[v] + θ〈∇v〉 · n[u])dS(3.8)

+
∑
e∈Γh,t

∫
e

σ[u][v]dS.
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The choice of parameter θ = 1, 0,−1 corresponds to SIPG, IIPG and NIPG formu-
lation, respectively. Parameter σ is defined on the inner edges between elements K
and K̄ by

σ =
CW

hK+hK̄

2

(3.9)

and on the boundary edges by

σ =
CW
hK

,(3.10)

where the constant CW > 0 needs to be chosen large enough to guarantee ellipticity
of ah,t. Lower bounds for CW will be briefly discussed later. For more informations
about different variants of discontinuous Galerkin method and their corresponding
formulations approximating (−∆u, v)t see e.g. [1].

Now, we are able to formulate the fully discrete space-time discontinuous Galerkin
scheme:

Definition 3.1. We say that a function U ∈ V τh is the discrete solution of
problem (2.6) obtained by space-time discontinuous Galerkin method, if the following
conditions are satisfied∫

Im

(DtU, v)t + ah,t(U, v)− (ω · ∇U, v)tdt+ ({U}m−1, v
m−1
+ )tm−1

(3.11)

=

∫
Im

(f, v)tdt ∀m = 1, . . . , r, ∀v ∈ V τh .

The time discretization in (3.11) can be viewed as a generalization of some spe-
cific classical one–step methods for parabolic problems. It is possible to show that
setting q = 0, i.e. piecewise constant approximation in time, is equivalent (up to
suitable quadrature of the right–hand side) to backward Euler method in time and
discontinuous Galerkin method in space. Similarly, the higher polynomial degree ap-
proximations in time lead to methods that are equivalent (up to suitable quadrature
of the right–hand side) to Radau IIA Runge-Kutta methods. For details about the
relations between Galerkin methods and Runge-Kutta methods see e.g. [15] and [20].
For the descriptions of Radau IIA Runge-Kutta methods see e.g. [12] or [16] and [17].

4. Stability. The aim of this section is to show that the numerical scheme (3.11)
is stable, i.e. the approximate solution obtained from (3.11) can be bounded in terms
of the data f and u0 of the problem (2.1).

An important auxiliary tool for the analysis of problems in time-dependent do-
mains is the Reynolds transport formula:

d

dt

∫
Ωt

v(x, t)dx =

∫
Ωt

∂v

∂t
(x, t) +∇ · (ωv)(x, t)dx(4.1)

=

∫
Ωt

Dtv(x, t) +∇ · ω(x, t)v(x, t)dx.

For the purpose of the forthcoming estimates we define discontinuous Galerkin
energy norm

‖u‖2DG,t =
∑

K∈Th,t

‖∇u‖2L2(K) +
∑
e∈Γh,t

‖σ1/2[u]‖2L2(e).(4.2)
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Using this norm we can summarize the properties of ah,t in following lemma.
Lemma 4.1. Let U, v ∈ V τh . Then there exists a constant Ca > 0 such that

ah,t(U, v) ≤ Ca‖U‖DG,t ‖v‖DG,t.(4.3)

Moreover, let the constant CW satisfy

CW > 0, θ = −1, NIPG,(4.4)

CW ≥
1

2
CM (CI + 1)(CQ + 1), θ = 0, IIPG,

CW ≥ CM (CI + 1)(CQ + 1), θ = 1, SIPG,

where constant CM and CI come from the trace inequality and the inverse inequality,
respectively, see [11]. Then

ah,t(U,U) ≥ 1

2
‖U‖2DG,t.(4.5)

Proof. The ideas of the proof are well described in e.g. [11]. The generalization
to the problems in the time dependent domains can be found in [2].

We need the estimate of the ALE derivative term.
Lemma 4.2. Let U ∈ V τh . Then∫

Im

(DtU,U)tdt+ ({U}m−1, U
m−1
+ )tm−1

(4.6)

≥ 1

2
‖Um− ‖2tm −

1

2
‖Um−1
− ‖2tm−1

− CA
2

∫
Im

‖U‖2tdt.

Proof. At first, we will study relation (4.6) elementwise for each element K ∈ Th,0.
Let us denote Kt = A(K, t). Applying Reynolds transport formula with v = U2 we
get ∫

Im

∫
Kt

U ·DtUdxdt+

∫
Ktm−1

{U}m−1U
m−1
+ dx(4.7)

=
1

2

∫
Im

∫
Kt

DtU
2dxdt+

∫
Ktm−1

{U}m−1U
m−1
+ dx

=
1

2

∫
Im

d

dt

∫
Kt

U2dxdt− 1

2

∫
Im

∫
Kt

(∇ · ω)U2dxdt+

∫
Ktm−1

{U}m−1U
m−1
+ dx

=
1

2
‖Um− ‖2L2(Ktm ) −

1

2
‖Um−1

+ ‖2L2(Ktm−1
) + ‖Um−1

+ ‖2L2(Ktm−1
)

−
∫
Ktm−1

Um−1
− Um−1

+ dx− 1

2

∫
Im

∫
Kt

(∇ · ω)U2dxdt

=
1

2
‖Um− ‖2L2(Ktm ) −

1

2
‖Um−1
− ‖2L2(Ktm−1

) +
1

2
‖{U}m−1‖2L2(Ktm−1

)

−1

2

∫
Im

∫
Kt

(∇ · ω)U2dxdt

≥ 1

2
‖Um− ‖2L2(Ktm ) −

1

2
‖Um−1
− ‖2L2(Ktm−1

) −
CA
2

∫
Im

∫
Kt

U2dxdt.
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The lemma is proved by summing this relation over all Kt ∈ Th,t.

Setting v = U in (3.11) we get the basic identity∫
Im

(DtU,U)t + ah,t(U,U)− (ω · ∇U,U)tdt+ ({U}m−1, U
m−1
+ )tm−1(4.8)

=

∫
Im

(f, U)tdt.

Since ∫
Im

(ω · ∇U,U)tdt ≤ CA
∫
Im

‖U‖DG,t ‖U‖tdt(4.9)

≤ C2
A

∫
Im

‖U‖2tdt+
1

4

∫
Im

‖U‖2DG,tdt,

applying Lemma 4.1 and Lemma 4.2 we get

1

2
‖Um− ‖2tm −

1

2
‖Um−1
− ‖2tm−1

+
1

2

∫
Im

‖U‖2DG,tdt(4.10)

≤ ‖f‖L2(Im,L2(Ωt))‖U‖L2(Im,L2(Ωt)) + C2
A

∫
Im

‖U‖2tdt+
1

4

∫
Im

‖U‖2DG,tdt

+
CA
2

∫
Im

‖U‖2tdt

≤ ‖f‖2L2(Im,L2(Ωt))
+

1

4

∫
Im

‖U‖2DG,tdt+ τmC1 sup
t∈Im

‖U‖2t ,

where the constant C1 = 1/4 + CA/2 + C2
A.

To be able to get rid of the last supremum term, we need to derive a technique
for estimating the values of the discrete solution inside of intervals Im.

4.1. Discrete characteristic function. The concept of the discrete charac-
teristic function comes from [9]. As we have seen in (4.10), application of the test
function v = U naturally leads to the nodal estimate. Setting v = χ(tm−1,s)U , where
χ(tm−1,s) is characteristic function of the interval (tm−1, s) for s ∈ [tm−1, tm], will lead
to a similar estimate for ‖U(s)‖s instead of ‖Um− ‖tm . Unfortunately, it is not possible
to do it, since χ(tm−1,s)U /∈ V τh . The idea of the discrete characteristic function is
based on the construction of Us ∈ V τh for given U ∈ V τh and s ∈ [tm−1, tm] such
that Us will preserve similar properties to the classical characteristic function. For
applications of the discrete characteristic function see, e.g. [11] or [24].

We will use a notation ṽ = v ◦A for transformation of functions from the evolving
space-time cylinder to the reference space-time cylinder. From the assumptions on
the ALE mapping A and according to the definition of space V τh it is possible to see

that this transformation is bijection between V τh and Ṽ τh , where

Ṽ τh = {v ∈ L2(0, T, L2(Ω0)) : v|K×Im ∈ P q(Im, P p(K))},(4.11)

i.e. Ṽ τh represents the space of classical piecewise polynomial functions.
We define the discrete characteristic function for time dependent domains in three

steps. At first, the given function U ∈ V τh is transformed onto the reference domain,
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i.e. Ũ = U ◦A ∈ Ṽ τh . Second step is the construction of discrete characteristic function

in fixed domains, i.e. Ũs ∈ Ṽ τh such that

Ũm−1
s+ = Ũm−1

+ ,(4.12) ∫
Im

(
Ũs,

∂v

∂t

)
0

dt =

∫ s

tm−1

(
Ũ ,

∂v

∂t

)
0

dt ∀v ∈ Ṽ τh .

The last step is the transformation back to the current domain, i.e. Us = Ũs ◦ A−1 ∈
V τh .

Now, we want to show a similar relation to the relation from Lemma 4.2 that will
also describe the contraction property of the discrete characteristic function.

Lemma 4.3. Let U ∈ V τh and Us ∈ V τh be its discrete characteristic function
associated with s ∈ Im. Then there exists a constant CD > 0 depending only on the
polynomial degree q and on the regularity of the ALE mapping (2.3) such that∫

Im

(DtU,Us)tdt+ ({U}m−1, U
m−1
s+ )tm−1

(4.13)

≥ 1

2
sup
Im

‖U(t)‖2t −
1

2
‖Um−1
− ‖2tm−1

− CDτm sup
t∈Im

‖U‖2t

Proof. Since the proof is long and technical, it is skipped in this paper. The proof
will be contained in [3].

Using Lemma 4.3, it is possible to deal with the ALE derivative term. For all the
other terms we need to show that the process of creating the discrete characteristic
function is stable with a constant independent of the parameter s ∈ Im.

Lemma 4.4. Let U ∈ V τh and Us ∈ V τh be its discrete characteristic function
associated with s ∈ Im. Then there exists a constant CST > 0 depending only on the
polynomial degree q and on the regularity of ALE mapping (2.3) such that∫

Im

‖Us(t)‖2tdt ≤ CST
∫
Im

‖U(t)‖2tdt,(4.14) ∫
Im

‖Us(t)‖2DG,tdt ≤ CST
∫
Im

‖U(t)‖2DG,tdt.(4.15)

Proof. Since the proof is long and technical, it is skipped in this paper. The proof
will be contained in [3].

4.2. Main result. Now, we are ready to formulate the main result.
Theorem 4.5. Let the parameter CW satisfy (4.4) and let U ∈ V τh be an ap-

proximate solution obtained by scheme (3.11). Then there exist constants C > 0 and
C∗ > 0 such that τ ≤ C∗ implies

sup
Im

‖U‖2t ≤ C(‖f‖2L2(0,T,L2(Ωt))
+ ‖u0‖20).(4.16)

Proof. Setting v = Us in the left-hand side of (3.11), where s ∈ [tm−1, tm] such
that ‖U(s)‖s = supt∈Im ‖U‖t, and using Lemma 4.1, Lemma 4.3 and Lemma 4.4 we
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get ∫
Im

(DtU,Us)t + ah,t(U,Us)t − (ω · ∇U,Us)tdt+ ({U}m−1, U
m−1
+ )tm−1

(4.17)

≥ 1

2
‖U(s)‖2s −

1

2
‖Um−1
− ‖2tm−1

− CDτm sup
t∈Im

‖U‖2t

−
∫
Im

Ca‖U‖DG,t ‖Us‖DG,tdt− CA
∫
Im

‖U‖DG,t ‖Us‖tdt

≥ 1

2
sup
Im

‖U‖2t −
1

2
sup
Im−1

‖U‖2t − CDτm sup
t∈Im

‖U‖2t −
Ca
2

∫
Im

‖U‖2DG,tdt

−CaCST
2

∫
Im

‖U‖2DG,tdt−
1

2

∫
Im

‖U‖2DG,tdt−
C2
ACST

2

∫
Im

‖U‖2tdt,

where we use the notation supI0 ‖U‖
2
t = ‖u0‖20. Similarly, setting v = Us in the

right-hand side of (3.11) we get∫
Im

(f, Us)tdt ≤
1

2
‖f‖2L2(Im,L2(Ωt))

+
CST

2

∫
Im

‖U‖2t .(4.18)

Using these relations we get

1

2
sup
Im

‖U‖2t −
1

2
sup
Im−1

‖U‖2t ≤
1

2
‖f‖2L2(Im,L2(Ωt))

(4.19)

+C2τm sup
t∈Im

‖U‖2t + C3

∫
Im

‖U‖2DG,tdt,

where C2 = CD + (C2
A + 1)CST /2 and C3 = (1 + Ca + CaCST )/2.

Multiplying (4.10) by 4C3 and summing with (4.19) we get

1

2

(
4C3‖Um− ‖2tm + sup

Im

‖U‖2t
)
− 1

2

(
4C3‖Um−1

− ‖2tm + sup
Im−1

‖U‖2t

)
(4.20)

≤ 8C3 + 1

2
‖f‖2L2(Im,L2(Ωt))

+ (4C1C3 + C2)τm sup
t∈Im

‖U‖2t .

Setting C∗ = 8C1C3 + 2C2 we get we get (4C1C3 + C2)τm < 1/2 and the statement
of the theorem follows from the application of the discrete Gronwall lemma.

5. Conclusion. We presented a higher order method for the heat equation in a
time dependent domain based on the space-time discontinuous Galerkin method. For
this problem, the idea of the proof of the unconditional stability for any polynomial
degree is shown. There are several items for the future work.

• The extension of the discontinuous Galerkin discretization and the stability
analysis to nonlinear problems.

• Deriving a priori error estimates.
• Investigating other suitable higher order time discretizations for problems

with a time dependent domain, e.g. continuous Galerkin method, DIRK, etc.
• The numerical analysis of coupled problems, where the ALE mapping depends

on the solution of the problem.
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