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NONLINEAR TENSOR DIFFUSION IN IMAGE PROCESSING∗

OL’GA STAŠOVÁ , KAROL MIKULA , ANGELA HANDLOVIČOVÁ† , AND NADINE

PEYRIÉRAS‡

Abstract. This paper presents and summarize our results concerning the nonlinear tensor
diffusion which enhances image structure coherence. The core of the paper comes from [3, 2, 4, 5].
First we briefly describe the diffusion model and provide its basic properties. Further we build a
semi-implicit finite volume scheme for the above mentioned model with the help of a co-volume mesh.
This strategy is well-known as diamond-cell method owing to the choice of co-volume as a diamond-
shaped polygon, see [1]. We present here 2D as well as 3D case of a numerical scheme, see [3, 4].
Then the convergence and error estimate analysis for 2D scheme is presented, see [3, 2]. Last part is
devoted to results of computational experiments. They confirm the usefulness this diffusion type not
just for an image improvement but also as a pre-processed algorithm. Numerical techniques which
require a good coherence of image structures (like edge detection and segmentation) achieve much
better results when we use images pre-processed by such a filtration. Let us note that this diffusion
technique was successfully applied within the framework of EU projects. It was used to pre-process
images for the structure segmentation in zebrafish embryogenesis, see [5].
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1. Introduction. Coherence enhancing diffusion (CED), see [11], is a technique
which enables to achieve an improvement of image structure connectivity. It is also
helpful as a pre-processed algorithm for numerical methods in which a precise image
structure coherence is desirable (e.g. edge detection, segmentation). Applying these
procedures on images filtered by CED yields an enhancement of their results. The
filtration process is driven by the diffusion tensor in such a way that the diffusion
is strong in preferred directions, e.g. along edges (in 2D images) or along 2D edge
surfaces (in 3D images) which causes a recovery of defects in image structures. In-
terrupted places will be completed. On the contrary, the smoothing is low in the
perpendicular direction and therefore the edges are not significantly blurred.

2. Mathematical model. Let QT is a spatio-temporal domain, where a time
interval is given by I = [0, T ] and Ω (subset of R2 or R3) is an image domain with the
boundary ∂Ω. We consider the coherence enhancing diffusion model on this domain.
It has the following form, see [11, 3, 7, 4],

∂u

∂t
−∇ · (D∇u) = 0 in QT ≡ I × Ω,(2.1)

u(x, 0) = u0(x) in Ω,(2.2)

D∇u · n = 0 on I × ∂Ω,(2.3)
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where u(x, t) denotes an unknown function and represents a grey level image intensity,
u0 ∈ L2(Ω) and n denotes the outer normal unit vector to the ∂Ω. The matrix
D represents the so-called diffusion tensor. Its design differs in dependence on a
dimension order.

2.1. 2D diffusion tensor. The construction of the 2D diffusion tensor is based
on the eigenvalues and eigenvectors of the (regularized) structure tensor Jρ(∇ut̃) =

Gρ ∗ (∇ut̃∇ut̃T ) =

(
a b
b c

)
, where ut̃(x, t) = (Gt̃ ∗ u(·, t))(x). Gt̃ and Gρ are

Gaussian convolution kernels, see [11, 3]. The matrix Jρ is symmetric and positive
semidefinite and its eigenvectors are parallel and orthogonal to ∇ut̃, respectively.

Its eigenvalues are given by µ1,2 = 1
2

(
a+ c±

√
(a− c)2 + 4b2

)
, µ1 ≥ µ2. The cor-

responding orthogonal set of eigenvectors (v,w) to eigenvalues (µ1, µ2) is given as
follows

v = (v1, v2), w = (w1, w2), w ⊥ v, w1 = −v2, w2 = v1,

v1 = 2b, v2 = c− a+
√

(a− c)2 + 4b2.(2.4)

The orientation of the eigenvector w corresponding to the smaller eigenvalue µ2 is
called the coherence orientation. This orientation has the lowest fluctuations in image
intensity. The diffusion tensor D is built to steer a filtering process such that the
smoothing is strong along the coherence direction w and increases with the coherence
(µ1 − µ2)2. To achieve it, we require D to possess the same eigenvectors v and w as
the structure tensor Jρ(∇ut̃) and we choose the eigenvalues of D as follows

κ1 = α, α ∈ (0, 1), α� 1,(2.5)

κ2 =

{
α, if µ1 = µ2,

α+ (1− α) exp
(

−C
(µ1−µ2)2

)
, C > 0 else.

Hence we get the diffusion tensor in the form

D = ABA−1, where A =

(
v1 −v2

v2 v1

)
and B =

(
κ1 0
0 κ2

)
,(2.6)

which depends nonlinearly on partial derivatives of solution u, possesses smoothness,
symmetry and uniform positive definiteness properties.

2.2. 3D diffusion tensor. The construction of the 3D diffusion tensor is based
on a smoothed intensity gradient given by ∇ut̃ = (ux1

, ux2
, ux3

)T , where ut̃(x, t) =
(Gt̃ ∗ u(·, t))(x), (t̃ > 0) and Gt̃ is a Gaussian kernel, see [4, 7]. Provided that
µ = ||∇ut̃||2 > 0 we choose a triplet of vectors (v1,v2,v3) by v1 ‖ ∇ut̃, v2 ⊥ ∇ut̃,
v3 ⊥ ∇ut̃, v2 ⊥ v3. The direction of vector v1 corresponds to the direction of the
largest intensity change. The other two vectors give a tangential plane to a level set of
image intensity which may represent a 2D surface edge in a 3D image, provided that µ
is large. It is called coherence plane P and represents an eigenspace corresponding to
the eigenvalue 0 of the outer product ∇ut̃ ⊗∇ut̃. In order to enhance the coherence,
the diffusion tensor D must steer the filtering process such that the diffusion is strong
and increasing with the level of µ along the coherence plane P and is small in the
perpendicular direction. We achieve it by choosing the eigenvalues of the diffusion
tensor, which determine the diffusivities in the directions v1, v2 and v3 as

κ1 = α, α ∈ (0, 1), α� 1,(2.7)
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κ2 = κ3 =

{
α, if µ = 0,

α+ (1− α) exp
(
−C
µ

)
, C > 0 otherwise.

Then we apply another convolution with a smoothing kernel Gρ and get the diffusion
matrix D in the form

D = Gρ ∗D0, where D0 =

{
B, if µ = 0,
PBP−1 otherwise,

B =

 κ1 0 0
0 κ2 0
0 0 κ2

(2.8)

and P denotes a transition matrix from the basis (v1,v2,v3) to (e1, e2, e3). If µ > 0,
the matrix D0 has the following form

1

µ

 u2
x1
κ1 + (u2

x2
+ u2

x3
)κ2 ux1

ux2
(κ1 − κ2) ux1

ux3
(κ1 − κ2)

ux1
ux2

(κ1 − κ2) u2
x2
κ1 + (u2

x1
+ u2

x3
)κ2 ux2

ux3
(κ1 − κ2)

ux1
ux3

(κ1 − κ2) ux2
ux3

(κ1 − κ2) u2
x3
κ1 + (u2

x1
+ u2

x2
)κ2


in the standard basis (e1, e2, e3). Such choice of the matrix D0 was given in [4], it is
independent on a concrete choice of v2 and v3 and can be directly and fast evaluated
using the diamond-cell finite volume technique (see also next section). The 3D dif-
fusion tensor satisfies the smoothness, symmetry and positive definiteness properties,
see [4], as does the 2D diffusion tensor.

3. Diamond-cell finite volume scheme. We design the numerical scheme
for CED using the finite volume method, see [6], since this discretization technique
uses the piecewise constant representation of approximate solutions similarly to the
structure of digital images. The restrictions of the classical five-point method for the
tensor models, see [8], lead to choice of the nine-point diamond-cell method in 2D,
see [1, 3]. Similarly, we switch to 27-point scheme instead of simpler 7-point scheme
in 3D space, see [4].

Let the image be represented by n1 × n2 pixels (finite volumes) in 2D or by
n1×n2×n3 voxels in 3D such that it looks like a mesh with n1 rows and n2 columns in
2D or a mesh with n1 rows, n2 columns and n3 layers in 3D. Let Ω = (0, n1h)×(0, n2h)
in 2D or Ω = (0, n1h)×(0, n2h)×(0, n3h) in 3D with a pixel(voxel) size h. We consider
the filtering process in a time interval I = [0, T ]. Let the time discretization be given
by 0 = t0 ≤ t1 ≤ · · · ≤ tNmax = T with tn = tn−1 + k, where k is the length of
the discrete time step. Th is an admissible finite volume mesh, see [6] and further
quantities and notations are given as follows: m(W ) is the measure of the finite
volume W with boundary ∂W , σWE = W ∩ E = W |E is an edge(face) of the finite
volume W , where E ∈ Th is an adjacent finite volume to W such that the measure
m(W ∩ E) 6= 0. At several places we will replace σWE by σ to simplify notation.
m(σ) is the measure of edge (face) σ. EW represents the set of edges(faces) such that
∂W =

⋃
σ∈EW σ and E =

⋃
W∈Th EW . The set of boundary edges(faces) is denoted by

Eext, that is Eext = {σ ∈ E , σ ⊂ ∂Ω} and denote Eint = E \ Eext. Υ is the set of pairs
of adjacent finite volumes, defined by Υ = {(W,E) ∈ T 2

h , W 6= E, m(σWE) 6= 0}
and nW,σ is the normal unit vector to σ outward to W . Let unW represents a numerical
solution on finite volume W , W ∈ Th at time tn, n = 1, ..., Nmax.

Our discrete solution is given by uh,k(x, t)=
∑Nmax
n=0

∑
W∈Thu

n
Wχ{x∈W}χ{tn−1<t≤tn},

where the function χ{A} is defined as

χ{A}=

{
1, if A is true,
0, elsewhere.
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The finite volume approximation at the n-th time step is given by

unh,k(x) =
∑
W∈Th

unWχ{x ∈W}

and initial values as u0
W = 1

m(W )

∫
W

u0(x)dx, W ∈ Th.

We start the scheme derivation integrating the equation (2.1) over the finite vo-
lume W , then provide a semi-implicit discretization and use the divergence theorem
to have

unW − u
n−1
W

k
m(W )−

∑
σ∈EW∩Eint

∫
σ

(Dn−1∇un) · nW,σds = 0.(3.1)

We can define an auxiliary unknown φnσ(unh,k) representing an approximation of the

exact averaged flux 1
m(σ)

∫
σ
(Dn−1∇un) · nW,σds for any W and σ ∈ EW in order to

rewrite (3.1) in the form

unW − u
n−1
W

k
− 1

m(W )

∑
σ∈EW∩Eint

φnσ(unh,k)m(σ) = 0.(3.2)

Approximation of the flux φnσ(unh,k) is built with the help of a co-volume mesh,
see e.g. [1, 3]. The 2D co-volume χσ associated to σ is constructed around each edge
by joining endpoints of this edge and midpoints of finite volumes which are common
to this edge, see Fig. 3.1. We create a co-volume χσ associated with σ around each
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Fig. 3.1. The co-volumes χσ associated to edges σ = σWE (left) and σ = σEW (right).

finite volume face by joining four vertices of this face and midpoints of the finite
volumes which are common to this face, see Fig. 3.2. Using this technique we obtain
the scheme in the form, see [3, 4],

unW − u
n−1
W

k
− 1

m(W )

∑
σ∈EW∩Eint

φnσ(unh,k)m(σ) = 0(3.3)

with 2D φnσ(unh,k) = D̄σ
11

unE − unW
h

+ D̄σ
12

unN − unS
h

,(3.4)

with 3D φnσ(unh,k) = D̄σ
11

unE − unW
h

+ D̄σ
12

unTN + unBN − unTS − unBS
2h

(3.5)

+ D̄σ
13

unTN + unTS − unBN − unBS
2h

.

where D̄σ
11 and D̄σ

12 in 2D φnσ(unh,k) are elements of the matrix Dσ = Dn−1
σ written

in the basis (nW,σ, tW,σ), see [1], where tW,σ is a unit vector parallel to σ such that
(xN − xS) · tW,σ > 0. The values at xE and xW are taken as uE and uW , and the
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Fig. 3.2. The co-volumes associated with the face σ = σWE (left) and σ = σEW (right).

values uS and uN at the vertices xN and xS are computed as the arithmetic mean
of uW , where W are finite volumes which are common to this vertex. Further, D̄σ

11,
D̄σ

12 and D̄σ
13 in 3D φnσ(unh,k) are elements of the matrix Dσ = Dn−1

σ written in the
basis (nW,σ, t1W,σ, t2W,σ), where t1K,σ is a unit vector parallel to xTN − xTS such
that (xTN − xTS) · t1K,σ > 0 and t2K,σ is a unit vector parallel to xTN − xBN such
that (xTN − xBN ) · t2K,σ > 0. Due to the computation of the values uTN , uTS , uBN
and uBS in (3.5) as the arithmetic mean of neighbouring voxel values, we get the 27
point finite volume scheme.

4. Convergence analysis for 2D discrete scheme. We proved the conver-
gence of the numerical solution of the scheme (3.3)-(3.4) to the weak solution of the
problem (2.1)-(2.3) in [3]. Our convergence analysis follows the convergence proof
from [8], see [3]. However, our scheme is 9-point scheme compared with the 5-point
scheme from [8]. Due to this fact, we must take into account also values of corner’s
neighbouring volumes. They appear in the scheme in the form of a derivative in the
tangential direction, since uN and uS are computed as arithmetical mean of their 4
adjacent volumes. In order to overcome the difficulties arising in the occurrence of
uN and uS we bound the derivative in tangential direction by using the derivative in
normal direction with the help of the following lemma.

Lemma 4.1. (Bounding of the derivative in tangential direction) The derivative
in tangential direction is bounded by the derivative in normal direction (see Fig. 3.1)
as follows ∑

σ∈Eint

(
D̄σ

12

D̄σ
11

)2(
unN − unS

h

)2

D̄σ
11 ≤ γ

∑
σ∈Eint

(
unE − unW

h

)2

D̄σ
11 ,(4.1)

where 0 ≤ γ < 1, γ = max
σ∈E

γσ, γσ =
∑

δ∈Pσ∩Eint

1

4

(
D̄δ

12

D̄δ
11

)2
D̄δ

11

D̄δ
11

,

where edges δ and set Pσ are given in the following definition.
Definition 4.2. Let Pσ be the set of all edges δ perpendicular to σ, which have

common vertex with σ and fulfill the following conditions:
(xEδ − xWδ

) · tW,σ > 0 if (xNσ − xSσ ) · tW,σ > 0 and
(xEδ − xWδ

) · tW,σ < 0 if (xNσ − xSσ ) · tW,σ < 0,
which means that xEδ − xWδ

has the same orientation as the tangent tW,σ. Let us
note that xWσ

= x1
Wδ

= x3
Eδ

, for σ = σWE, xEσ = x2
Wδ

= x4
Eδ

, for σ = σWE,
xWσ = x2

Eδ
= x4

Wδ
, for σ = σEW and xEσ = x1

Eδ
= x3

Wδ
, for σ = σEW .
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Our convergence proof is based on Kolmogorov’s compactness theorem. We
proved the following lemmata: Uniform boundedness, Time translate estimate, Space
translate estimate and stronger Space translate estimate in [3]. Using these lemmata
we know that the sequence of discrete solution uh,k is relatively compact in L2, which
implies that there exists a subsequence of uh,k which is bounded. The main theorem
of the convergence analysis is given below.

Theorem 4.3. (Convergence of the scheme) The sequence uh,k converges strongly
in L2(QT ) to the unique weak solution u of (2.1)-(2.3) as h, k → 0.

The crucial ideas used in our convergence proof are the convergence of the dis-
crete weak form to the continuous weak form, which follows from the Lipschitz con-
tinuity of diffusion tensor elements and the fact that the limit u of uh,k is in space
L2(0, T ;H1(Ω)), which follows from stronger Space translate estimate. The detailed
convergence proof can be found in [3].

5. Error estimate analysis. This section concerns with an estimate of the dif-
ference between the weak solution of the model (2.1)-(2.3) and the numerical solution
satisfying the scheme (3.3)-(3.4) in dependence on spatial and time discretization step,
see [2]. Subtracting the discrete form from the continuous form and rearranging it
we get a relation. It can be split in several terms and each of them can be bounded.
Using these estimations we can state the following theorem.

Theorem 5.1. (Error estimate) Let the weak solution fulfil the following re-
gularity properties: ∇u ∈ L∞(QT ), utt ∈ L2(QT ), u ∈ L2(I,W 2,2(Ω)), ∇ut ∈
L2(I, L∞(Ω)). Let enW = u(xW , tn)−unW and enh,k(x, t) =

∑
W∈Th

enWχ{x∈W}χ{tn−1<t≤tn}.

Then, there exist a constant C, such that for sufficiently small h

∫
Ω

|emh,k|2dx+

m∑
n=1

∫
Ω

|enh,k − en−1
h,k |

2dx+

m∑
n=1

tn∫
tn−1

∑
σ∈Eint

(enE − enW )
2
dt ≤ C(h2 + k)

for every m = 1, ..., Nmax.
One can observe that the error of the piecewise constant approximation given by

our scheme in L∞(I, L2) is of order h. The core of error estimate proof consists of a
bounding of the derivative in tangential direction by means of the derivative in normal
direction, a time translate estimate for approximate solution and the Lipschitz conti-
nuity of the diffusion tensor elements with respect to the smoothed partial derivatives
of the solution. The detailed error estimate proof is given in [2].

Let us note that the 3D convergence / error estimate analysis is still an outstand-
ing problem since we are not yet able to extend the inequality from Lemma 4.1 to its
3D version.

6. Computational experiments. The goal of this section is to demonstrate
benefits of our numerical technique. We performed our experiments on a 2D finger-
print image (type of flow-like structures image) and 3D image sequences coming from
the two-photon laser scanning microscopy. They represent early stages of zebrafish
embryogenesis.

First experiment represents the behaviour of the CED (coherence enhancing dif-
fusion). This technique yields a coherence improvement of image flow-like structures.
After several filtration steps round interrupted places become gradually elongated in
the coherence direction and they will be eventually corrected, see Fig. 6.1 and Fig. 6.2.
We used the following filtration parameters: a space step 0, 01, a time step 0, 0001,
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Fig. 6.1. A fingerprint image. Top: the original image(left), the filtered image after 5 time
steps(middle) and the filtered image after 20 time steps(right). Bottom: the Sobel edge detections
of these images.

t̃ = 0, 000025 and ρ = 0, 002. Fig. 6.1 shows a fingerprint image. The original image
is deteriorated by numerous redundant apertures while most of them are lost in the
filtered image. Fig. 6.2 depicts damaged cell membranes. Some boundaries are almost
lost in the original image, but we are able to clearly recognize them in the filtered
image.

6.1. Pre-processing technique. Further, we concern our method as a pre-
processing technique. We show its contribution to the subsequent image algorithms.
If we pre-process images for techniques which depend on the connectivity of coherent
image structures by the CED, we achieve significantly better results. We can adduce
an edge detection as an example. If we compare the edge detections of an original
and filtered image, see Fig. 6.1 and Fig. 6.2 (bottom), we can observe that the edge
detection of the original image depicts many superfluous image structures caused by
noise which are omitted in the edge detection of the filtered image. Moreover, several
boundaries which are lost in the first edge detection are reconstructed in the second
edge detection, see Fig. 6.2 (bottom).

The structure segmentation, see [5], is also the post-processing algorithm following
CED. We use the segmentation based on the subjective surface method, see [10] and
its finite volume implementation from [9]. The segmentation model has the following
form

∂tu =
√
ε2 + |∇u|2∇.

(
g(|∇Gσ ∗ I0|) ∇u√

ε2 + |∇u|2

)
in QT ≡ I × Ω,(6.1)

u(x, 0) = u0(x) in Ω,(6.2)

u = 0 on I × ∂Ω,(6.3)
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Fig. 6.2. Cell membranes. Top: the original image(left) and the filtered image after 5 time
steps(right). Bottom: the Sobel edge detections of these images.

where I0 is the image intensity and ε is the regularization parameter. The solution u
denotes the evolving segmentation function. The function g = g(|∇Gσ ∗ I0|) has the
role of the edge detector. We start the segmentation imposing the initial segmentation
function in an approximate center of segmented object. This function is evolved by
equation (6.1) to a final steady state which gives the boundaries of the segmented
object. The question is which isoline of the final steady state most precisely represents
the object shape. The chosen isoline is most naturally taken as the average of maximal
and minimal value of the final segmentation function.

The goal of this experiment is to segment an eye retina of a zebrafish embryo.
Let us note that the structure segmentation is much more complicated than image
segmentation since evolving segmentation function is restrained to achieve correct
segmentation steady state by fine image objects representing inner cell structures. In
order to overcome these constraints we pre-processed images for the segmentation by
the CED. Even though they look too blurred they are very suitable for the structure
segmentation, see Fig. 6.3. The segmentation result for the original image consists of
amount of various isolines and chosen medium isoline bounds only a part of segmented
object. On the contrary, the final segmentation function for the image filtered by the
CED is represented by a variety of almost identical isolines and each of them precisely
illustrates shape of segmented object.

In order to compare our method with other filtration techniques, we pre-processed
images for segmentation by the GMCF (geodesic mean curvature flow), MCF (mean
curvature flow) and PM (Perona-Malik) smoothing. Fig. 6.4 depicts their segmenta-
tion results which are much worse than the final steady state achieved by the coherence
enhancing technique. It is caused by the fact that this diffusion not only smooths noise
and image objects but emphasizes image structure boundaries as well.

Last experiment is devoted to results of the 3D CED as well as the 3D segmen-
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Fig. 6.3. The eye retina segmentation using the 2D slice of 3D original image (left) and the
2D slice of 3D image filtered by 20 time steps of the 3D nonlinear tensor diffusion (right). Top:
the averaged isoline of the final state of segmentation function is superimposed to the original and
filtered slice, respectively. Bottom: the graph of the final state of segmentation function is plotted
after 2000 segmentation time steps using the original slice and after 200 time steps using the filtered
slice.

tation algorithms, see Fig. 6.5. These techniques were performed on the 3D image
detail representing two cell nuclei. One can observe that the original image is much
more deteriorated by a noise than the image filtered by the CED and the noise of
the filtered image is less distinct. The contours of the filtered nuclei are smoother
than the nucleus contours from the original image since the diffusion tensor of the
CED steers the smoothing process in such a way that the diffusion is strong along
the coherence plane and very low in the perpendicular direction to this plane. Owing
to the above mentioned facts we achieved more precise segmentation results for the
nuclei filtered by CED, cf. Fig. 6.5(left) and (right).

The experiments mentioned before confirm the utility of this filtration as a pre-
processing technique for algorithms which depend on the connectivity of coherent
image structures.
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Fig. 6.4. The eye retina segmentation using the 2D slice of the 3D image filtered by 100 steps
of the 3D GMCF filtering (left), 25 steps of the 3D MCF filtering (middle) and 20 steps of the
3D PM filtering (right). Top: the averaged isoline of the final state of segmentation function is
superimposed to the filtered slice. Bottom: the graph of the final state of segmentation function is
plotted after 3000 segmentation steps using the GMCF filtering, after 500 segmentation steps using
the MCF filtering and after 5000 segmentation steps using the PM filtering.

Fig. 6.5. 3D nucleus segmentation using the 3D original image (left) and using the 3D image
filtered by 10 time steps (right).
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