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SEMI-ANALYTICAL APPROACH TO INITIAL PROBLEMS FOR
SYSTEMS OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

WITH CONSTANT DELAY.

HELENA ŠAMAJOVÁ ∗

Abstract. This paper deals with the differential transform method for solving of an initial value
problem for a system of two nonlinear functional partial differential equations of parabolic type.
We consider non-delayed as well as delayed types of coupling and the different variety of initial
functions are thought over. The convergence of solutions and the error estimation to the presented
procedure is studied. Two numerical examples for non-delayed and delayed systems are included.
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1. Introduction. We consider a system of two nonlinear functional partial dif-
ferential equations of parabolic type with constant delays

∂y1(x, t)

∂t
=
∂2y1(x, t)

∂x2
+K1(y2(x, t− τ1)− y1(x, t)) + η1y

3
1(x, t)

(1.1)
∂y2(x, t)

∂t
=
∂2y2(x, t)

∂x2
+K2(y1(x, t− τ2)− y2(x, t)) + η2y

3
2(x, t)

with the given initial function ψ̃i(x, t), constant delays τi , constants ηi , and
Ki where i = 1, 2 .

We may rewrite the system (1.1) into the vector form

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
+ κ1u(x, t) + κ2û(x, t) + ηũ(x, t)(1.2)

where we consider square matrix

κ1 =

(
−K1 0

0 −K2

)
; κ2 =

(
0 K1

K2 0

)
; η =

(
η1 0
0 η2

)
(1.3)

and the vector form of functions

u(x, t) =

(
u1(x, t)
u2(x, t)

)
; û(x, t) =

(
u1(x, t− τ1)
u2(x, t− τ2)

)
; ũ(x, t) =

(
u31(x, t)
u32(x, t)

)
.

(1.4)
We consider the system where the time of response may be 0 or different from

0. A real time of response causes that solutions do not affect each other in the same
time.
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verzitná 1, Slovakia (helena.samajova@fstroj.uniza.sk).

163



164 H. ŠAMAJOVÁ

Some types of nonlinear parabolic equation with a constant delay are exactly
solved in [5] by functional constraints method. This method brings exact solutions
that are supposed to be in the generalized separable form

u(x, t) =

N∑
n=1

ϕn(x)ψn(t)

where N ∈ N. Functions ϕn(x) and ψn(x) are established by additional functional
constrains given by difference or functional equation. The results in the cited paper
are extended to a class of nonlinear partial differential-difference equations with linear
differential operators which are defined as separated differential operators with respect
to the independent variables x, t and to some partial functional differential equations
with time delay. The presented way of solution in [5] requires an assumption that
initial functions to an initial problem of a delayed equation are obliged to satisfy the
considered equation.

An approach established in this paper enables us to use different types of initial
functions that need not indispensable to fulfill the system (1.1).

2. Main Properties of 2D Differential Transform Method (DTM). In
the next it is proposed a procedure which allows us to combine DTM and method of
steps to obtain semi-analytical solutions for given system of two equations (1.1). This
method is used for example in [2, 6, 7] and the references given therein.

The two dimensional Differential transformation method ( DTM ) for a function
g(x, t) is defined by

G(m,n) =
1

m!n!

[
∂m+ng(x, t)

∂xm∂tn

]
x=x0,t=t0

.

An inverse transform of G(m,n) leads to

g(x, t) =

∞∑
m=0

∞∑
n=0

G(m,n)(x− x0)m(t− t0)n

and if x = 0, t = 0 then

g(x, t) =

∞∑
m=0

∞∑
n=0

G(m,n)xmtn.

The main properties of the DTM are given in the overview:
Let functions G,Gi(n), i = 1, 2, 3 are differential transforms of the functions

g, gi(n), i = 1, 2, 3, constants r, s ∈ N, and α, β ∈ R

1. g(x, t) = αg1(x, t) + βg2(x, t) G(m,n) = αG1(m,n) + βG2(m,n)

2. g(x, t) = xrts G(m,n) = δ(m− r, n− s) = δ(m− r)δ(n− s)

3. g(x, t) = eαx+βt G(m,n) = αmβn

m!n!

4. g(x, t) = sin(αx)ts G(m,n) =
αm

m!
sin(

mπ

2
)δ(n− s)
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5. g(x, t) = cos(αx)ts G(m,n) =
αm

m!
cos(

mπ

2
)δ(n− s)

6. g(x, t) = g1(x, t)g2(x, t)g3(x, t)

G(m,n) =
∑m
i=0

∑m−i
j=0

∑n
k=0

∑n−k
l=0 G1(i, n− k − l)G2(j, k)G3(m− i− j, l)

7. g(x, t) =
∂g1(x, t)

∂x

∂g2(x, t)

∂t

G(m,n) =
∑m
i=0

∑n
j=0(m− i+ 1)(n− j + 1)G1(m− i+ 1, j)G2(i, n− j + 1).

For delayed functions in the next we suppose N →∞

8. g(x, t) = g1(x, t+ τ) G(m,n) =
∑N
h=n

(
h
n

)
τh−nG1(m,h)

where δ(n) is the Kronecker delta symbol and N ∈ N.
The main steps of the DTM, as a tool for solving different classes of nonlinear prob-
lems, are the following. First, we apply the differential transform to the presented
problem, and then the functions G(m,n) are given by the recurrence relations. In
the second, the iterative solution of this relations and using the inverse differential
transform, lead to the solution of the problem as polynomials of two independent
variables.
Applying this rules for system (1.1) one obtains following recurrence relations for
τ = 0

Y1(m,n+ 1) =
1

n+ 1
[(m+ 2)Y1(m+ 2, n) +K1 [Y2(m,n)− Y1(m,n)]

+η1

m∑
r1=0

m−r1∑
r2=0

n∑
s1=0

n−s1∑
s2=0

Y1(r1, n− s1 − s2)Y1(r2, s1)Y1(m− r1 − r2, s2)

]
(2.1)

Y2(m,n+ 1) =
1

n+ 1
[(m+ 2)Y2(m+ 2, n) +K2 [Y1(m,n)− Y2(m,n)]

+η2

m∑
r1=0

m−r1∑
r2=0

n∑
s1=0

n−s1∑
s2=0

Y2(r1, n− s1 − s2)Y2(r2, s1)Y2(m− r1 − r2, s2)

]
.

2.1. Initial problem for systems of delayed functions. If we suppose de-
layed system with τi > 0, i = 1, 2 the system is considered with the known initial
functions ψi, i = 1, 2

ψi(x, t) =


0, t < −τ ;

ψ̃i(x, t), t ∈ 〈−τ, 0〉;
0, t > 0.

(2.2)

We consider different types of functions on the intervals (−τi, 0), as an initial
functions for unknown solutions yi(x, t), i = 1, 2 to the system (1.1).

A different types of initial functions produce appertaining initial conditions for
the system (1.1) and some of them are presented in the table below.

• Calculations are valid on minimum length of the intervals (0, τi), i = 1, 2
• ψ̃1(x, t), ψ̃2(x, t) are considered as constant, polynomial, exponential, sin, cos

functions
• Recurrent relations are used for evaluations of coefficients Y1(m,n), Y2(m,n)
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Table 2.1
Types of initial functions.

Initial functions Ψi(x, t) Initial condition Ψi(x, 0)
Ψi(x, t) = xrts Ψi(x, 0) = 0
Ψi(x, t) = xrεst r 6= 0 Ψi(x, 0) = xr

Ψi(x, t) = tsεrx s 6= 0 Ψi(x, 0) = 0
Ψi(x, t) = xr cos st Ψi(x, 0) = xr

Ψi(x, t) = xr sin st Ψi(x, 0) = 0

• An individual evaluation for the initial functions and initial conditions is
required

• Functions y1(x, t − τ2), y2(x, t − τ1) are replaced by the initial functions
ψ̃1(x, t), ψ̃2(x, t) on the intervals (−τ2, 0), (−τ1, 0) respectively

• The multi-step differential transform method (MsDTM) given in [1, 3] may
be used to extend the domain for the obtained solutions.

In the Table 2.1 we give some examples of types of the initial functions and the
initial conditions connected to the initial functions.

The DT method applied to the system (1.1) with τi > 0 gives

Y1(m,n+ 1) =
1

n+ 1

[
(m+ 2)Y1(m+ 2, n) +K1

(
N∑
h=n

(
h

n

)
τh−n1 Ψ2(m,h)− Y1(m,n)

)

+η1

m∑
r1=0

m−r1∑
r2=0

n∑
s1=0

n−s1∑
s2=0

Y1(r1, n− s1 − s2)Y1(r2, s1)Y1(m− r1 − r2, s2)

]
(2.3)

Y2(m,n+ 1) =
1

n+ 1

[
(m+ 2)Y2(m+ 2, n) +K2

(
N∑
h=n

(
h

n

)
τh−n2 Ψ1(m,h)− Y2(m,n)

)

+η2

m∑
r1=0

m−r1∑
r2=0

n∑
s1=0

n−s1∑
s2=0

Y2(r1, n− s1 − s2)Y2(r2, s1)Y2(m− r1 − r2, s2)

]
.

3. Convergence of the 2D Differential Transform Method. In this sec-
tion, the convergence of the 2-dimensional DTM when applied to a system of partial
differential equations is studied. Moreover there is given the sufficient condition for a
convergence of the vector function.

This condition of the convergence leads to an estimation of the maximum absolute
error of the approximate solutions.

Let consider functions f1(x, t) : R× R→ R, f2(x, t) : R× R→ R

f1(x, t) =

∞∑
m=0

∞∑
n=0

F1(m,n)(x− x0)m(t− t0)n;

f2(x, t) =

∞∑
m=0

∞∑
n=0

F2(m,n)(x− x0)m(t− t0)n;

and

~f(x, t) =

(
f1(x, t)
f2(x, t)

)
.
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For the vector function we define the vector norm L∞

‖~f‖∞ = max
i
|fi|, i ∈ {1, 2}.

The theorem stated below is a special case of the Banach fixed point theorem [4].
In the next this theorem is adapted for 2D DTM.

Theorem 3.1.
Let there exist two series for functions

f1(x, t) =

∞∑
m=0

∞∑
n=0

F1(m,n)(x− x0)m(t− t0)n

f2(x, t) =

∞∑
m=0

∞∑
n=0

F2(m,n)(x− x0)m(t− t0)n.

Then the vector series ~f(x, t) converges if there exists 0 < α < 1 such that

‖~fk+1(x, t)‖ ≤ α‖~fk(x, t)‖

for any k ≥ k0, for some k0 ∈ N .
The estimation of the error of the vector series is a part of the proof of Theorem 3.1.

Proof. We denote (C(A), ‖.‖) the Banach space of all continuous vector functions
on a domain A with the norm ‖f(x, t)‖ = max(x,t)∈A ‖f(x, t)‖ where A = [x0−ε, x0+
ε]× [t0 − τ, t0 + τ ].

Denote individual terms ϕ1
(m,n)(x, t) , ϕ2

(m,n)(x, t) , Φ(m,n)(x, t) as

ϕi(m,n)(x, t) = Fi(m,n)(x− x0)m(t− t0)n i = 1, 2 ,

Φ(m,n)(x, t) =

(
F1(m,n)(x− x0)m(t− t0)n

F2(m,n)(x− x0)m(t− t0)n

)
=

(
ϕ1
(m,n)(x, t)

ϕ2
(m,n)(x, t)

)
.

We define the sequence of vector partial sums {Sn}∞n=0 as follows

Sn = Φ(0,0)(x, t)+Φ(1,0)(x, t)+Φ(0,1)(x, t)+Φ(2,0)(x, t)+Φ(1,1)(x, t)+Φ(0,2)(x, t)+. . .+

Φ(n,0)(x, t) + Φ(n−1,1)(x, t) + . . .+ Φ(1,n−1)(x, t) + Φ(0,n)(x, t) =

n∑
j=0

j∑
i=0

Φ(i,j−i)(x, t).

In the next we will show that {Sn}∞n=0 is a Cauchy sequence in the Banach space.
For this purpose

‖Sn+1 − Sn‖ =

∥∥∥∥∥
n+1∑
i=0

Φ(i,n+1−i)(x, t)

∥∥∥∥∥ ≤ α
∥∥∥∥∥
n∑
i=0

Φ(i,n−i)(x, t)

∥∥∥∥∥ ≤ . . . ≤
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≤ αn−k0+1

∥∥∥∥∥
k0∑
i=0

Φi,k0−i(x, t)

∥∥∥∥∥ =

= αn−k0+1 max
(x,t)∈A

{
k0∑
i=0

∣∣∣ϕ1
(i,k0−i)(x, t)

∣∣∣ , k0∑
i=0

∣∣∣ϕ2
(i,k0−i)(x, t)

∣∣∣} .
For any i, j ∈ N, i > j > k0 we have

‖Si − Sj‖ =

∥∥∥∥∥∥
i−1∑
l=j

(Sl+1 − Sl)

∥∥∥∥∥∥ ≤
i−1∑
l=j

‖(Sl+1 − Sl)‖

≤
i−1∑
l=j

αl−k0+1 max
(x,t)∈A

k0∑
s=0

‖Φs,k0−s(x, t)‖

=
1− αi−j

1− α
αj−k0+1 max

(x,t)∈A

k0∑
s=0

‖Φs,k0−s(x, t)‖

and whereas 0 < α < 1, we obtain

lim
i,j→∞

‖(Si − Sj‖ = 0.

Therefore, {Sn}∞n=0 is a Cauchy sequence in the Banach space (C(A), ‖.‖) and
the vector series ( ∑∞

m=0

∑∞
n=0 ϕ

1
(m,n)(x, t)∑∞

m=0

∑∞
n=0 ϕ

2
(m,n)(x, t)

)

converges. The proof is complete.

Under the condition that there exists α ∈ (0, 1) such that

k+1∑
s=0

∥∥Φ(s,k+1−s)(x, t)
∥∥ ≤ α k∑

s=0

∥∥Φ(s,k−s)(x, t)
∥∥

for any k ≥ k0 where k0 ∈ N, power series solution converges to the exact solution.
We define constants αk for any k ≥ k0

αk+1 =


∑k+1
s=0

∥∥Φ(s,k+1−s)(x, t)
∥∥∑k

s=0

∥∥Φ(s,k−s)(x, t)
∥∥ for

∑k
s=0

∥∥Φ(s,k−s)(x, t)
∥∥ 6= 0;

0 for
∑k
s=0

∥∥Φ(s,k−s)(x, t)
∥∥ = 0.

If ∀k > k0 : 0 ≤ αk < 1, then an approximate solution in the form of finite series
converges to the exact solution ~u(x, t).
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Theorem 3.2. Let the approximate solution be in the form

~f(x, t) =

( ∑∞
m=0

∑∞
n=0 F1(m,n)(x− x0)m(t− t0)n∑∞

m=0

∑∞
n=0 F2(m,n)(x− x0)m(t− t0)n

)
and converges to the solution

~u(x, t) =

(
u1(x, y)
u2(x, y)

)
.

If the finite series ( ∑µ
m=0

∑ν
n=0 F1(m,n)(x− x0)m(t− t0)n∑µ

m=0

∑ν
n=0 F2(m,n)(x− x0)m(t− t0)n

)
is considered as an approximation to the solution, then the estimation of the absolute
error is given as ∥∥∥∥∥~u(x, t)−

( ∑µ
m=0

∑ν
n=0 ϕ

1
(m,n)(x, t)∑µ

m=0

∑ν
n=0 ϕ

2
(m,n)(x, t)

)∥∥∥∥∥ ≤
≤ 1

1− α
αj−k0+1 max

(x,t)∈A

k0∑
s=0

‖Φ(s,k0−s)(x, t)‖(3.1)

where j = min{µ, ν}, µ, ν ∈ N.
Proof. From the Theorem 3.1 we obtained

‖Si − Sj‖ ≤
1− αi−j

1− α
αj−k0+1 max

(x,t)∈A

k0∑
s=0

∥∥Φ(s,k0−s)(x, t)
∥∥

Since the term (1−αi−j) < 1 under the condition that there exists an α ∈ (0, 1) and
k0 ≤ j ≤ i, the inequality above can be simplify to

‖Si − Sj‖ ≤
1

1− α
αj−k0+1 max

(x,t)∈A

k0∑
s=0

∥∥Φ(s,k0−s)(x, t)
∥∥ .

If we consider that i→∞ then Si → ~u(x, t) - two dimensional power series vector
solution converges to the vector solution and the estimation of an absolute error is
determined by (3.1).

In accordance with Theorem 3.2 the estimation of the absolute error is given by
the inequality below

∥∥∥∥~u(x, t)−
( ∑µ

m=0

∑ν
n=0 F1(m,n)(x− x0)m(t− t0)n∑µ

m=0

∑ν
n=0 F2(m,n)(x− x0)m(t− t0)n

)∥∥∥∥ ≤
1

1− β
βj−k0+1 max

(x,t)∈A

k0∑
s=0

∥∥Φ(s,k0−s)(x, t)
∥∥ ,

where β = max{αk, k = k0 + 1, k0 + 2, . . . , j + 1}.

As an example of non-delayed and delayed coupling there are given pairs of figures
of solutions y1(x, t) and y2(x, t). For different types of initial functions the Figures
(3.1) and (3.3) represent non-delayed coupling, the Figures (3.2) and (3.4) delayed
coupling. For calculation the system Mathematica was used.
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For parameters K1 = 0.5, K2 = 1.1, η1 = 0.5, η2 = 0.3, N = 6 and initial
functions ψ̃1 = 0 and ψ̃2 = cosx the solutions to the system (1.1) for a non-delayed
case are on Fig. 3.1

Fig. 3.1. Solutions from left: y1(x, t), y2(x, t), τ = 0.

where

y1(x, t) =0.5t− 0.9t2 + 0.6967t3 − 0.25tx2 + 0.2833t2x2 + 0.0208tx4

y2(x, t) =1− 2.1t+ 2.1467t2 − 1.5438t3 − 0.5x2 + 0.7167tx2 − 0.64t2x2 + 0.0417x4

−0.0542tx4 − 0.0014x6.

For a delayed case with τi = 0.8 the solutions are in Fig. 3.2

Fig. 3.2. Solutions from left: y1(x, t), y2(x, t), τ1 = τ2 = 0.8.

where

y1(x, t) =2.5t+ 3.75t2 + 4.7917t3 + 2.5tx+ 5t2x+ 2.5tx2 + 6.25t2x2

+2.5tx3 + 2.5tx4

y2(x, t) =1− 2.1t+ 1.8717t2 − 1.0213t3 − 0.5x2 + 0.7167tx2 − 0.5025t2x2

+0.0417x4 − 0.0542tx4 − 0.0014x6.
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For parameters K = 0.2, η1 = 1.5, η2 = 0.3 and initial functions ψ̃1 = cosx and
ψ̃2 = sinx, a non-delayed case is on Fig. 3.3

Fig. 3.3. Solutions from left: y1(x, t), y2(x, t), τ = 0.

where

y1(x, t) =1− 0.7t− 0.9183t2 + 0.5294t3 + 0.2tx+ 0.01t2x− 0.5x2

−0.4833tx2 + 1.0425t2x2 − 0.0333tx3 + 0.0417x4 + 0.4208tx4

−0.0014x6

y2(x, t) =0.2t− 0.19t2 − 0.063t3 + x− 0.7tx+ 0.2025t2x− 0.1tx2

−0.0217t2x2 − 0.0083x3 + 0.075tx3 + 0.0083tx4 + 0.0083x5.

Solutions for a delayed case with τi = 0.8 are on Fig.3.4

Fig. 3.4. Solutions from left: y1(x, t), y2(x, t), τ1 = τ2 = 0.8.

where

y1(x, t) =1 + 0.3t+ 1.2117t2 + 3.2051t3 + tx+ 2.65t2x− 0.5x2

+0.5167tx2 + 3.4525t2x2 + tx3 + 0.0417x4 + 1.4208tx4

−0.0014x6

y2(x, t) =x− 0.7tx+ 0.1825t2x− 0.1667x3 + 0.075tx3 + 0.0083x5.
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