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TWO METHODS FOR OPTICAL FLOW ESTIMATION∗

PETER FROLKOVIČ† AND VIERA KLEINOVÁ.

Abstract. In this paper we describe two methods for optical flow estimation between two
images. Both methods are based on the backward tracking of characteristics for advection equation
and the difference is on the choice of advection vector field. We present numerical experiments on
2D data of cell nucleus.
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1. Introduction. Optical flow is an important topic in various fields including
computer vision and image processing. It is a technique that is based on estimating
a deformation between images of video sequence.

The most popular methods for optical flow estimation are so-called differential
methods [1, 2, 3, 4, 5, 9]. These methods are based on spatial derivatives of images.
We are interested in two approaches.

The first approach is based on the method created by Lucas and Kanade [5] where
it is assumed that the optical flow is constant locally within some neighborhood of
each pixel in images. This approach is extended to a nonlocal form by e.g. Horn and
Schunck [3] where the optical flow is estimated globally over entire image.

The second approach is based on level-set formulation [6] and it is directly moti-
vated by models described by Sapiro et al. [1] and Vemuri et al. [9]. The methods
are appropriate especially to estimate a non-rigid deformation when the objects in
images change their shape.

The main goal of this paper is to apply both approaches with the backward
tracking of characteristic curves for related advection equation to estimate the optical
flow together with their numerical implementation. Moreover we show the results
obtained by Lucas-Kanade method and the method based on level-set motion and we
suggest their combination for some type of images.

2. Formulation of optical flow. Let us represent two images F (x) ∈ R and
G(x) ∈ R by functions of intensity on a domain Ω ⊂ R2 for x ∈ Ω and x = (x, y).

The main goal of optical flow estimation is to find a deformation ~U(x) between F (x)

and G(x) such that F (x− ~U(x)) = G(x).
The basic idea of our approach is to search for a function f = f(x, t) that fulfils

the advection equation

∂tf(x, t) + ~u(x, t) · ∇f(x, t) = 0, f(x, 0) = F (x) ,(2.1)

for t ∈ [0, T ] where T > 0 and ~u = ~u(x, t) = (u(x, t), v(x, t)) has to be specified such
that f(x, T ) = G(x).
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332 P. FROLKOVIČ AND V.KLEINOVÁ

Once the advection equation (2.1) is solved, the characteristic curves X(x, t̃; t)
generated by ~u can be used that are obtained as solutions of ordinary differential
equations

Ẋ(x, t̃; t) = ~u(X(x, t̃; t), t) , X(x, t̃; t̃) = x ,(2.2)

for t̃ ∈ [0, T ] and x ∈ Ω. The value X(x, t̃; t) is a position X of characteristic curve
at time t such that the position at time t̃ is x.

For the solution f(x, t) of advection equation (2.1) we see that the time derivative
of f(X(x, t̃; t), t) vanishes along X(x, t̃; t),

d

dt
f(X(x, t̃; t), t) = ∂tf(X(x, t̃; t), t) + Ẋ(x, t̃; t) · ∇f(X(x, t̃; t), t)

= ∂tf(X(x, t̃; t), t) + ~u(X(x, t̃; t), t) · ∇f(X(x, t̃; t), t) = 0 .

We can conclude that f(x, t) is constant along the characteristics.
In this paper we use the backward tracking of characteristics to compute the

solution f of (2.1) by

f(x, t̃) = F (X(x, t̃; 0))(2.3)

for t̃ > 0. Consequently, the deformation ~U(x) is defined for t̃ = T by

~U(x) = x−X(x, T ; 0) .(2.4)

Next we describe two methods how to obtain the vector field ~u.

2.1. Lucas-Kanade method. The method belongs to local methods and it
solves the advection equation (2.1) for unknowns ~u = (u, v) separately for each x ∈ Ω
and t = 0, 1, . . . . The solution is found starting with t = 0 by minimizing the function

H(u, v) = Wσ ∗ (∂xfu+ ∂yfv + ∂tf)2 ,(2.5)

where ∗ denotes the convolution. Here Wσ is a weight function and it is usually set
to a Gaussian of a standard deviation σ [5]. The minimum of H(u, v) is reached if
∂uH(u, v) = 0 and ∂vH(u, v) = 0

0 = Wσ ∗ [2(∂xfu+ ∂yfv + ∂tf)∂xf ] ,
0 = Wσ ∗ [2(∂xfu+ ∂yfv + ∂tf)∂yf ] .

The unknowns (u(x, t), v(x, t)) are obtained from the linear system in the form(
Wσ ∗ (∂xf)2 Wσ ∗ (∂xf∂yf)
Wσ ∗ (∂yf∂xf) Wσ ∗ (∂yf)2

)(
u
v

)
=

(
−Wσ ∗ (∂xf∂tf)
−Wσ ∗ (∂yf∂tf)

)
.(2.6)

Once the vector field ~u is found for each x ∈ Ω, one can compute f(x, t+ 1) using
(2.3) and the method can return to (2.5) to compute ~u(x, t+ 1) and so on.

2.2. Method based on level-set motion. The method is motivated by Sapiro
et al. [1] and Vemuri et al. [9]. In this case we consider ~u in the advection equation
(2.1) of the form

~u(x, t) =

{
−S(x, t) ∇f(x,t)|∇f(x,t)| |∇f(x, t)| 6= 0
~0 |∇f(x, t)| = 0 ,

(2.7)
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where S(x, t) is a speed in normal direction, so the equation (2.1) can be rewritten in
the form

∂tf(x, t) = S(x, t)|∇f(x, t)| , f(x, 0) = F (x) .(2.8)

The natural choice for the speed S(x, t) is

S(x, t) = α(x, t)(G(x)− f(x, t)) ,(2.9)

where α(x, t) > 0 is a free parameter function that will be defined conveniently in
numerical method later. Using (2.7) the advection equation (2.1), resp. (2.8), is
solved directly for the unknown function f and ~u is determined from (2.7).

3. Numerical implementation. We assume 2D gray scale images with centers
xij = (i, j) of pixels for i = 0, . . . , I − 1 and j = 0, . . . , J − 1. The distance between
two centers xi+1j − xij and xij+1 − xij is 1 and the time points are chosen to be
tn = n for n = 0, 1, . . .. The images F (x) and G(x) for x ∈ Ω are represented
by bilinear interpolation of the discrete values of their intensities Fij = F (xij) and

Gij = G(xij). The main goal of this paper is to approximate the deformation ~U(x)

such that Gij ≈ F (xij − ~Uij), where ~Uij ≈ ~U(xij).
Once the vector field ~u is approximated by discrete values ~unij ≈ ~u(xij , t

n), see
later, the characteristic curves are approximated by Xn,m

ij ≈ X(xij , t
n; tm) at any

time tn by numerical approximation of (2.2) for m = n− 1, . . . , 0, namely

Xn,m
ij = Xn,m+1

ij − ~um(Xn,m+1
ij ) , Xn,n

ij = xij ,(3.1)

where ~um(x) is the bilinear interpolation of discrete values ~umij .
Consequently, we can approximate fnij ≈ f(xij , t

n) as in equation (2.3) by

fnij = F (Xn,0
ij ) ≈ F (X(xij , t

n; 0)) ,(3.2)

for n > 0 and for n = 0 we set f0ij = Fij .

When n = N the deformation ~U(x) between F (x) and G(x) is given by

~Uij = xij −XN,0
ij .(3.3)

The stopping time tn for some n = N is determined by estimating the distance
between fnij and Gij .

3.1. Numerical implementation of Lucas-Kanade method. The numeri-
cal approximation of the linear system (2.6) is obtained by solving(

Wσ ∗ (∂xf
n
ij)

2 Wσ ∗ (∂xf
n
ij∂yf

n
ij)

Wσ ∗ (∂yf
n
ij∂xf

n
ij) Wσ ∗ (∂yf

n
ij)

2

)(
unij
vnij

)
=

(3.4)

=

(
−Wσ ∗ (∂xf

n
ij∂tf

n
ij)

−Wσ ∗ (∂yf
n
ij∂xf

n
ij)

)
.

where unij ≈ u(xij , t
n) and vnij ≈ v(xij , t

n) and ∂tf
n
ij = (Gij − fnij). The spatial

derivatives ∂xf
n
ij and ∂yf

n
ij are approximated by central differences

∂xf
n
ij =

fni+1j − fni−1j
2

(3.5)

∂yf
n
ij =

fnij+1 − fnij−1
2

.
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The discrete convolution with Gaussian function Wσ is defined as follows

Wσ ∗ f(x, y, t) =
1∑
i,j wij

∑
i,j

wijf(x+ i, y + j, t) ,(3.6)

where −3σ < i < 3σ and −3σ < j < 3σ and

wij =
1

2πσ2
exp−

i2+j2

2σ2 ,(3.7)

where σ is a standard deviation that must be chosen by users. To do so we choose
a convolution matrix with the elements wij to have a size E × E where E is an odd
integer and σ = E/6. The dimension E determines the neighborhood of each pixel for
which the assumption about constant optical flow is considered. A proper choice of
E, respectively σ, is a nontrivial requirement of the original Lucas-Kanade method.
Later for some numerical experiments we discuss a proper guess of σ and an influence
of different choices on results.

Once the approximations ~unij are available, we can compute fn+1
ij by using (3.2)

and proceed to next time step.

3.2. Numerical implementation of the method based on level-set mo-
tion. Formally, we can approximate (2.8) by a numerical scheme

f̃n+1
ij = fnij + Snij |∇fnij |(3.8)

where Snij = αnij(Gij − fnij) ≈ S(xij , t
n). To do so we approximate firstly the gradient

∇fnij in (3.8) using the Rouy-Tourin scheme [8]

∂xf
n
ij =


fnij − fni−1j fni−1j = ext{fni−1j , fnij , fni+1j}
fni+1j − fnij fni+1j = ext{fni−1j , fnij , fni+1j}
0 fnij = ext{fni−1j , fnij , fni+1j}

(3.9)

∂yf
n
ij =


fnij − fnij−1 fnij−1 = ext{fnij−1, fnij , fnij+1}
fnij+1 − fnij fnij+1 = ext{fnij−1, fnij , fnij+1}
0 fnij = ext{fnij−1, fnij , fnij+1}

(3.10)

where ext denotes a minimum or maximum with the choice

ext =

{
min Snij < 0
max Snij > 0 .

(3.11)

Secondly we have to define the values αnij ≈ α(xij , t
n) > 0 to compute Snij in

(3.8). We propose to choose maximal values of αnij to speed up the computation such
that the so called CFL condition [7] and some stopping criteria are fulfilled, namely

αnij = min

(
1

|∇fnij |+ ε
,

|∇fnij |
|Gij − fnij |(|∂xfnij |+ |∂yfnij |+ ε)

)
,(3.12)

where ε > 0 is a small number to avoid a division by zero. The parameter ε is set
to 10−8 for all presented numerical experiments, and different choices, e.g. = 10−4 ≤
ε ≤= 10−8, have no visible influence on the results.
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Once the approximations in the right hand side of (3.8) are available then the
values ~unij are computed by approximation of (2.7)

~unij =

{
−Snij

∇fnij
|∇fn

ij
| |∇f

n
ij | 6= 0

~0 |∇fnij | = 0 ,
(3.13)

and the scheme (3.2) can be used to compute fn+1
ij .

4. Experimental results. We present the results obtained from images of cell
nucleus of zebrafish, see Fig. 4.1, Fig. 4.5 and Fig. 4.8. The images were preprocessed
using a segmentation of the cell nucleus. The data are originally three dimensional, but
we consider only two dimensional images. Some images contain a large deformation
so they are quite challenging for the optical flow estimation.

Once an estimation of ~U(x) is obtained, we determine the approximation of image

F (x− ~U(x)) to check the approximation quality of numerical methods by comparing

it with the original image G(x). Namely the difference image |G(x) − F (x − ~U(x))|
is shown that should be white if there is no error in the approximation. The optical
flow is presented graphically as −~U(x), because we want to show from where does the

position x in the image G(x) comes from the image F (x − ~U(x)). For a clarity, we
present every fifth vector component of the optical flow in figures.

4.1. Cell movement. The first experiment includes the movement of cell nu-
cleus. The input images are shown in Fig. 4.1 and the cell simply moves from the left
to the right. The image size is 250× 250.

Fig. 4.1. The input images of cell movement. From the left to the right: the first image F (x),
the second image G(x), the difference image |G(x)− F (x)|.

Firstly, Lucas-Kanade method is used with the discrete convolution matrix of
dimension 201×201 using the standard deviation σ = 33.5. In Fig. 4.2 (right) we can
see a well resolved constant optical flow for this choice of σ. This size of convolution
matrix was guessed from the size of a deformation caused by the optical flow visible
in the difference image |G(x)− F (x)|.

We present computations also with a too small value of σ. In Fig. 4.3 the results
of Lucas-Kanade method with standard deviation σ = 16.83 are shown when the
discrete convolution matrix of the dimension 101 × 101 is used. From the visual
inspection of optical flow in Fig. 4.3 (right) and difference image in Fig. 4.3 (middle)
we can see that such convolution is not appropriate and the results are far away from
expected ones.

Next we estimate the optical flow based on the level set motion. The results are
presented in Fig. 4.4. The difference image in Fig. 4.4 (middle) shows that the result
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is satisfactory. In Fig. 4.4 (right) we can see the obtained optical flow in normal
direction that is not suitable for a visualization of movement by a constant vector
field.

Fig. 4.2. The results obtained by Lucas-Kanade method with σ = 33.5. From the left to the
right: the image F (x− ~U(x)), the difference image |G(x)− F (x− ~U(x))|, the optical flow −~U(x).

Fig. 4.3. The results obtained by Lucas-Kanade method with σ = 16.83. From the left to the
right: the image F (x− ~U(x)), the difference image |G(x)− F (x− ~U(x))|, the optical flow −~U(x).

Fig. 4.4. The results obtained by the method based on level set motion. From the left to the
right: the image F (x− ~U(x)), the difference image |G(x)− F (x− ~U(x))|, the optical flow −~U(x).

4.2. Cell deformation. In the second experiment the images in Fig. 4.5 repre-
sent a change of cell shape. The image size is 300× 300.

The results are shown in Fig. 4.6 for Lucas-Kanade method and in Fig. 4.7 for
method based on level set motion.

For Lucas-Kanade method the matrix of dimension 201 × 201 with σ = 33.5 is
used as in the previous example. The optical flow in Fig. 4.6 (right) is smooth, but
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Fig. 4.5. The input images of the deformation of cell. From the left to the right: the first image
F (x), the second image G(x), the difference image |G(x)− F (x)|.

from the visual inspection of difference image in Fig. 4.6 (middle) we can see that
this method can not change the shape of cell properly.

The difference image in Fig. 4.7 (middle) and the image after applying the optical
flow in Fig. 4.7 (left) show us that the results are satisfactory.

Fig. 4.6. The results obtained by Lucas-Kanade method with σ = 33.5. From the left to the
right: the image F (x− ~U(x)), the difference image |G(x)− F (x− ~U(x))|, the optical flow −~U(x).

Fig. 4.7. The results obtained by the method based on level-set motion. From the left to the
right: the image F (x− ~U(x)), the difference image |G(x)− F (x− ~U(x))|, the optical flow −~U(x).



338 P. FROLKOVIČ AND V.KLEINOVÁ

4.3. Movement and deformation of cells. The last experiment include the
motion and deformation of four cells. The input images are shown in Fig. 4.8. The
size of images is 640× 600.

In this case we present the results obtained by combining the Lucas-Kanade
method and the method based on level-set motion.

Fig. 4.8. The input images of movement and deformation of the cells. Form left to right: the
first image F (x), the second image G(x), the difference image |G(x)− F (x)|.

Firstly, we estimate the optical flow using the Lucas-Kanade method. The stan-
dard deviation is chosen σ = 8.5 as the deformation by the optical flow has a smaller
size than in the previous examples. The resulting optical flow is shown in Fig. 4.9
(right). For a better visualisation the zooms of the optical flow in Fig. 4.9 (right) are
presented for each cell in Fig. 4.10.

From the visual inspection of difference image |G(x) − F (x − ~U(x))| in Fig. 4.9
(middle) we can see that the results are not satisfactory as the method can move the
cells but it does not change their shapes properly. This can be seen from the difference
image and also from the obtained image in Fig. 4.9 (left).

Fig. 4.9. The results obtained by Lucas-Kanade method with σ = 8.5. From the left to the
right: the image F (x− ~U(x)), the difference image |G(x)− F (x− ~U(x))|, the optical flow −~U(x).

Fig. 4.10. Zooms of the optical flow obtained by Lucas-Kanade method.
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The next step is to apply the method based on level-set motion on the obtained
image from Lucas-Kanade method and to compute the total optical flow.

The results after applying two methods is shown in Fig. 4.11. Again we present
the zooms of optical flow for each cells in Fig. 4.12. From the visual inspection of
the difference image and image after applying optical flow in Fig. 4.11 we can see,
that the results of Lucas-Kanade method were improved by the correction of method
based on level set motion.

Fig. 4.11. The results obtained by method based on level-set motion after Lucas-Kanade method.
From the left to the right: the image F (x − ~U(x)), the difference image |G(x) − F (x − ~U(x))|, the

optical flow −~U(x).

Fig. 4.12. Zooms of the total optical flow.

5. Conclusions. In this work we present two methods to estimate the optical
flow using the backward tracking of characteristics based on two standard approaches.
To study which approach is more suitable for which type of optical flow estimation
we present numerical experiments and discuss the results. The Lucas-Kanade method
[5] assumes that the optical flow does not vary too much in a neighborhood of each
pixel when the size of such neighborhood must be set by the dimension of convolution
matrix. The method gives best results when the vector field of optical flow is almost
constant. The method based on the level set motion [1, 9] does not require such
assumption as it estimates only the deformation by optical flow in the normal direction
to isolines of image. It is appropriate when no translation is given by the optical flow
and only a shape deformation can be observed between two images. In this work
we present preliminary results when these two methods are combined to obtain more
appropriate optical flow estimation.
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