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TWO APPROACHES FOR THE APPROXIMATION OF THE
NONLINEAR SMOOTHING TERM IN THE IMAGE

SEGMENTATION ∗

MATÚŠ TIBENSKÝ † AND ANGELA HANDLOVIČOVÁ ‡

Abstract. Purpose of the paper is to study nonlinear smoothing term initiated in [3], [4], [6]
and [7] for problems of image segmentation and missing boundaries completion. The generalization
of approach presented in [1] is proposed and applied in the field of image segmentation. So called
regularised Riemannian mean curvature flow equation is studied and the construction of the numerical
scheme based on the finite volume method approach is explained. The principle of the level set, for
the first time given in [2], is used. We mention two different approaches for the approximation of
the nonlinear smoothing term in the equation and known theoretical results for both of them. We
provide the numerical tests for both schemes. It the last section we discuss obtained results and
propose possibilities for the future research.
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1. Introduction. The main goal of the image segmentation is to divide given
image to the parts called regions, to identify the pixels segmented object contains of
or to add the boundary to the object, where it is missing. The errors we have to face
with are mainly missing boundaries and noise. The range of application areas is wide
and contains medicine, traffic control systems, recognition tasks and overall object
detection and computer vision.

There are lot of techniques used in segmentation based on the various principles
as statistical analysis, graph theory or machine learning. We are considering the
approach based on the partial differential equations and especially so called level set
methods based on the level set function introduced in [2].

2. Studied equation and assumptions on the data. We consider following
problem arising in image segmentation as a generalisation of the approach given in
[1], find an approximate solution to the equation

ut − f1(|∇u|)∇ ·
(
g(|∇GS ∗ I0|)

∇u
f(|∇u|)

)
= r, a.e. (x, t) ∈ Ω× (0, T ). (2.1)

Here the u(x, t) is an unknown (segmentation) function defined in QT ≡ [0, T ] × Ω,
where Ω is bounded rectangular domain, [0, T ] is a time interval and I0 is a given
image, typically on this image is an object we want to segment.

We consider zero Dirichlet boundary condition

u = 0, a.e. (x, t) ∈ ∂Ω× [0, T ] (2.2)

and initial condition

u(x, 0) = u0(x), a.e. x ∈ Ω. (2.3)
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The assumptions on the data in (2.1)-(2.3) are similar as in [1] and [3]. We can
summarize them into the following hypothesis:

Hypothesis H

• (H1) Ω is a finite connected open subset of Rd, d ∈ N, with boundary ∂Ω,
• (H2) u0 ∈ L∞(Ω),
• (H3) r ∈ L2(Ω× (0, T )) for all T > 0,
• (H4) f ∈ C0(R+; [a, b]) is a Lipschitz continuous (non-strictly) increasing

function, such that the function x 7→ x/f(x) is strictly increasing on R+. For
practical application we are using f(s) = min(

√
s2 + a2, b), where a and b are

given positive parameters,
• (H5) f1 ∈ C0(R+; [a1, b1]), in general a1 6= a, b1 6= b, but for now in our model

we consider the case a1 = a and b1 = b,
• (H6) g ∈ C0(R+; [0, 1]) is decreasing function, g(0) = 1, g(s) → 0 for s →
∞. For practical numerical computation we use g(s) = 1

1+Ks2 , where K is
constant of sensitivity of function g and we choose it,

• (H7) GS ∈ C∞(Rd) is a smoothing kernel (Gauss function), with width of the
convolution mask S and such that

∫
Rd GS(x)dx = 1,

∫
Rd |GS |dx ≤ CS , CS ∈

R, GS(x)→ δx for S → 0, where δx is Dirac measure at point x and

(∇GS ∗ I0)(x) =

∫
Rd

∇GS(x− ξ)Ĩ0(ξ)dξ, (2.4)

where Ĩ0 is extension of image I0 to Rd given by periodic reflection through
boundary of Ω and for which

1 ≥ gS(x) = g(|∇GS ∗ I0|)(x) ≥ νS > 0 (2.5)

for ∀x ∈ Ω due to properties of the convolution. The νS is a constant de-
pending only on width of the convolution mask S.

Definition of the numerical scheme and the space discretisation of the equation we are
generalising in this paper could be found in [1]. We apply method presented in [1] in
the field of image segmentation, but in addition we have function g and convolution of
the initial image with smoothing kernel in our approach (see [3] or [4]). For now just
remark that discretisation of Ω, denoted by D, is defined as the triplet D = (M, E ,P),
where M is a finite family of non-empty connected open disjoint subsets of Ω (the
“control volumes”) with measure marked by |p|, E is a finite family of disjoint subsets
of Ω (the “edges” of the mesh) with measure marked by |σ| and P is a family of points
of Ω indexed by M, denoted by P = (xp)p∈M, such that for all p ∈M, xp ∈ p and p
is assumed to be xp-star-shaped so for all x ∈ p the inclusion [xp, x] ⊂ p holds.

We say that (D, τ) is a space-time discretisation of Ω × (0, T ) if D is a space
discretisation of Ω in the sense we mentioned above and if there exists NT ∈ N with
T = (NT + 1)τ , where τ is a symbol for the time step.

Another important assumption on the discretisation we make is that

dpσnp,σ = xσ − xp, ∀p ∈M, ∀σ ∈ Ep, (2.6)

where Ep denotes the set of the edges of the control volume p, xσ ∈ σ, dpσ is a symbol
for the Euclidean distance between xp and hyperplane including σ (it is assumed that
dpσ > 0) and np,σ denotes the unit vector normal to σ outward to p.
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We define the set HD ⊂ R|M| × R|E| such that uσ = 0 for all σ ∈ Eext (the set of
boundary interfaces). We define the following functions on HD:

Np(u)2 =
1

|p|
∑
σ∈Ep

|σ|
dpσ

(uσ − up)2, ∀p ∈M, ∀u ∈ HD, (2.7)

where up is defined as up = u(xp) and uσ is defined as uσ = u(xσ).
Let us recall that

‖u‖21,D =
∑
p∈M

|p|Np(u)2 (2.8)

defines a norm on HD (see [1] and references there).
Under the above mentioned assumptions and notations the semi-implicit scheme

is defined by

u0p = u0(xp), ∀p ∈M, (2.9)

u0σ = u0(xσ), ∀σ ∈ E , (2.10)

rn+1
p =

∫ (n+1)τ

nτ

∫
p

r(x, t)dxdt, ∀p ∈M, ∀n ∈ N, (2.11)

un+1
σ = 0, ∀σ ∈ Eext, ∀n ∈ N, (2.12)

and

|p|
τ f1(Np(un))

(un+1
p − unp )− 1

f(Np(un))

∑
σ∈Ep

gSD
|σ|
dpσ

(un+1
σ − un+1

p ) =

=
rn+1
p

τ f1(Np(un))
,∀p ∈M, ∀n ∈ N,

(2.13)

where the following relation is given for the interior edges

un+1
σ − un+1

p

f(Np(un)) dpσ
+

un+1
σ − un+1

q

f(Nq(un)) dqσ
= 0, (2.14)

∀n ∈ N, ∀σ ∈ Eint (the set of interior interfaces) where σ is the edge between p and q.
For the explanation of the selection of u0p and u0σ, which impacts the assumptions

given on function u0 in (H2) see [8].
There are two options how to choose gSD (approximation of gS) in (2.13) considered

in this paper. First one, we will label it (APR1), is for ∀σ ∈ E defined by

gSσ := gS(xσ) = g(|
∫
Rd

∇GS(xσ − ξ)Ĩ0(ξ)dξ|). (2.15)

It means that the convolution of the initial image with Gaussian kernel is done in the
points xσ on the border of the control volume, which is exactly the point where it,
from (2.13), should be done.

The second one, labeled as (APR2), is ∀p ∈M defined by

gSp := gS(xp) = g(|
∫
Rd

∇GS(xp − ξ)Ĩ0(ξ)dξ|). (2.16)

This means that the convolution is done in the points xp inside the control volume,
so we are making an error. The problem we are interested in is the impact of this
approximation error on the final model and it segmentation ability.
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3. Theoretical results. Theoretical properties for the scheme (2.13) - (2.14)
with the approximation (APR2) as the stability estimates on the numerical solution,
the uniqueness of the numerical solution, the convergence of the numerical scheme to
the weak solution and the convergence of the approximation of the numerical gradient
were proven in [5].

For the approximation (APR1) the case is more complex and the stability of
the scheme is conditional, the time step and the space step have to be the same order
to guarantee the stability estimates on the numerical solution and all of the other
theoretical features mentioned above.

If we summarize, from the perspective of the theory the approximation (APR2) is
better as we are able to prove unconditional stability for the scheme (2.13) - (2.14). On
the other hand with this choice of approximation we are making bigger approximation
error than for (APR1). How big impact does this error have on the computations
we test in the next section.

4. Numerical experiments. For testing of the difference between (APR1)
and (APR2) we chose following benchmark example (see Figure 4.1) - noised square
with missing boundaries as an example of the object with both typical errors occuring
in the image segmentation - noise and missing boundaries. On the other hand with
square as an simple object we know the desired shape of the level function, so we
can test accuracy and speed of the approximations even without knowing the exact
solution of the problem.

Fig. 4.1. Object we want to segment.

The approach we are presenting in this paper is based on the idea of the level set
function. At the beginning of the segmentation process we construct initial level set
function (Figure 4.2), which is developing in the time by the mean curvature and the
constructed vector field tends the level set function to the border of the segmented
object. Instead of creating developing curve to segment the object, we create the
level set function and we monitor the development of the segmented area implicitly
by looking on its isolines. This type of approach is robust against topological changes.
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Fig. 4.2. Initial level set function.

4.1. Visual test. As the first comparison of the different choices of approxima-
tion of nonlinear smoothing term in (1) we chose the visual test.

We can take a look on the difference that made two different approximation on
the initial image (see Figure 4.3). The difference is defined as model with (APR2)
minus model with (APR1). One can see that (APR2) is better in presmoothing of
the noise in the image, but, on the other hand, the borders of the object are little bit
more blurry.

Fig. 4.3. Difference for the initial image.

This is the graphical impact of the choice of the approximation. Now take a look
on the difference between level set functions in the various time steps. On the Figure
4.4 we can see that the difference in the time very slightly increase, but even after
1000 time steps, when the object is segmented the difference is still less than 0.001
in absolute numbers. So from graphical perspective it seems that the (APR1) is
slightly better, but the difference is small. To make these initial observations more
precise we do the numerical tests as well.



234 M. TIBENSKÝ AND A. HANDLOVIČOVÁ

(a) Difference at the beginning. (b) Difference after 10 time steps.

(c) Difference after 100 time steps. (d) Difference after 1000 time steps.

Fig. 4.4. Difference between level set functions.

4.2. Numerical comparison. The second comparison of approximation of non-
linear smoothing term in (1) we are presenting in this paper are the absolute and
relative L1, L2 and L∞ norms of the difference between the segmentation level set
functions:

Table 4.1
Absolute and relative norms for sensitivity constant K = 1.

Absolute difference after 1 step 10 steps 100 steps 1000 steps
L1 norm 0.00612 0.13982 0.22316 0.29966
L2 norm 0.00001 0.00004 0.00013 0.00009
L∞ norm 0.00086 0.00244 0.00309 0.00098

Relative difference after 1 step 10 steps 100 steps 1000 steps
L1 norm 0.00039 0.00091 0.00151 0.00098
L2 norm 7.53e-08 2.78e-07 8.79e-07 7.20e-07
L∞ norm 5.53e-06 1.59e-05 2.09e-05 7.44e-06

From these numbers we are able to conclude the same result as from the visual
test - the difference between model with (APR1) and model with (APR2) is too
small to make any relevant impact on the final result of segmentation (biggest relative
error is less than 0.2 %).
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There is one more parameter that can make an impact - constant K, the constant
of sensitivity of the function g mentioned in (H6). In the first example above we set
K = 1, so lets increase this value and check if it has a significant impact.

In the next table we list L1, L2 and L∞ norms of the absolute and relative
difference between the segmentation level set functions for sensitivity constant K =
10:

Table 4.2
Absolute and relative norms for sensitivity constant K = 10.

Absolute difference after 1 step 10 steps 100 steps 1000 steps
L1 norm 0.03299 0.10126 0.18812 0.16514
L2 norm 0.00001 0.00001 0.00008 0.00002
L∞ norm 0.00082 0.00304 0.00158 0.00021

Relative difference after 1 step 10 steps 100 steps 1000 steps
L1 norm 0.00021 0.00067 0.00133 0.00161
L2 norm 5.22e-08 3.88e-07 5.88e-07 2.01e-07
L∞ norm 5.29e-06 2.01e-05 1.11e-05 2.06e-06

Comparing these numbers with the ones from Table 4.1 one can see that the
choice of the constant K do not play a big role in overall process of the segmentation
when looking on the difference between segmantation level set functions.

5. Conclusion. In this paper we pay attention on the options of approximation
of the nonlinear smoothing term in the image segmentation. We compared both
approaches from theoretical and numerical perspective.

In the Section 3 we mention that model with (APR2) has better theoretical
features, especially the stability of the scheme and convergence is unconditional com-
pared to conditional stability and convergence of the semi-implicit shceme for model
with (APR1), here the time step and the space step have to be the same order.

Section 4 was dedicated to numerical comparison of both models. Overall result is
that from numerical perspective is better the model with (APR1), but the difference
and impact of choice of the approximation is minimal and not significant.

Overall is seems more reasonable to use (APR2) as it is easier for implimentation,
there is a proof of all needed theoretical aspects of the model and the difference in
numerical computation is negligible.

For the future research we plan to study and evaluate the importance of the
nonlinear smoothing term in the image segmentation overall.
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[1] Eymard R., Handlovičová A., Mikula K.: Study of a finite volume scheme for regularised mean
curvature flow level set equation, IMA Journal on Numerical Analysis, Vol. 31, 813-846, 2011.

[2] Osher S., Sethian J. A.: Fronts propagating with curvature-dependent speed: Algorithms based
on Hamilton-Jacobi formulations, J. Comput. Phys., 79(1):12-49, 1988.

[3] Mikula K., Sarti A., Sgallarri A.: Co-volume method for Riemannian mean curvature flow in
subjective surfaces multiscale segmentation, Computing and Visualization in Science, Vol. 9,
No. 1, 23-31, 2006.

[4] Mikula K., Sarti A., Sgallari F.: Co-volume level set method in subjective surface based medical
image segmentation, in: Handbook of Medical Image Analysis: Segmentation and Registra-
tion Models (J.Suri et al., Eds.), Springer, New York, 583-626, 2005.
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