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Preface
The  Equadiff  is  a  series  of  biannual  conferences  on  mathematical  analysis, 
numerical  approximation  and  applications  of  differential  equations.  It  is  held  in 
rotation in the Czech Republic, Slovakia and Western Europe. The last Equadiff 
(Equadiff 14 in the Czecho-Slovak series) was organized in Bratislava, Slovakia, 
July  24-28,  2017  by  the  Slovak  University  of  Technology,  in  cooperation  with 
Comenius  University,  Union  of  Slovak  Mathematicians  and  Physicists,  Slovak 
Mathematical Society and Algoritmy:SK, ltd.

During the last decades the Equadiff has clearly developed into the world platform 
for international exchange of ideas on all mathematical and numerical aspects of 
differential equations, ranging from fundamental concepts to applications.

The scientific program of Equadiff 2017 Conference  was proposed and prepared 
by the members  International  Scientific  Programme Committee:  Michal  Beneš 
(Czech Technical University, Prague, Czech Republic), Charlie Elliott (University of 
Warwick,  UK),  Eduard  Feireisl  (Czech  Academy  of  Sciences,  Prague,  Czech 
Republic),  Marek  Fila  (Comenius  University,  Bratislava,  Slovakia),  Raphaele 
Herbin  (University  of  Aix-Marseille,  France),  Grzegorz  Karch  (University  of 
Wroclaw,  Poland),  Karol  Mikula  (Slovak  University  of  Technology,  Bratislava, 
Slovakia),  Masayasu  Mimura  (Meiji  University,  Tokyo,  Japan),  Mario  Ohlberger 
(University  of  Münster,  Germany),  Peter  Poláčik  (University  of  Minnesota, 
Minneapolis, USA), Otmar Scherzer (University of Vienna, Austria), Pavol Quittner 
(Comenius  University,  Bratislava,  Slovakia),  Eiji  Yanagida  (Tokyo  Institute  of 
Technology, Japan). Organizing Committee of the conference consisted of Peter 
Frolkovič,  Angela  Handlovičová,  Martin  Kalina,  Karol  Mikula,  Daniel  Ševčovič, 
Róbert Špir and Peter Struk.  The conference was chaired by Karol Mikula and co-
chaired by Marek Fila. 

Proceedings of Equadiff 2017 Conference contain peer-reviewed contributions of 
participants  of  the  conference.  The  proceedings  cover  a  wide  range  of  topics 
presented by plenary, minisymposia and contributed talks speakers. The scope of 
papers  ranges  from  ordinary  differential  equations,  differential  inclusions  and 
dynamical systems towards qualitative and numerical analysis of partial differential 
equations, stochastic PDEs and their applications.



In  several  papers,  the  authors  studied  qualitative  and  numerical  properties  of 
solutions  to  cross-diffusion  systems  with  entropy  structure,  boundedness  and 
stabilization  of  solutions  in  a  three-dimensional  and  two-species  chemotaxis-
Navier-Stokes system, boundedness of solutions in a fully parabolic chemotaxis 
system with signal-dependent sensitivity and logistic term. Several authors studied 
well-posedness  of  solutions  for  a  mass conserved  Allen-Cahn equation  with  a 
nonlinear  diffusion  term,  the  porous  medium  equations  and  nonlinear  cross-
diffusion  systems  and  efficient  linear  numerical  scheme for  solving  the  Stefan 
problem.

The authors also investigated qualitative behavior of solutions of the undamped 
Klein-Gordon equation and entropy of the attractor of the strongly damped wave 
equation.  The conference proceedings contain papers on dynamical models of 
viscoplasticity  and Lyapunov stability in hypoplasticity  models.  The proceedings 
further include papers dealing with qualitative properties of solutions for systems of 
fractional  boundary  value  problems  and  analysis  of  inequalities  with  gradient 
nonlinearities  and fractional  Laplacian operators.  The proceedings also  contain 
papers  dealing  with  qualitative  properties  like  uniqueness  and  regularity  of 
solutions for systems of coupled elliptic and parabolic equations. 

Several papers are devoted to the numerical analysis of finite element and discrete 
Galerkin  methods  for  elliptic  problems  with  nonlinear  boundary  conditions. 
Applications of theoretical results cover viral infection modelling with diffusion and 
state-dependent  delay,  an analysis  of  a  model  of  suspension flowing down an 
inclined  plane  as  well  as  applications  of  tree-grid  and  finite  stencil  numerical 
methods in computational finance, optimal control and optimal design. Interesting 
applications  of  partial  differential  equations  in  image  segmentation  and 
computational differential geometry can be also found in the proceedings. 

We  thank  all  the  authors  for  their  interesting  contributions  to  the  conference 
proceedings.  We  also  thank  our  reviewers  for  their  valuable  comments  and 
suggestions which improved quality of presentation of results. 

Bratislava, November 30, 2017

                                                   Karol Mikula, Daniel Ševčovič, and Jozef Urbán

                                               Editors of Proceedings of Equadiff 2017 Conference
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POSITIVE SOLUTIONS FOR A SYSTEM OF FRACTIONAL
BOUNDARY VALUE PROBLEMS

JOHNNY HENDERSON∗ AND RODICA LUCA†

Abstract. We investigate the existence and multiplicity of positive solutions for a system of
nonlinear Riemann-Liouville fractional differential equations with nonnegative nonlinearities which
can be nonsingular or singular functions, subject to multi-point boundary conditions that contain
fractional derivatives.

Key words. Riemann-Liouville fractional differential equations, multi-point boundary condi-
tions, positive solutions, existence

AMS subject classifications. 34A08, 34B15, 45G15

1. Introduction. We consider the system of nonlinear ordinary fractional dif-
ferential equations

(S)

{
Dα

0+u(t) + f(t, v(t)) = 0, t ∈ (0, 1),

Dβ
0+v(t) + g(t, u(t)) = 0, t ∈ (0, 1),

with the multi-point boundary conditions

(BC)





u(j)(0) = 0, j = 0, . . . , n− 2; Dp1
0+u(t)|t=1 =

N∑

i=1

aiD
q1
0+u(t)|t=ξi ,

v(j)(0) = 0, j = 0, . . . ,m− 2; Dp2
0+v(t)|t=1 =

M∑

i=1

biD
q2
0+v(t)|t=ηi ,

where α, β ∈ R, α ∈ (n−1, n], β ∈ (m−1,m], n, m ∈ N, n, m ≥ 3, p1, p2, q1, q2 ∈ R,
p1 ∈ [1, n− 2], p2 ∈ [1,m− 2], q1 ∈ [0, p1], q2 ∈ [0, p2], ξi, ai ∈ R for all i = 1, . . . , N
(N ∈ N), 0 < ξ1 < · · · < ξN ≤ 1, ηi, bi ∈ R for all i = 1, . . . ,M (M ∈ N),
0 < η1 < · · · < ηM ≤ 1, and Dk

0+ denotes the Riemann-Liouville derivative of order k
(for k = α, β, p1, p2, q1, q2).

Under sufficient conditions on functions f and g, which can be nonsingular or
singular in the points t = 0 and/or t = 1, we study the existence and multiplicity
of positive solutions of problem (S) − (BC). We use some theorems from the fixed
point index theory (from [1] and [27]) and the Guo-Krasnosel’skii fixed point theorem
(see [9]). By a positive solution of problem (S) − (BC) we mean a pair of functions
(u, v) ∈ C([0, 1]; R+) × C([0, 1]; R+) (R+ = [0,∞)) satisfying (S) and (BC) with
u(t) > 0 and v(t) > 0 for all t ∈ (0, 1]. The system (S) with the boundary conditions

(B̃C)

{
u(j)(0) = 0, j = 0, . . . , n− 2; u(1) =

∫ 1

0
u(s) dH(s),

v(j)(0) = 0, j = 0, . . . ,m− 2; v(1) =
∫ 1

0
v(s) dK(s),

∗Department of Mathematics, Baylor University, Waco, Texas, 76798-7328 USA
(Johnny Henderson@baylor.edu).
†Department of Mathematics, Gh. Asachi Technical University, Iasi 700506, Romania

(rluca@math.tuiasi.ro).
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2 J. HENDERSON AND R. LUCA

where the integrals from (B̃C) are Riemann-Stieltjes integrals, has been investigated
in [10]. The existence, multiplicity and nonexistence of positive solutions for the
system (S) and the corresponding one with some positive parameters, namely the
system

(S′)

{
Dα

0+u(t) + λf(t, u(t), v(t)) = 0, t ∈ (0, 1),

Dβ
0+v(t) + µg(t, u(t), v(t)) = 0, t ∈ (0, 1),

subject to coupled boundary conditions

(BC ′)

{
u(j)(0) = 0, j = 0, . . . , n− 2; u(1) =

∫ 1

0
v(s) dH(s),

v(j)(0) = 0, j = 0, . . . ,m− 2; v(1) =
∫ 1

0
u(s) dK(s),

were studied in [11], [12], [13], [14], [16], [19], where the nonlinearities f and g are non-
negative or sign-changing functions. Fractional differential equations describe many
phenomena in several fields of engineering and scientific disciplines such as physics,
biophysics, chemistry, biology (for example, the primary infection with HIV), eco-
nomics, control theory, signal and image processing, thermoelasticity, aerodynamics,
viscoelasticity, electromagnetics and rheology (see [2], [3], [4], [5], [6], [7], [8], [17], [18],
[20], [21], [22], [23], [24], [25], [26]). Fractional differential equations are also regarded
as a better tool for the description of hereditary properties of various materials and
processes than the corresponding integer order differential equations.

The paper is organized as follows. In Section 2, we present some auxiliary re-
sults which investigate a nonlocal boundary value problem for fractional differential
equations, and give the properties of the Green functions associated to our problem.
Section 3 contains the existence and multiplicity results for the positive solutions of
problem (S) − (BC) in the nonsingular case, and Section 4 presents the existence
results in the singular case. Finally, in Section 5 we give two examples which support
our main results.

2. Auxiliary results. We present here the definitions of Riemann-Liouville frac-
tional integral and Riemann-Liouville fractional derivative, and some auxiliary results
from [15] that will be used to prove our main results.

Definition 2.1 The (left-sided) fractional integral of order α > 0 of a function
f : (0,∞)→ R is given by

(Iα0+f)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s) ds, t > 0,

provided the right-hand side is pointwise defined on (0,∞), where Γ(α) is the Euler

gamma function defined by Γ(α) =

∫ ∞

0

tα−1e−t dt, α > 0.

Definition 2.2 The Riemann-Liouville fractional derivative of order α ≥ 0 for a
function f : (0,∞)→ R is given by

(Dα
0+f)(t) =

(
d

dt

)n (
In−α0+ f

)
(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

0

f(s)

(t− s)α−n+1
ds, t > 0,

where n = bαc+ 1, provided that the right-hand side is pointwise defined on (0,∞).
The notation bαc stands for the largest integer not greater than α. If α = m ∈ N

then Dm
0+f(t) = f (m)(t) for t > 0, and if α = 0 then D0

0+f(t) = f(t) for t > 0.
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We consider now the fractional differential equation

Dα
0+u(t) + x(t) = 0, 0 < t < 1,(2.1)

with the multi-point boundary conditions

u(j)(0) = 0, j = 0, . . . , n− 2; Dp1
0+u(t)

∣∣
t=1

=
N∑

i=1

aiD
q1
0+u(t)

∣∣
t=ξi

,(2.2)

where α ∈ (n− 1, n], n ∈ N, n ≥ 3, ai, ξi ∈ R, i = 1, . . . , N (N ∈ N), 0 < ξ1 < · · · <
ξN ≤ 1, p1, q1 ∈ R, p1 ∈ [1, n− 2], q1 ∈ [0, p1], and x ∈ C(0, 1) ∩ L1(0, 1). We denote

by ∆1 = Γ(α)
Γ(α−p1) −

Γ(α)
Γ(α−q1)

∑N
i=1 aiξ

α−q1−1
i .

Lemma 2.1. ([15]) If ∆1 6= 0, then the function u ∈ C[0, 1] given by

u(t) =

∫ 1

0

G1(t, s)x(s) ds, t ∈ [0, 1],(2.3)

is solution of problem (2.1)-(2.2), where

G1(t, s) = g1(t, s) +
tα−1

∆1

N∑

i=1

aig2(ξi, s), ∀ (t, s) ∈ [0, 1]× [0, 1],(2.4)

and

g1(t, s) =
1

Γ(α)

{
tα−1(1− s)α−p1−1 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1,
tα−1(1− s)α−p1−1, 0 ≤ t ≤ s ≤ 1,

g2(t, s) =
1

Γ(α− q1)





tα−q1−1(1− s)α−p1−1 − (t− s)α−q1−1,
0 ≤ s ≤ t ≤ 1,

tα−q1−1(1− s)α−p1−1, 0 ≤ t ≤ s ≤ 1.

(2.5)

Lemma 2.2. ([15]) The functions g1 and g2 given by (2.5) have the properties:
a) g1(t, s) ≤ h1(s) for all t, s ∈ [0, 1], where

h1(s) = 1
Γ(α) (1− s)α−p1−1(1− (1− s)p1), s ∈ [0, 1];

b) g1(t, s) ≥ tα−1h1(s) for all t, s ∈ [0, 1];

c) g1(t, s) ≤ tα−1

Γ(α) , for all t, s ∈ [0, 1];

d) g2(t, s) ≥ tα−q1−1h2(s) for all t, s ∈ [0, 1], where
h2(s) = 1

Γ(α−q1) (1− s)α−p1−1(1− (1− s)p1−q1), s ∈ [0, 1];

e) g2(t, s) ≤ 1
Γ(α−q1) t

α−q1−1 for all t, s ∈ [0, 1];

f) The functions g1 and g2 are continuous on [0, 1]×[0, 1]; g1(t, s) ≥ 0, g2(t, s) ≥ 0
for all t, s ∈ [0, 1]; g1(t, s) > 0, g2(t, s) > 0 for all t, s ∈ (0, 1).

Lemma 2.3. ([15]) Assume that ai ≥ 0 for all i = 1, . . . , N and ∆1 > 0. Then
the function G1 given by (2.4) is a nonnegative continuous function on [0, 1] × [0, 1]
and satisfies the inequalities:

a) G1(t, s) ≤ J1(s) for all t, s ∈ [0, 1], where J1(s) = h1(s) + 1
∆1

∑N
i=1 aig2(ξi, s),

s ∈ [0, 1];
b) G1(t, s) ≥ tα−1J1(s) for all t, s ∈ [0, 1];
c) G1(t, s) ≤ σ1t

α−1, for all t, s ∈ [0, 1], where σ1 = 1
Γ(α) + 1

∆1Γ(α−q1)

×∑N
i=1 aiξ

α−q1−1
i .
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Lemma 2.4. ([15]) Assume that ai ≥ 0 for all i = 1, . . . , N , ∆1 > 0, x ∈
C(0, 1) ∩ L1(0, 1) and x(t) ≥ 0 for all t ∈ (0, 1). Then the solution u of problem
(2.1)-(2.2) given by (2.3) satisfies the inequality u(t) ≥ tα−1u(t′) for all t, t′ ∈ [0, 1].

We can also formulate similar results as Lemmas 2.1-2.4 for the fractional bound-
ary value problem

Dβ
0+v(t) + y(t) = 0, 0 < t < 1,(2.6)

v(j)(0) = 0, j = 0, . . . ,m− 2; Dp2
0+v(t)

∣∣
t=1

=
M∑

i=1

biD
q2
0+v(t)

∣∣
t=ηi

,(2.7)

where β ∈ (m − 1,m], m ∈ N, m ≥ 3, bi, ηi ∈ R, i = 1, . . . ,M (M ∈ N), 0 < η1 <
· · · < ηM ≤ 1, p2, q2 ∈ R, p2 ∈ [1,m− 2], q2 ∈ [0, p2], and y ∈ C(0, 1) ∩ L1(0, 1).

We denote by ∆2, g3, g4, G2, h3, h4, J2 and σ2 the corresponding constants and
functions for problem (2.6)-(2.7) defined in a similar manner as ∆1, g1, g2, G1, h1, h2,
J1 and σ1, respectively. More precisely, we have

∆2 = Γ(β)
Γ(β−p2) −

Γ(β)
Γ(β−q2)

∑M
i=1 biη

β−q2−1
i ,

g3(t, s) =
1

Γ(β)

{
tβ−1(1− s)β−p2−1 − (t− s)β−1, 0 ≤ s ≤ t ≤ 1,
tβ−1(1− s)β−p2−1, 0 ≤ t ≤ s ≤ 1,

g4(t, s) =
1

Γ(β − q2)

{
tβ−q2−1(1− s)β−p2−1 − (t− s)β−q2−1, 0 ≤ s ≤ t ≤ 1,
tβ−q2−1(1− s)β−p2−1, 0 ≤ t ≤ s ≤ 1,

G2(t, s) = g3(t, s) + tβ−1

∆2

∑M
i=1 big4(ηi, s), ∀ (t, s) ∈ [0, 1]× [0, 1],

h3(s) = 1
Γ(β) (1− s)β−p2−1(1− (1− s)p2), s ∈ [0, 1],

h4(s) = 1
Γ(β−q2) (1− s)β−p2−1(1− (1− s)p2−q2), s ∈ [0, 1],

J2(s) = h3(s) + 1
∆2

M∑

i=1

big4(ηi, s), s ∈ [0, 1],

σ2 = 1
Γ(β) + 1

∆2Γ(β−q2)

∑M
i=1 biη

β−q2−1
i .

The inequalities from Lemmas 2.3 and 2.4 for the functions G2 and v are the
following G2(t, s) ≤ J2(s), G2(t, s) ≥ tβ−1J2(s), G2(t, s) ≤ σ2t

β−1, for all t, s ∈ [0, 1],
and v(t) ≥ tβ−1v(t′) for all t, t′ ∈ [0, 1].

The proofs of our results in the nonsingular case are based on the following fixed
point index theorems. Let E be a real Banach space, P ⊂ E a cone, “≤” the partial
ordering defined by P and θ the zero element in E. For % > 0, let B% = {u ∈ E, ‖u‖ <
%} be the open ball of radius % centered at 0, and its boundary ∂B% = {u ∈ E, ‖u‖ =
%}.

Theorem 2.5. ([1]) Let A : B̄% ∩ P → P be a completely continuous operator
which has no fixed point on ∂B% ∩ P . If ‖Au‖ ≤ ‖u‖ for all u ∈ ∂B% ∩ P , then
i(A,B% ∩ P, P ) = 1.

Theorem 2.6. ([1]) Let A : B̄% ∩ P → P be a completely continuous operator.
If there exists u0 ∈ P \ {θ} such that u− Au 6= λu0, for all λ ≥ 0 and u ∈ ∂B% ∩ P ,
then i(A,B% ∩ P, P ) = 0.

Theorem 2.7. ([27]) Let A : B̄% ∩ P → P be a completely continuous operator
which has no fixed point on ∂B% ∩ P . If there exists a linear operator L : P → P and
u0 ∈ P \ {θ} such that

i) u0 ≤ Lu0, ii) Lu ≤ Au, ∀u ∈ ∂B% ∩ P,
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then i(A,B% ∩ P, P ) = 0.
We also present the Guo-Krasnosel’skii fixed point theorem (see [9]) that we will

use in the proofs of our main results in the singular case.
Theorem 2.8. Let X be a Banach space and let C ⊂ X be a cone in X.

Assume Ω1 and Ω2 are bounded open subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2 and let
A : C ∩ (Ω2 \ Ω1)→ C be a completely continuous operator such that, either

i) ‖Au‖ ≤ ‖u‖, u ∈ C ∩ ∂Ω1, and ‖Au‖ ≥ ‖u‖, u ∈ C ∩ ∂Ω2, or
ii) ‖Au‖ ≥ ‖u‖, u ∈ C ∩ ∂Ω1, and ‖Au‖ ≤ ‖u‖, u ∈ C ∩ ∂Ω2.

Then A has a fixed point in C ∩ (Ω2 \ Ω1).

3. The nonsingular case. In this section, we investigate the existence and
multiplicity of positive solutions for problem (S) − (BC) under various assumptions
on nonsingular functions f and g.

We present the assumptions that we shall use in the sequel.
(H1) α, β ∈ R, α ∈ (n−1, n], β ∈ (m−1,m], n, m ∈ N, n, m ≥ 3, p1, p2, q1, q2 ∈

R, p1 ∈ [1, n − 2], p2 ∈ [1,m − 2], q1 ∈ [0, p1], q2 ∈ [0, p2], ξi ∈ R, ai ≥ 0
for all i = 1, . . . , N (N ∈ N), 0 < ξ1 < · · · < ξN ≤ 1, ηi ∈ R, bi ≥ 0

for all i = 1, . . . ,M (M ∈ N), 0 < η1 < · · · < ηM ≤ 1, ∆1 = Γ(α)
Γ(α−p1) −

Γ(α)
Γ(α−q1)

∑N
i=1 aiξ

α−q1−1
i > 0, ∆2 = Γ(β)

Γ(β−p2) −
Γ(β)

Γ(β−q2)

∑M
i=1 biη

β−q2−1
i > 0.

(H2) The functions f, g : [0, 1]×R+ → R+ are continuous and f(t, 0) = g(t, 0) = 0
for all t ∈ [0, 1].

If the pair of functions (u, v) ∈ C[0, 1] × C[0, 1] is a solution of the nonlinear
integral system





u(t) =

∫ 1

0

G1(t, s)f

(
s,

∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ

)
ds, t ∈ [0, 1],

v(t) =

∫ 1

0

G2(t, s)g(s, u(s)) ds, t ∈ [0, 1],

(3.1)

then it is a solution of problem (S)− (BC).
We consider the Banach space X = C[0, 1] with supremum norm ‖ · ‖ and define

the cone P ⊂ X by P = {u ∈ X, u(t) ≥ 0, ∀ t ∈ [0, 1]}.
We also define the operators A : P → X by

(Au)(t) =

∫ 1

0

G1(t, s)f

(
s,

∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ

)
ds, t ∈ [0, 1], u ∈ P,

and B : P → X, C : P → X by

(Bu)(t) =

∫ 1

0

G1(t, s)u(s) ds, (Cu)(t) =

∫ 1

0

G2(t, s)u(s) ds, t ∈ [0, 1], u ∈ P.

Under the assumptions (H1) and (H2) it is easy to see that A, B and C are
completely continuous from P to P . Thus we will investigate the existence and
multiplicity of fixed points u of operator A, which together with v given in (3.1)
will be solutions of problem (S)− (BC).

Using Theorems 2.5-2.6 and some similar arguments as those used in the proofs
of Theorems 3.1-3.3 from [10], we obtain for our problem (S) − (BC) the following
results.

Theorem 3.1. Assume that (H1) − (H2) hold. If the functions f and g also
satisfy the conditions
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(H3) There exist positive constants p ∈ (0, 1] and c ∈ (0, 1) such that

i) f i∞ = lim inf
u→∞

inf
t∈[c,1]

f(t, u)

up
∈ (0,∞]; ii) gi∞ = lim

u→∞
inf

t∈[c,1]

g(t, u)

u1/p
=∞,

(H4) There exists positive constants β1, β2 > 0 with β1β2 ≥ 1 such that

i) fs0 = lim sup
u→0+

sup
t∈[0,1]

f(t, u)

uβ1
∈ [0,∞); ii) gs0 = lim

u→0+
sup
t∈[0,1]

g(t, u)

uβ2
= 0,

then the problem (S)− (BC) has at least one positive solution (u(t), v(t)), t ∈ [0, 1].
Theorem 3.2. Assume that (H1) − (H2) hold. If the functions f and g also

satisfy the conditions
(H5) There exist positive constants α1, α2 > 0 with α1α2 ≤ 1 such that

i) fs∞ = lim sup
u→∞

sup
t∈[0,1]

f(t, u)

uα1
∈ [0,∞); ii) gs∞ = lim

u→∞
sup
t∈[0,1]

g(t, u)

uα2
= 0,

(H6) There exists c ∈ (0, 1) such that

i) f i0 = lim inf
u→0+

inf
t∈[c,1]

f(t, u)

u
∈ (0,∞]; ii) gi0 = lim

u→0+
inf

t∈[c,1]

g(t, u)

u
=∞,

then the problem (S)− (BC) has at least one positive solution (u(t), v(t)), t ∈ [0, 1].
Theorem 3.3. Assume that (H1)− (H3) and (H6) hold. If the functions f and

g also satisfy the condition
(H7) For each t ∈ [0, 1], f(t, u) and g(t, u) are nondecreasing with respect to u, and

there exists a constant N0 > 0 such that

f

(
t,m0

∫ 1

0

g(s,N0) ds

)
<
N0

m0
, ∀ t ∈ [0, 1],

where m0 = max{K1,K2}, K1 = max
s∈[0,1]

J1(s), K2 = max
s∈[0,1]

J2(s) and J1, J2

are defined in Section 2,
then the problem (S)− (BC) has at least two positive solutions (u1(t), v1(t)),
(u2(t), v2(t)), t ∈ [0, 1].

4. The singular case. In this section we study the existence of positive solutions
for our problem (S) − (BC) under various assumptions on functions f and g which
may be singular at t = 0 and/or t = 1.

The basic assumptions used here are the following.
(A1) ≡ (H1),
(A2) The functions f, g ∈ C((0, 1) ×R+,R+) and there exist p̃i ∈ C((0, 1),R+),

q̃i ∈ C(R+,R+), i = 1, 2, with 0 <
∫ 1

0
p̃i(t) dt < ∞, i = 1, 2, q̃1(0) = 0,

q̃2(0) = 0 such that

f(t, x) ≤ p̃1(t)q̃1(x), g(t, x) ≤ p̃2(t)q̃2(x), ∀ t ∈ (0, 1), x ∈ R+.

We consider the Banach space X = C([0, 1]) with supremum norm and define the
cone P ⊂ X by P = {u ∈ X, u(t) ≥ 0, ∀ t ∈ [0, 1]}. We also define the operator

Ã : P → X by

(Ãu)(t) =

∫ 1

0

G1(t, s)f

(
s,

∫ 1

0

G2(s, τ)g(τ, u(τ)) dτ

)
ds, t ∈ [0, 1], u ∈ P.



POSITIVE SOLUTIONS FOR A FRACTIONAL BOUNDARY VALUE PROBLEM 7

Using Theorem 2.8 and similar arguments as those used in the proofs of Lemma
4.1 and Theorems 4.1-4.2 from [10], we obtain for our problem (S)−(BC) the following
results.

Lemma 4.1. Assume that (A1) − (A2) hold. Then Ã : P → P is completely
continuous.

Theorem 4.2. Assume that (A1) − (A2) hold. If the functions f and g also
satisfy the conditions

(A3) There exist α1, α2 ∈ (0,∞) with α1α2 ≤ 1 such that

i) qs1∞ = lim sup
x→∞

q̃1(x)

xα1
∈ [0,∞); ii) qs2∞ = lim

x→∞
q̃2(x)

xα2
= 0,

(A4) There exist β1, β2 ∈ (0,∞) with β1β2 ≤ 1 and c ∈ (0, 1/2) such that

i) f̃ i0 = lim inf
x→0+

inf
t∈[c,1−c]

f(t, x)

xβ1
∈ (0,∞]; ii) g̃i0 = lim

x→0+
inf

t∈[c,1−c]
g(t, x)

xβ2
=∞,

then the problem (S)− (BC) has at least one positive solution (u(t), v(t)), t ∈ [0, 1].
Theorem 4.3. Assume that (A1) − (A2) hold. If the functions f and g also

satisfy the conditions
(A5) There exist r1, r2 ∈ (0,∞) with r1r2 ≥ 1 such that

i) qs10 = lim sup
x→0+

q̃1(x)

xr1
∈ [0,∞); ii) qs20 = lim

x→0+

q̃2(x)

xr2
= 0,

(A6) There exist l1, l2 ∈ (0,∞) with l1l2 ≥ 1 and c ∈ (0, 1/2) such that

i) f̃ i∞ = lim inf
x→∞

inf
t∈[c,1−c]

f(t, x)

xl1
∈ (0,∞]; ii) g̃i∞ = lim

x→∞
inf

t∈[c,1−c]
g(t, x)

xl2
=∞,

then the problem (S)− (BC) has at least one positive solution (u(t), v(t)), t ∈ [0, 1].
As against to the positive solutions obtained in the paper [10], in this paper, by

using Lemma 2.4, we deduce that the fixed points u of operators A and Ã together
with v given in (3.1) satisfy the conditions u(t) > 0 and v(t) > 0 for all t ∈ (0, 1],
that is the pairs (u, v) are positive solutions of problem (S) − (BC) in the sense of
definition from Section 1.

5. Examples. Let n = 3, m = 5, α = 5
2 , β = 17

4 , p1 = 1, q1 = 1
2 , p2 = 7

3 , q2 = 3
2 ,

N = 2, M = 1, ξ1 = 1
3 , ξ2 = 2

3 , a1 = 2, a2 = 1
2 , η1 = 1

2 , b1 = 4.
We consider the system of fractional differential equations

(S0)

{
D

5/2
0+ u(t) + f(t, v(t)) = 0, t ∈ (0, 1),

D
17/4
0+ v(t) + g(t, u(t)) = 0, t ∈ (0, 1),

with the multi-point boundary conditions

(BC0)

{
u(0) = u′(0) = 0, u′(1) = 2D

1/2
0+ u(t)|t= 1

3
+ 1

2D
1/2
0+ u(t)|t= 2

3
,

v(0) = v′(0) = v′′(0) = v′′′(0) = 0, D
7/3
0+ v(t)|t=1 = 4D

3/2
0+ v(t)|t= 1

2
.

We have ∆1 = 6−3
√
π

4 ≈ 0.17065961 > 0, ∆2 = Γ(17/4)
Γ(23/12)−

21/4Γ(17/4)
Γ(11/4) ≈ 2.43672831

> 0. So assumptions (H1) and (A1) are satisfied.
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Besides we deduce

g1(t, s) =
1

Γ(5/2)

{
t3/2(1− s)1/2 − (t− s)3/2, 0 ≤ s ≤ t ≤ 1,
t3/2(1− s)1/2, 0 ≤ t ≤ s ≤ 1,

g2(t, s) =

{
t(1− s)1/2 − (t− s), 0 ≤ s ≤ t ≤ 1,
t(1− s)1/2, 0 ≤ t ≤ s ≤ 1,

g3(t, s) =
1

Γ(17/4)

{
t13/4(1− s)11/12 − (t− s)13/4, 0 ≤ s ≤ t ≤ 1,
t13/4(1− s)11/12, 0 ≤ t ≤ s ≤ 1,

g4(t, s) =
1

Γ(11/4)

{
t7/4(1− s)11/12 − (t− s)7/4, 0 ≤ s ≤ t ≤ 1,
t7/4(1− s)11/12, 0 ≤ t ≤ s ≤ 1.

Then we obtain

G1(t, s) = g1(t, s) +
t3/2

∆1

(
2g2

(
1

3
, s

)
+

1

2
g2

(
2

3
, s

))
,

G2(t, s) = g3(t, s) +
4t13/4

∆2
g4

(
1

2
, s

)
,

h1(s) =
4

3
√
π
s(1− s)1/2, h3(s) =

1

Γ(17/4)
(1− s)11/12(1− (1− s)7/3),

J1(s) =
4

3
√
π
s(1− s)1/2 +

1

∆1

(
2g2

(
1

3
, s

)
+

1

2
g2

(
2

3
, s

))

=





4

3
√
π
s(1− s)1/2 +

1

2∆1

[
2(1− s)1/2 + 5s− 2

]
, 0 ≤ s < 1

3
,

4

3
√
π
s(1− s)1/2 +

1

6∆1

[
6(1− s)1/2 + 3s− 2

]
,

1

3
≤ s < 2

3
,

4

3
√
π
s(1− s)1/2 +

1

∆1
(1− s)1/2,

2

3
≤ s ≤ 1.

J2(s) =
1

Γ(17/4)
(1− s)11/12(1− (1− s)7/3) +

4

∆2
g4

(
1

2
, s

)

=





1

Γ(17/4)
(1− s)11/12(1−(1− s)7/3)+

21/4

∆2Γ(11/4)
[(1− s)11/12−(1− 2s)7/4],

0 ≤ s < 1
2 ,

1

Γ(17/4)
(1− s)11/12(1− (1− s)7/3) +

21/4

∆2Γ(11/4)
(1− s)11/12,

1

2
≤ s ≤ 1.

Example 1. We consider the functions

f(t, u) = a(uα0 + uβ0), g(t, u) = b(uγ0 + uδ0), t ∈ [0, 1], u ≥ 0,

where α0 > 1, 0 < β0 < 1, γ0 > 2, 0 < δ0 < 1, a, b > 0. We have K1 =
maxs∈[0,1] J1(s) ≈ 4.01249183, K2 = maxs∈[0,1] J2(s) ≈ 0.22467674. Then m0 =
max{K1,K2} = K1. The functions f(t, u) and g(t, u) satisfy the assumption (H2).
Besides, they are nondecreasing with respect to u, for any t ∈ [0, 1], and for p = 1/2
and c ∈ (0, 1) the assumptions (H3) and (H6) are satisfied; indeed we obtain

f i∞ = lim
u→∞

a(uα0 + uβ0)

u1/2
=∞, gi∞ = lim

u→∞
b(uγ0 + uδ0)

u2
=∞,

f i0 = lim
u→0+

a(uα0 + uβ0)

u
=∞, gi0 = lim

u→0+

b(uγ0 + uδ0)

u
=∞.

We take N0 = 1 and then
∫ 1

0
g(s, 1) ds = 2b and f(t, 2bm0) = a[(2bm0)α0 + (2bm0)β0 ].

If a[(2bm0)α0 + (2bm0)β0 ] < 1
m0

⇔ a
[
mα0+1

0 (2b)α0 +mβ0+1
0 (2b)β0

]
< 1, then the
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assumption (H7) is satisfied. For example, if α0 = 3/2, β0 = 1/3, b = 1/2 and

a <
1

m
5/2
0 +m

4/3
0

(e.g. a ≤ 0.0258), then the above inequality is satisfied. By

Theorem 3.3, we deduce that the problem (S0) − (BC0) has at least two positive
solutions.

Example 2. We consider the functions

f(t, x) =
xa

tζ1(1− t)ρ1 , g(t, x) =
xb

tζ2(1− t)ρ2 ,

with a, b > 1 and ζ1, ρ1, ζ2, ρ2 ∈ (0, 1). Here f(t, x) = p̃1(t)q̃1(x) and g(t, x) =
p̃2(t)q̃2(x), where

p̃1(t) =
1

tζ1(1− t)ρ1 , p̃2(t) =
1

tζ2(1− t)ρ2 , q̃1(x) = xa, q̃2(x) = xb.

We have 0 <
∫ 1

0
p̃1(s) ds < ∞, 0 <

∫ 1

0
p̃2(s) ds < ∞, so the functions f and g satisfy

the assumption (A2).
In (A5), for r1 < a, r2 < b and r1r2 ≥ 1, we obtain

lim
x→0+

q̃1(x)

xr1
= 0, lim

x→0+

q̃2(x)

xr2
= 0.

In (A6), for l1 < a, l2 < b, l1l2 ≥ 1 and c ∈ (0, 1/2), we have

lim
x→∞

inf
t∈[c,1−c]

f(t, x)

xl1
=∞, lim

x→∞
inf

t∈[c,1−c]
g(t, x)

xl2
=∞.

For example, if a = 3/2, b = 2, r1 = 1, r2 = 3/2, l1 = 1, l2 = 3/2, the above conditions
are satisfied. Then, by Theorem 4.3, we deduce that the problem (S0) − (BC0) has
at least one positive solution.

REFERENCES

[1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces,
SIAM Review, 18 (1976), pp. 620–709.

[2] A. A. M. Arafa, S. Z. Rida, M. Khalil, Fractional modeling dynamics of HIV and CD4+

T-cells during primary infection, Nonlinear Biomed. Phys., 6 (1) (2012), pp. 1–7.
[3] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus Models and Nu-

merical Methods. Series on Complexity, Nonlinearity and Chaos, World Scientific, Boston,
2012.

[4] K. Cole, Electric conductance of biological systems, in: Proc. Cold Spring Harbor Symp.
Quant. Biol., Col Springer Harbor Laboratory Press, New York, 1993, pp. 107–116.

[5] S. Das, Functional Fractional Calculus for System Identification and Controls, Springer, New
York, 2008.

[6] Y. Ding, H. Ye, A fractional-order differential equation model of HIV infection of CD4+

T-cells, Math. Comp. Model., 50 (2009), pp. 386–392.
[7] V. Djordjevic, J. Jaric, B. Fabry, J. Fredberg, D. Stamenovic, Fractional derivatives em-

body essential features of cell rheological behavior, Ann. Biomed. Eng., 31 (2003), pp. 692–
699.

[8] Z. M. Ge, C. Y. Ou, Chaos synchronization of fractional order modified Duffing systems with
parameters excited by a chaotic signal, Chaos Solitons Fractals, 35 (2008), pp. 705–717.

[9] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New
York, 1988.

[10] J. Henderson, R. Luca, Existence and multiplicity of positive solutions for a system of frac-
tional boundary value problems, Bound. Value Probl., 2014:60 (2014), pp. 1–17.



10 J. HENDERSON AND R. LUCA

[11] J. Henderson, R. Luca, Positive solutions for a system of fractional differential equations
with coupled integral boundary conditions, Appl. Math. Comput., 249 (2014), pp. 182–197.

[12] J. Henderson, R. Luca, Nonexistence of positive solutions for a system of coupled fractional
boundary value problems, Bound. Value Probl., 2015:138 (2015), pp. 1–12.

[13] J. Henderson, R. Luca, Positive solutions for a system of semipositone coupled fractional
boundary value problems, Bound. Value Probl., 2016(61) (2016), pp. 1–23.

[14] J. Henderson, R. Luca, Boundary Value Problems for Systems of Differential, Difference
and Fractional Equations. Positive Solutions, Elsevier, Amsterdam, 2016.

[15] J. Henderson, R. Luca, Existence of positive solutions for a singular fractional boundary
value problem, Nonlinear Anal. Model. Control, 22(1) (2017), pp. 99–114.

[16] J. Henderson, R. Luca, A. Tudorache, On a system of fractional differential equations with
coupled integral boundary conditions, Fract. Calc. Appl. Anal., 18(2) (2015), pp. 361–386.

[17] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional
Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V.,
Amsterdam, 2006.

[18] J. Klafter, S. C. Lim, R. Metzler (Eds.), Fractional Dynamics in Physics, Singapore, World
Scientific, 2011.

[19] R. Luca, A. Tudorache, Positive solutions to a system of semipositone fractional boundary
value problems, Adv. Difference Equ., 2014(179) (2014), pp. 1–11.

[20] R. Metzler, J. Klafter, The random walks guide to anomalous diffusion: a fractional dy-
namics approach, Phys. Rep., 339 (2000), pp. 1–77.

[21] M. Ostoja-Starzewski, Towards thermoelasticity of fractal media, J. Therm. Stress., 30
(2007), pp. 889–896.

[22] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[23] Y.Z. Povstenko, Fractional Thermoelasticity, New York, Springer, 2015.
[24] J. Sabatier, O. P. Agrawal, J. A. T. Machado (Eds.), Advances in Fractional Calculus:

Theoretical Developments and Applications in Physics and Engineering, Springer, Dor-
drecht, 2007.

[25] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives. Theory
and Applications, Gordon and Breach, Yverdon, 1993.

[26] I. M. Sokolov, J. Klafter, A. Blumen, A fractional kinetics, Phys. Today, 55 (2002), pp. 48–
54.

[27] Y. Zhou, Y. Xu, Positive solutions of three-point boundary value problems for systems of
nonlinear second order ordinary differential equations, J. Math. Anal. Appl., 320 (2006),
pp. 578–590.



Proceedings of EQUADIFF 2017
pp. 11–20

BOUNDEDNESS AND STABILIZATION
IN A THREE-DIMENSIONAL TWO-SPECIES
CHEMOTAXIS-NAVIER-STOKES SYSTEM

WITH COMPETITIVE KINETICS∗

MISAKI HIRATA, SHUNSUKE KURIMA, MASAAKI MIZUKAMI, TOMOMI YOKOTA†

Abstract. This paper is concerned with the two-species chemotaxis-Navier–Stokes system with
Lotka–Volterra competitive kinetics




(n1)t + u · ∇n1 = ∆n1 − χ1∇ · (n1∇c) + µ1n1(1− n1 − a1n2) in Ω× (0,∞),

(n2)t + u · ∇n2 = ∆n2 − χ2∇ · (n2∇c) + µ2n2(1− a2n1 − n2) in Ω× (0,∞),

ct + u · ∇c = ∆c− (αn1 + βn2)c in Ω× (0,∞),

ut + (u · ∇)u = ∆u+∇P + (γn1 + δn2)∇Φ, ∇ · u = 0 in Ω× (0,∞)

under homogeneous Neumann boundary conditions and initial conditions, where Ω is a bounded do-
main in R3 with smooth boundary. Recently, in the 2-dimensional setting, global existence and stabi-
lization of classical solutions to the above system were first established. However, the 3-dimensional
case has not been studied: Because of difficulties in the Navier–Stokes system, we can not expect
existence of classical solutions to the above system. The purpose of this paper is to obtain global
existence of weak solutions to the above system, and their eventual smoothness and stabilization.

Key words. chemotaxis, Navier–Stokes, Lotka–Volterra, large-time behaviour

AMS subject classifications. 35B40, 35K55, 35Q30, 92C17

1. Introduction. This paper deals with the following two-species chemotaxis-
Navier–Stokes system with Lotka–Volterra competitive kinetics:




(n1)t + u · ∇n1 = ∆n1 − χ1∇ · (n1∇c) + µ1n1(1− n1 − a1n2) in Ω× (0,∞),

(n2)t + u · ∇n2 = ∆n2 − χ2∇ · (n2∇c) + µ2n2(1− a2n1 − n2) in Ω× (0,∞),

ct + u · ∇c = ∆c− (αn1 + βn2)c in Ω× (0,∞),

ut + κ(u · ∇)u = ∆u+∇P + (γn1 + δn2)∇Φ, ∇ · u = 0 in Ω× (0,∞),

∂νn1 = ∂νn2 = ∂νc = 0, u = 0 on ∂Ω× (0,∞),

n1(·, 0) = n1,0, n2(·, 0) = n2,0, c(·, 0) = c0, u(·, 0) = u0 in Ω,

(1.1)
where Ω is a bounded domain in R3 with smooth boundary ∂Ω and ∂ν denotes dif-
ferentiation with respect to the outward normal of ∂Ω; κ = 1, χ1, χ2, a1, a2 ≥ 0 and
µ1, µ2, α, β, γ, δ > 0 are constants; n1,0, n2,0, c0, u0,Φ are known functions satisfying

0 < n1,0, n2,0 ∈ C(Ω), 0 < c0 ∈W 1,q(Ω), u0 ∈ D(Aθ), (1.2)

Φ ∈ C1+λ(Ω) (1.3)

for some q > 3, θ ∈ ( 3
4 , 1), λ ∈ (0, 1) and A denotes the realization of the Stokes

operator under homogeneous Dirichlet boundary conditions in the solenoidal subspace
L2
σ(Ω) of L2(Ω).

∗This work was supported by JSPS Research Fellowships for Young Scientists, No. 17J00101 and
Grant-in-Aid for Scientific Research (C), No. 16K05182.
†Department of Mathematics, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo

162-8601, Japan (yokota@rs.kagu.tus.ac.jp).
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In the mathematical point of view, difficulties of this problem are mainly caused
by the chemotaxis terms −χ1∇ · (n1∇c), −χ2∇ · (n2∇c), the competitive kinetics
µ1n1(1−n1−a1n2), µ2n2(1−a2n1−n2) and the Navier–Stokes equation which is the
fourth equation in (1.1). In the case that n2 = 0, global existence of weak solutions,
and their eventual smoothness and stabilization were shown in [5]. On the other hand,
in the case that n2 6= 0 and Ω ⊂ R2, global existence and boundedness of classical
solutions to (1.1) have been attained ([4]). Moreover, in the case that κ = 0 in (1.1),
which namely means that the fourth equation in (1.1) is the Stokes equation, global
existence and stabilization can be found in [2]; in the case that κ = 0 in (1.1) and that
−(αn1 + βn2)c is replaced with +αn1 + βn2− c, global existence and boundedness of
classical solutions to the Keller–Segel-Stokes system and their asymptotic behaviour
are found in [3].

As we mentioned above, global classical solutions are found in (1.1) in the 2-
dimensional setting and the case that κ = 0. However, global existence of solutions in
3-dimensional setting has not been attained. Thus the main purposes of this paper is
to obtain global existence of solutions to (1.1) in the case that Ω ⊂ R3. Nevertheless,
because of the difficulties of the Navier–Stokes equation, we can not expect global
existence of classical solutions to (1.1) in the 3-dimensional case. Therefore our goal
is to obtain global existence of weak solutions to (1.1) in the following sense.

Definition 1.1. A quadruple (n1, n2, c, u) is called a (global) weak solution of
(1.1) if

n1, n2 ∈ L2
loc([0,∞);L2(Ω)) ∩ L

4
3

loc([0,∞);W 1, 43 (Ω)),

c ∈ L2
loc([0,∞);W 1,2(Ω)),

u ∈ L2
loc([0,∞);W 1,2

0,σ (Ω))

and for all T > 0 the identities

−
∫ ∞

0

∫

Ω

n1ϕt −
∫

Ω

n1,0ϕ(·, 0)−
∫ ∞

0

∫

Ω

n1u · ∇ϕ

= −
∫ ∞

0

∫

Ω

∇n1 · ∇ϕ+ χ1

∫ ∞

0

∫

Ω

n1∇c · ∇ϕ+ µ1

∫ ∞

0

∫

Ω

n1(1− n1 − a1n2)ϕ,

−
∫ ∞

0

∫

Ω

n2ϕt −
∫

Ω

n2,0ϕ(·, 0)−
∫ ∞

0

∫

Ω

n2u · ∇ϕ

= −
∫ ∞

0

∫

Ω

∇n2 · ∇ϕ+ χ2

∫ ∞

0

∫

Ω

n2∇c · ∇ϕ+ µ2

∫ ∞

0

∫

Ω

n2(1− a2n1 − n2)ϕ,

−
∫ ∞

0

∫

Ω

cϕt −
∫

Ω

c0ϕ(·, 0)−
∫ ∞

0

∫

Ω

cu · ∇ϕ

= −
∫ ∞

0

∫

Ω

∇c · ∇ϕ−
∫ ∞

0

∫

Ω

(αn1 + βn2)cϕ,

−
∫ ∞

0

∫

Ω

u · ψt −
∫

Ω

u0 · ψ(·, 0)−
∫ ∞

0

∫

Ω

u⊗ u · ∇ψ

= −
∫ ∞

0

∫

Ω

∇u · ∇ψ +

∫ ∞

0

∫

Ω

(γn1 + δn2)∇ψ · ∇Φ

hold for all ϕ ∈ C∞0 (Ω× [0,∞)) and all ψ ∈ C∞0,σ(Ω× [0,∞)), respectively.
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Now the main results read as follows. The first theorem is concerned with global
existence of weak solutions to (1.1).

Theorem 1.2. Let Ω ⊂ R3 be a bounded smooth domain and let χ1, χ2, a1, a2 ≥ 0
and µ1, µ2, α, β, γ, δ > 0. Assume that n1,0, n2,0, c0, u0 satisfy (1.2) with some q > 3
and θ ∈ ( 3

4 , 1) and Φ ∈ C1+λ(Ω) for some λ ∈ (0, 1). Then there is a weak solution of
(1.1), which can be approximated by a sequence of solutions (n1,ε, n2,ε, cε, uε) of (2.1)
(see Section 2) in a pointwise manner.

The second theorem gives eventual smoothness and stabilization.

Theorem 1.3. Let the assumption of Theorem 1.2 be satisfied. Then there are
T > 0 and α′ ∈ (0, 1) such that the solution (n1, n2, c, u) given by Theorem 1.2 satisfies

n1, n2, c ∈ C2+α′,1+α′
2 (Ω× [T,∞)), u ∈ C2+α′,1+α′

2 (Ω× [T,∞)).

Moreover, the solution of (1.1) has the following properties:
(i) Assume that a1, a2 ∈ (0, 1). Then

n1(·, t)→ N1, n2(·, t)→ N2, c(·, t)→ 0, u(·, t)→ 0 in L∞(Ω)

as t→∞, where

N1 :=
1− a1

1− a1a2
, N2 :=

1− a2

1− a1a2
.

(ii) Assume that a1 ≥ 1 > a2. Then

n1(·, t)→ 0, n2(·, t)→ 1, c(·, t)→ 0, u(·, t)→ 0 in L∞(Ω)

as t→∞.

The proofs of the main theorems are based on the arguments in [5]. The strategies
for the proofs is to construct energy estimates for the solution (n1,ε, n2,ε, cε, uε) of
(2.1). In Section 2 we consider the energy function Fε defined as

Fε :=

∫

Ω

n1,ε log n1,ε +

∫

Ω

n2,ε log n2,ε +
χ

2

∫

Ω

|∇cε|2
cε

+ k4χ

∫

Ω

|uε|2

with some constant χ > 0. Noting that for all ρ, ξi > 0 there exists C > 0 such that
∫

Ω

∇cε · ∇ni,ε
(

χi
1 + εni,ε

− χα (or χβ)

1 + ε(αn1,ε + βn2,ε)

)

≤ ρ
∫

Ω

|∇cε|4
c3ε

+ ξi

∫

Ω

|∇ni,ε|2
ni,ε

+ C

∫

Ω

n2
i,ε (i = 1, 2),

which did not appear in the previous work [5], from the estimate for the energy
function Fε we obtain global-in-time solvability of approximate solutions. Then we
moreover see convergence as ε ↘ 0. Furthermore, in Section 3, according to an
argument similar to [4], by putting

Gε,B :=

∫

Ω

(
n1,ε −N1 log

n1,ε

N1

)
+

∫

Ω

(
n2,ε −N2 log

n2,ε

N2

)
+
B

2

∫

Ω

c2ε

with suitable constant B > 0 and establishing the Hölder estimates for the solution of
(1.1) through the estimate for the energy function Gε,B , we can discuss convergence
of
(
n1(·, t), n2(·, t), c(·, t), u(·, t)

)
as t→∞.



14 M. HIRATA, S. KURIMA, M. MIZUKAMI AND T. YOKOTA

2. Proof of Theorem 1.2 (Global existence). We will start by considering
an approximate problem with parameter ε > 0, namely:





(n1,ε)t + uε · ∇n1,ε = ∆n1,ε − χ1∇ ·
(

n1,ε

1+εn1,ε
∇cε

)
+ µ1n1,ε(1− n1,ε − a1n2,ε),

(n2,ε)t + uε · ∇n2,ε = ∆n2,ε − χ2∇ ·
(

n2,ε

1+εn2,ε
∇cε

)
+ µ2n2,ε(1− a2n1,ε − n2,ε),

(cε)t + uε · ∇cε = ∆cε − cε 1
ε log

(
1 + ε(αn1,ε + βn2,ε)

)
,

(uε)t + (Yεuε · ∇)uε = ∆uε +∇Pε + (γn1,ε + δn2,ε)∇Φ, ∇ · uε = 0,

∂νn1,ε|∂Ω = ∂νn2,ε|∂Ω = ∂νcε|∂Ω = 0, uε|∂Ω = 0,

n1,ε(·, 0) = n1,0, n2,ε(·, 0) = n2,0, cε(·, 0) = c0, uε(·, 0) = u0,

(2.1)
where Yε = (1 + εA)−1, and provide estimates for its solutions. We first give the
following result which states local existence in (1.1).

Lemma 2.1. Let χ1, χ2, a1, a2 ≥ 0, µ1, µ2, α, β, γ, δ > 0, and Φ ∈ C1+λ(Ω) for
some λ ∈ (0, 1) and assume that n1,0, n2,0, c0, u0 satisfy (1.2) with some q > 3, θ ∈
( 3

4 , 1). Then for all ε > 0 there are Tmax,ε and uniquely determined functions:

n1,ε, n2,ε ∈ C0(Ω× [0, Tmax,ε)) ∩ C2,1(Ω× (0, Tmax,ε)),

cε ∈ C0(Ω× [0, Tmax,ε)) ∩ C2,1(Ω× (0, Tmax,ε)) ∩ L∞loc([0, Tmax,ε);W
1,q(Ω)),

uε ∈ C0(Ω× [0, Tmax,ε)) ∩ C2,1(Ω× (0, Tmax,ε)),

which together with some Pε ∈ C1,0(Ω× (0, Tmax,ε)) solve (2.1) classically. Moreover,
n1,ε, n2,ε and cε are positive and the following alternative holds: Tmax,ε =∞ or

‖n1,ε(·, t)‖L∞(Ω) + ‖n2,ε(·, t)‖L∞(Ω) + ‖cε(·, t)‖W 1,q(Ω) + ‖Aθuε(·, t)‖L2(Ω) →∞
(2.2)

as t↗ Tmax,ε.

We next show the following lemma which holds a key for the proof of Theorem
1.2. This lemma derives the estimate for the energy function.

Lemma 2.2. For all ξ1, ξ2 ∈ (0, 1) and χ > 0 there are C,C, C̃, k, k > 0 such that

Fε :=

∫

Ω

n1,ε log n1,ε +

∫

Ω

n2,ε log n2,ε +
χ

2

∫

Ω

|∇cε|2
cε

+ kχ

∫

Ω

|uε|2

satisfies

d

dt
Fε ≤−

µ1

4

∫

Ω

n2
1,ε log n1,ε −

µ2

4

∫

Ω

n2
2,ε log n2,ε

− (1− ξ1)

∫

Ω

|∇n1,ε|2
n1,ε

− (1− ξ2)

∫

Ω

|∇n2,ε|2
n2,ε

+ C

∫

Ω

n2
1,ε + C

∫

Ω

n2
2,ε + C̃

− k
∫

Ω

cε|D2 log cε|2 − k
∫

Ω

|∇cε|4
c3ε

− k
∫

Ω

|∇uε|2

on (0, Tmax,ε) for all ε > 0.
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Proof. Noting, the boundedness of s(1− s) and s(1− s
2 ) log s, we have that there

exists C1 > 0 such that

d

dt

∫

Ω

n1,ε log n1,ε

= −
∫

Ω

|∇n1,ε|2
n1,ε

+ χ1

∫

Ω

∇cε · ∇n1,ε

1 + εn1,ε

+ µ1

∫

Ω

n1,ε(1− n1,ε − a1n2,ε) log n1,ε + µ1

∫

Ω

n1,ε(1− n1,ε − a1n2,ε)

≤ −
∫

Ω

|∇n1,ε|2
n1,ε

+ χ1

∫

Ω

∇cε · ∇n1,ε

1 + εn1,ε
− µ1

2

∫

Ω

n2
1,ε log n1,ε

− µ1a1

∫

Ω

n1,εn2,ε log n1,ε − µ1a1

∫

Ω

n1,εn2,ε + C1. (2.3)

Similarly, there is C2 > 0 such that

d

dt

∫

Ω

n2,ε log n2,ε ≤ −
∫

Ω

|∇n2,ε|2
n2,ε

+ χ2

∫

Ω

∇cε · ∇n2,ε

1 + εn2,ε
− µ2

2

∫

Ω

n2
2,ε log n2,ε

− µ2a2

∫

Ω

n1,εn2,ε log n2,ε − µ2a2

∫

Ω

n1,εn2,ε + C2. (2.4)

According to an argument similar to that in the proof of [5, Lemma 2.8], there exist
k1, C3, C4 > 0 such that

d

dt

∫

Ω

|∇cε|2
cε

≤− k1

∫

Ω

cε|D2 log cε|2 − k1

∫

Ω

|∇cε|4
c3ε

+ C3 + C4

∫

Ω

|∇uε|2 − 2

∫

Ω

α∇cε · ∇n1,ε + β∇cε · ∇n2,ε

1 + ε(αn1,ε + βn2,ε)
. (2.5)

Now we let k, η1, η2, k be constants satisfying C4

2 − k = −k14 , η1 = µ1

4kχ
, η2 = bµ2

4kχ
and

k = χk1
4 . Then we have

d

dt

∫

Ω

|uε|2 =− 2

∫

Ω

|∇uε|2 − 2

∫

Ω

uε · (Yεuε · ∇)uε + 2

∫

Ω

uε · (γn1,ε + δn2,ε)∇Φ.

From the Schwarz inequality, the Poincaré inequality, the Young inequality and the
fact that

∫
Ω
ϕ2 ≤ a

∫
Ω
ϕ2 logϕ + |Ω|e 1

a holds for any positive function ϕ and any
a > 0, there exist C5, Cη1 , Cη2 > 0 such that

γ

∫

Ω

|n1,ε∇Φ · uε| ≤ γ‖∇Φ‖L∞
(∫

Ω

n2
1,ε

) 1
2
(∫

Ω

|uε|2
) 1

2

≤ γ‖∇Φ‖L∞
(∫

Ω

n2
1,ε

) 1
2
(
C5

∫

Ω

|∇uε|2
) 1

2

≤ γ2C5‖∇Φ‖2L∞
∫

Ω

n2
1,ε +

1

4

∫

Ω

|∇uε|2

≤ η1

2

∫

Ω

n2
1,ε log n1,ε +

Cη1
2

+
1

4

∫

Ω

|∇uε|2
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and

δ

∫

Ω

|n2,ε∇Φ · uε| ≤
η2

2

∫

Ω

n2
2,ε log n2,ε +

Cη2
2

+
1

4

∫

Ω

|∇uε|2

hold. Therefore we have

d

dt

∫

Ω

|uε|2 ≤ −
∫

Ω

|∇uε|2 + η1

∫

Ω

n2
1,ε log n1,ε + η2

∫

Ω

n2
2,ε log n2,ε + Cη1 + Cη2 .

(2.6)

Thus a combination of (2.3), (2.4), (2.5) and (2.6) leads to

d

dt

[ ∫

Ω

n1,ε log n1,ε +

∫

Ω

n2,ε log n2,ε +
χ

2

∫

Ω

|∇cε|2
cε

+ kχ

∫

Ω

|uε|2
]

≤
(
kχη1 −

µ1

2

)∫

Ω

n2
1,ε log n1,ε +

(
kχη2 −

µ2

2

)∫

Ω

n2
2,ε log n2,ε

−
(∫

Ω

|∇n1,ε|2
n1,ε

+

∫

Ω

|∇n2,ε|2
n2,ε

)
+
(χ

2
C4 − kχ

)∫

Ω

|∇uε|2

+

∫

Ω

∇cε · ∇n1,ε

(
χ1

1 + εn1,ε
− χα

1 + ε(αn1,ε + βn2,ε)

)

+

∫

Ω

∇cε · ∇n2,ε

(
χ2

1 + εn2,ε
− χβ

1 + ε(αn1,ε + βn2,ε)

)

− χ

2
k1

∫

Ω

cε|D2 log cε|2 −
χ

2
k1

∫

Ω

|∇cε|4
c3ε

+ C1 + C2 +
χ

2
C3 + kχ(Cη1 + Cη2)

− µ1a1

∫

Ω

n1,εn2,ε(log n1,ε + 1)− µ2a2

∫

Ω

n1,εn2,ε(log n2,ε + 1).

Here, since n1,ε, n2,ε are nonnegative, we can find C6, C7 > 0 such that

∫

Ω

∇cε · ∇n1,ε

(
χ1

1 + εn1,ε
− χα

1 + ε(αn1,ε + βn2,ε)

)

≤ (χ1 + χα)

∫

Ω

|∇cε · ∇n1,ε|

≤ χk1

8‖c0‖3L∞

∫

Ω

|∇cε|4 + C6

∫

Ω

|∇n1,ε|
4
3

≤ χk1

8

∫

Ω

|∇cε|4
c3ε

+ ξ1

∫

Ω

|∇n1,ε|2
n1,ε

+ C7

∫

Ω

n2
1,ε

and there is C8 > 0 such that

∫

Ω

∇cε · ∇n2,ε

(
χ2

1 + εn2,ε
− χβ

1 + ε(αn1,ε + βn2,ε)

)

≤ χk1

8

∫

Ω

|∇cε|4
c3ε

+ ξ2

∫

Ω

|∇n2,ε|2
n2,ε

+ C8

∫

Ω

n2
2,ε,
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which with the fact that s log s ≥ − 1
e (s > 0) enables us to obtain

(
kχη1 −

µ1

2

)∫

Ω

n2
1,ε log n1,ε +

(
kχη2 −

µ2

2

)∫

Ω

n2
2,ε log n2,ε

−
(∫

Ω

|∇n1,ε|2
n1,ε

+

∫

Ω

|∇n2,ε|2
n2,ε

)
+
(χ

2
C4 − kχ

)∫

Ω

|∇uε|2

+

∫

Ω

∇cε · ∇n1,ε

(
χ1

1 + εn1,ε
− χα

1 + ε(αn1,ε + βn2,ε)

)

+

∫

Ω

∇cε · ∇n2,ε

(
χ2

1 + εn2,ε
− χβ

1 + ε(αn1,ε + βn2,ε)

)

− χ

2
k1

∫

Ω

cε|D2 log cε|2 −
χ

2
k1

∫

Ω

|∇cε|4
c3ε

+ C1 + C2 +
χ

2
C3 + kχ(Cη1 + Cη2)

− µ1a1

∫

Ω

n1,εn2,ε(log n1,ε + 1)− µ2a2

∫

Ω

n1,εn2,ε(log n2,ε + 1)

≤ −µ1

4

∫

Ω

n2
1,ε log n1,ε −

µ2

4

∫

Ω

n2
2,ε log n2,ε

− (1− ξ1)

∫

Ω

|∇n1,ε|2
n1,ε

− (1− ξ2)

∫

Ω

|∇n2,ε|2
n1,ε

− k
∫

Ω

|∇uε|2 − k
∫

Ω

cε|D2 log cε| − k
∫

Ω

|∇cε|4
c3ε

+ C7

∫

Ω

n2
1,ε + C8

∫

Ω

n2
2,ε + C9.

Therefore we obtain this lemma.
Proof of Theorem 1.2. Let τ = min{1, 1

2Tmax,ε}, ξ1, ξ2 ∈ (0, 1) and χ > 0. Lemma
2.2, the facts that s2 log s ≥ s log s− 1

2e (s > 0) and n1,ε, n2,ε, cε > 0 imply

d

dt
Fε + Fε ≤ C

∫

Ω

n2
1,ε + C

∫

Ω

n2
2,ε + C̃ ′

for some C,C, C̃ ′ > 0. According to [5, Lemma 2.5], there exists C1 > 0 such that
∫ t+τ

t

∫

Ω

n2
i,ε ≤ C1

for all t ∈ (0, Tmax,ε − τ) and each i = 1, 2. From the uniform Gronwall type lemma
(see e.g., [6, Lemma 3.2]) we can find C2 > 0 such that

∫

Ω

n1,ε log n1,ε +

∫

Ω

n2,ε log n2,ε +
χ

2

∫

Ω

|∇cε|2
cε

+ kχ

∫

Ω

|uε|2 ≤ C2 (2.7)

for all t ∈ (0, Tmax,ε). Moreover, we have from integration of the differential inequality
in Lemma 2.2 over (t, t+ τ) that for all ξ1, ξ2 ∈ (0, 1) there is C3 > 0 such that

µ1

4

∫ t+τ

t

∫

Ω

n2
1,ε log n1,ε +

µ2

4

∫ t+τ

t

∫

Ω

n2
2,ε log n2,ε + k

∫ t+τ

t

∫

Ω

cε|D2 log cε|2

+ (1− ξ1)

∫ t+τ

t

∫

Ω

|∇n1,ε|2
n1,ε

+ (1− ξ2)

∫ t+τ

t

∫

Ω

|∇n2,ε|2
n2,ε

≤ C3 (2.8)

and
∫ t+τ

t

∫

Ω

|∇cε|4
c3ε

+

∫ t+τ

t

∫

Ω

|∇uε|2 ≤ C3 (2.9)
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as well as
∫ t+τ

t

∫

Ω

|∇n1,ε|
4
3 +

∫ t+τ

t

∫

Ω

|∇n2,ε|
4
3

+

∫

Ω

|∇cε|2 +

∫ t+τ

t

∫

Ω

|∇cε|4 +

∫ t+τ

t

∫

Ω

n2
1,ε +

∫ t+τ

t

∫

Ω

n2
2,ε ≤ C3 (2.10)

for all t ∈ [0, Tmax,ε − τ). Now we assume Tmax,ε < ∞ for some ε > 0. From (2.7),
(2.8), (2.9) and (2.10), we can see that there exists C4 > 0 such that

‖n1,ε(·, t)‖L∞(Ω) ≤ C4, ‖n2,ε(·, t)‖L∞(Ω) ≤ C4,
‖cε(·, t)‖W 1,q(Ω) ≤ C4, ‖Aσuε(·, t)‖L2(Ω) ≤ C4

for all t ∈ (0, Tmax,ε), which is inconsistent with (2.2). Therefore we obtain Tmax,ε =∞
for all ε > 0, which means global existence and boundedness of (n1,ε, n2,ε, cε, uε). We
next verify convergence of the solution (n1,ε, n2,ε, cε, uε). Due to Lemma 2.2 and
arguments similar to those in [5], we establish that for all T > 0 there is C5 > 0 such
that

‖(n1,ε)t‖L1((0,T );(W 2,4
0 (Ω))∗) ≤ C5, ‖(n2,ε)t‖L1((0,T );(W 2,4

0 (Ω))∗) ≤ C5,

‖(cε)t‖L2((0,T );(W 1,2
0 (Ω))∗) ≤ C5, ‖(uε)t‖L2((0,T );(W 1,3(Ω))∗) ≤ C5 (2.11)

for all ε > 0, which together with arguments in [5] implies that there exist a sequence
(εj)j∈N such that εj ↘ 0 as j →∞ and functions n1, n2, c, u such that

n1, n2 ∈ L2
loc([0,∞);L2(Ω)) ∩ L

4
3

loc([0,∞);W 1, 43 (Ω)),

c ∈ L2
loc([0,∞);W 1,2(Ω)),

u ∈ L2
loc([0,∞);W 1,2

0,σ (Ω))

and that

n1,ε → n1 in L
4
3

loc([0,∞);Lp(Ω)) for all p ∈
[
1,

12

5

)
and a.e. in Ω× (0,∞),

n2,ε → n2 in L
4
3

loc([0,∞);Lp(Ω)) for all p ∈
[
1,

12

5

)
and a.e. in Ω× (0,∞),

cε → c in C0
loc([0,∞);Lp(Ω)) for all p ∈ [1, 6) and a.e. in Ω× (0,∞),

uε → u in L2
loc([0,∞);Lp(Ω)) for all p ∈ [1, 6) and a.e. in Ω× (0,∞),

cε → c weakly∗ in L∞(Ω× (t, t+ 1)) for all t ≥ 0,

∇n1,ε → ∇n1 weakly in L
4
3

loc([0,∞);L
4
3 (Ω)),

∇n2,ε → ∇n2 weakly in L
4
3

loc([0,∞);L
4
3 (Ω)),

∇cε → ∇c weakly∗ in L∞loc([0,∞);L2(Ω)),

∇uε → ∇u weakly in L2
loc([0,∞);L2(Ω)),

Yεuε → u in L2
loc([0,∞);L2(Ω)),

n1,ε → n1 in L2
loc([0,∞);L2(Ω)),

n2,ε → n2 in L2
loc([0,∞);L2(Ω)) (2.12)

as ε = εj ↘ 0. Thus we see that (n1, n2, c, u) is a weak solution to (1.1) in the sense
of Definition 1.1, which means the end of the proof.
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3. Proof of Theorem 1.3 (Eventual smoothness and stabilization). In
this section we will prove Theorem 1.3. The following lemma plays an important role
in the proof of Theorem 1.3.

Lemma 3.1.
(i) Assume that a1, a2 ∈ (0, 1). Then there exists C > 0 such that for all ε > 0,

∫ ∞

0

∫

Ω

(n1,ε −N1)2 ≤ C,
∫ ∞

0

∫

Ω

(n2,ε −N2)2 ≤ C,

where N1 = 1−a1
1−a1a2 , N2 = 1−a2

1−a1a2 .

(ii) Assume a1 ≥ a2 > 0. Then there exists C > 0 such that for all ε > 0,

∫ ∞

0

∫

Ω

n2
1,ε ≤ C,

∫ ∞

0

∫

Ω

(n2,ε − 1)2 ≤ C.

Proof. Due to arguments similar to those in [4, Lemmas 4.1–4.4], by using the
energy functions

Gε,B :=

∫

Ω

(
n1,ε −N1 log

n1,ε

N1

)
+

∫

Ω

(
n2,ε −N2 log

n2,ε

N2

)
+
B

2

∫

Ω

c2ε

in the case that a1, a2 ∈ (0, 1), and

Gε,B :=

∫

Ω

n1,ε +

∫

Ω

(
n2,ε − log n2,ε

)
+
B

2

∫

Ω

c2ε

in the case that a1 ≥ 1 > a2 > 0, we can see this lemma.
Proof of Theorem 1.3. According to an argument similar to that in the proof of

[5, Lemmas 3.4 and 3.5], for all η > 0 and p ∈ (1,∞) there are T > 0, ε0 > 0 and
C1 > 0 such that for all t > T and ε ∈ (0, ε0),

‖cε(·, t)‖L∞(Ω) < η, ‖np1,ε(·, t)‖Lp(Ω) ≤ C1, ‖np2,ε(·, t)‖Lp(Ω) ≤ C1.

We next consider the estimate for uε. Since ∇ · uε = 0, it follows from the Young
inequality, the Poincaré inequality, boundedness of ∇Φ and (2.1) that there exists
C2 > 0 such that

d

dt

∫

Ω

|uε|2 = −2

∫

Ω

|∇uε|2 − 2

∫

Ω

uε · (Yεuε · ∇)uε + 2

∫

Ω

uε · (γn1,ε + δn2,ε)∇Φ

= −2

∫

Ω

|∇uε|2 − 2

∫

Ω

uε · (Yεuε · ∇)uε

+ 2γ

∫

Ω

uε · (n1,ε − n1,∞)∇Φ + 2δ

∫

Ω

uε · (n2,ε − n2,∞)∇Φ

≤ −
∫

Ω

|∇uε|2 − 2

∫

Ω

uε · (Yεuε · ∇)uε

+ C2

∫

Ω

(n1,ε − n1,∞)2 + C2

∫

Ω

(n2,ε − n2,∞)2,

where (n1,∞, n2,∞) = (N1, N2) in the case that a1, a2 ∈ (0, 1) and (n1,∞, n2,∞) = (0, 1)
in the case that a1 ≥ 1 > a2 > 0. Then, noticing from straightforward calculations
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that
∫

Ω
uε · (Yεuε · ∇)uε = 1

2

∫
Ω
∇ · (Yεuε)|uε|2 = 0, thanks to Lemma 3.1, we obtain

from integration of the above inequality over (0,∞) that there exists C3 > 0 such
that

∫ ∞

0

∫

Ω

|∇uε|2 ≤ C3.

According to an argument similar to that in the proof of [5, Lemmas 3.7–3.11], there
exist α′ > 0, T ∗ > T , C4 > 0 such that for all t > T ∗ there exists ε1 > 0 such that
for all ε ∈ (0, ε1),

‖n1,ε‖
C1+α′, α′

2 (Ω×[t,t+1])
≤ C4, ‖n2,ε‖

C1+α′, α′
2 (Ω×[t,t+1])

≤ C4,

‖cε‖
C1+α′, α′

2 (Ω×[t,t+1])
≤ C4, ‖uε‖

C1+α′, α′
2 (Ω×[t,t+1])

≤ C4.

Then aided by arguments similar to those in the proofs of [5, Corollary 3.3–Lemma
3.13], from (2.11) there are α′ ∈ (0, 1) and T0 > 0 as well as a subsequence εj ↘ 0
such that for all t > T0

n1,ε → n1, n2,ε → n2, cε → c, uε → u in C1+α′,α
′

2 (Ω× [t, t+ 1])

as ε = εj ↘ 0, and then

‖n1‖
C1+α′, α′

2 (Ω×[t,t+1])
≤ C4, ‖n2‖

C1+α′, α′
2 (Ω×[t,t+1])

≤ C4,

‖c‖
C1+α′, α′

2 (Ω×[t,t+1])
≤ C4, ‖u‖

C1+α′, α′
2 (Ω×[t,t+1])

≤ C4. (3.1)

Then we obtain

n1, n2, c, u ∈ C2+α′,1+α′
2 (Ω× [T0,∞)).

Finally, from (3.1) the solution (n1, n2, c, u) of (2.1) constructed in (2.12) fulfills

n1(·, t)→ N1, n2(·, t)→ N2, c(·, t)→ 0, u(·, t)→ 0 in C1(Ω) (t→∞)

in the case that a1, a2 ∈ (0, 1), and

n1(·, t)→ 0, n2(·, t)→ 1, c(·, t)→ 0, u(·, t)→ 0, in C1(Ω) (t→∞)

in the case that a1 ≥ 1 > a2 > 0, which enable us to see Theorem 1.3.
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ON THE SOLUTION SET OF A NONCONVEX NONCLOSED
SECOND-ORDER EVOLUTION INCLUSION

AURELIAN CERNEA∗

Abstract. We consider a nonconvex and nonclosed second-order evolution inclusion and we
prove the arcwise connectedness of the set of its mild solutions.

Key words. set-valued contraction, fixed point, solution set
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1. Introduction. This paper is concerned with the following problem

(1.1) x′′ ∈ A(t)x+ F (t, x,H(t, x)), x(0) = x0, x′(0) = y0,

where X is a real separable Banach space, P(X) is the family of all subsets of X,
I = [0, T ], F (., ., .) : I × X2 → P(X), H(., .) : I × X → P(X) and {A(t)}t≥0
is a family of linear closed operators from X into X that generates an evolution
system of operators {U(t, s)}t,s∈[0,T ]. The general framework of evolution operators
{A(t)}t≥0 that define problem (1.1) has been developed by Kozak ([10]) and improved
by Henriquez ([8]).

When F does not depend on the last variable (1.1) reduces to

(1.2) x′′ ∈ A(t)x+ F (t, x), x(0) = x0, x′(0) = y0.

Existence results and qualitative properties of the solutions of problem (1.2) may
be found in [1, 2, 3, 4, 8, 9] etc. In all the papers concerned with the set-valued
framework, the set-valued map F is assumed to be at least closed-valued. Such an
assumption is quite natural in order to obtain good properties of the solution set, but
it is interesting to investigate the problem when the right-hand side of the multivalued
equation may have nonclosed values.

Following the approach in [12] we consider the problem (1.1), where F and H are
closed-valued multifunctions Lipschitzian with respect to the second variable and F
is contractive in the third variable. Obviously, the right-hand side of the differential
inclusion in (1.1) is in general neither convex nor closed. We prove the arcwise con-
nectedness of the solution set of problem (1.1). The main tool is a result ([11, 12])
concerning the arcwise connectedness of the fixed point set of a class of nonconvex
nonclosed set-valued contractions.

We note that similar results for other classes of differential inclusions may be
found in our previous papers [5, 6, 7].

The paper is organized as follows: in Section 2 we recall some preliminary results
that we use in the sequel and in Section 3 we prove our main result.

2. Preliminaries. Let Z be a metric space with the distance dZ and let 2Z

be the family of all nonempty closed subsets of Z. For a ∈ Z and A,B ∈ 2Z set

∗Faculty of Mathematics and Computer Science, University of Bucharest, Academiei 14, 010014
Bucharest, Romania (acernea@fmi.unibuc.ro).
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dZ(a,B) = infb∈B dZ(a, b) and d∗Z(A,B) = supa∈A dZ(a,B). Denote by DZ the
Pompeiu-Hausdorff generalized metric on 2Z defined by

DZ(A,B) = max{d∗Z(A,B), d∗Z(B,A)}, A,B ∈ 2Z .

In what follows, when the product Z = Z1 × Z2 of metric spaces Zi, i = 1, 2, is
considered, it is assumed that Z is equipped with the distance dZ((z1, z2), (z′1, z

′
2)) =∑2

i=1 dZi(zi, z
′
i).

Let X be a nonempty set and let F : X → 2Z be a set-valued map from X to
Z. The range of F is the set F (X) = ∪x∈XF (x). Let (X,F) be a measurable space.
The multifunction F : X → 2Z is called measurable if F−1(Ω) ∈ F for any open set
Ω ⊂ Z, where F−1(Ω) = {x ∈ X;F (x) ∩ Ω 6= ∅}. Let (X, dX) be a metric space.
The multifunction F is called Hausdorff continuous if for any x0 ∈ X and every ε > 0
there exists δ > 0 such that x ∈ X, dX(x, x0) < δ implies DZ(F (x), F (x0)) < ε.

Let (T,F , µ) be a finite, positive, nonatomic measure space and let (X, |.|X) be
a Banach space. We denote by L1(T,X) the Banach space of all (equivalence classes
of) Bochner integrable functions u : T → X endowed with the norm

|u|L1(T,X) =

∫

T

|u(t)|Xdµ

A nonempty set K ⊂ L1(T,X) is called decomposable if, for every u, v ∈ K and
every A ∈ F , one has

χA.u+ χT\A.v ∈ K

where χB , B ∈ F indicates the characteristic function of B.
A metric space Z is called an absolute retract if, for any metric space X and any

nonempty closed set X0 ⊂ X, every continuous function g : X0 → Z has a continuous
extension g : X → Z over X. It is obvious that every continuous image of an absolute
retract is an arcwise connected space.

In what follows we recall some preliminary results that are the main tools in the
proof of our result.

Let (T,F , µ) be a finite, positive, nonatomic measure space, S a separable Banach
space and let (X, |.|X) be a real Banach space. To simplify the notation we write E
in place of L1(T,X). The proofs of the next two lemmas may be found in [11].

Lemma 2.1. Assume that φ : S×E → 2E and ψ : S×E×E → 2E are Hausdorff
continuous multifunctions with nonempty, closed, decomposable values, satisfying the
following conditions

a) There exists L ∈ [0, 1) such that, for every s ∈ S and every u, u′ ∈ E,

DE(φ(s, u), φ(s, u′)) ≤ L|u− u′|E .

b) There exists M ∈ [0, 1) such that L + M < 1 and for every s ∈ S and every
(u, v), (u′, v′) ∈ E × E,

DE(ψ(s, u, v), ψ(s, u′, v′)) ≤M(|u− u′|E + |v − v′|E).

Set Fix(Γ(s, .)) = {u ∈ E;u ∈ Γ(s, u)}, where Γ(s, u) = ψ(s, u, φ(s, u)), (s, u) ∈ S×E.
Then

1) For every s ∈ S the set Fix(Γ(s, .)) is nonempty and arcwise connected.
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2) For any si ∈ S, and any ui ∈ Fix(Γ(s, .)), i = 1, ..., p there exists a continuous
function γ : S → E such that γ(s) ∈ Fix(Γ(s, .)) for all s ∈ S and γ(si) = ui, i =
1, ..., p.

Lemma 2.2. Let U : T → 2X and V : T×X → 2X be two nonempty closed-valued
multifunctions satisfying the following conditions

a) U is measurable and there exists r ∈ L1(T ) such that DX(U(t), {0}) ≤ r(t) for
almost all t ∈ T .

b) The multifunction t→ V (t, x) is measurable for every x ∈ X.
c) The multifunction x→ V (t, x) is Hausdorff continuous for all t ∈ T .
Let v : T → X be a measurable selection from t→ V (t, U(t)).
Then there exists a selection u ∈ L1(T,X) such that v(t) ∈ V (t, u(t)), t ∈ T .

In what follows {A(t)}t≥0 is a family of linear closed operators from X into X that
genearates an evolution system of operators {U(t, s)}t,s∈I . By hypothesis the domain
of A(t), D(A(t)) is dense in X and is independent of t. The following definition is
taken from [8, 10].

Definition 2.3. A family of bounded linear operators U(t, s) : X → X, (t, s) ∈
∆ := {(t, s) ∈ I × I; s ≤ t} is called an evolution operator of the equation

(2.1) x′′(t) = A(t)x(t)

if
i) For any x ∈ X, the map (t, s)→ U(t, s)x is continuously differentiable and

a) U(t, t) = 0, t ∈ I.
b) If t ∈ I, x ∈ X then ∂

∂tU(t, s)x|t=s = x and ∂
∂sU(t, s)x|t=s = −x.

ii) If (t, s) ∈ ∆, then ∂
∂sU(t, s)x ∈ D(A(t)), the map (t, s) → U(t, s)x is of class C2

and
a) ∂2

∂t2U(t, s)x ≡ A(t)U(t, s)x.

b) ∂2

∂s2U(t, s)x ≡ U(t, s)A(t)x.

c) ∂2

∂s∂tU(t, s)x|t=s = 0.

iii) If (t, s) ∈ ∆, then there exist ∂3

∂t2∂sU(t, s)x, ∂3

∂s2∂tU(t, s)x and

a) ∂3

∂t2∂sU(t, s)x ≡ A(t) ∂∂sU(t, s)x and the map (t, s)→ A(t) ∂∂sU(t, s)x is contin-
uous.

b) ∂3

∂s2∂tU(t, s)x ≡ ∂
∂tU(t, s)A(s)x.

As an example for equation (2.1) one may consider the problem (e.g., [8])

∂2z

∂t2
(t, τ) =

∂2z

∂τ2
(t, τ) + a(t)

∂z

∂t
(t, τ), t ∈ [0, T ], τ ∈ [0, 2π],

z(t, 0) = z(t, π) = 0,
∂z

∂τ
(t, 0) =

∂z

∂τ
(t, 2π), t ∈ [0, T ],

where a(.) : I → R is a continuous function. This problem is modeled in the space

X = L2(R,C) of 2π-periodic 2-integrable functions from R to C, A1z = d2z(τ)
dτ2

with domain H2(R,C) the Sobolev space of 2π-periodic functions whose derivatives
belong to L2(R,C). It is well known thatA1 is the infinitesimal generator of strongly
continuous cosine functions C(t) on X. Moreover, A1 has discrete spectrum; namely
the spectrum of A1 consists of eigenvalues −n2, n ∈ Z with associated eigenvectors
zn(τ) = 1√

2π
einτ , n ∈ N. The set {zn}, n ∈ N is an orthonormal basis of X.
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In particular, A1z =
∑
n∈Z−n2 < z, zn > zn, z ∈ D(A1). The cosine function

is given by C(t)z =
∑
n∈Z cos(nt) < z, zn > zn with the associated sine function

S(t)z = t < z, z0 > z0 +
∑
n∈Z\{0}

sin(nt)
n < z, zn > zn.

For t ∈ I define the operator A2(t)z = a(t)dz(τ)dτ with domain D(A2(t)) =
H1(R,C). Set A(t) = A1 + A2(t). It has been proved in [10] that this family
generates an evolution operator as in Definition 2.3.

Definition 2.4. A continuous mapping x(.) ∈ C(I,X) is called a mild solution
of problem (1.1) if there exists a (Bochner) integrable function f(.) ∈ L1(I,X) such
that

(2.2) f(t) ∈ F (t, x(t)) a.e. (I),

(2.3) x(t) = − ∂

∂s
U(t, 0)x0 + U(t, 0)y0 +

∫ t

0

U(t, s)f(s)ds, t ∈ I.

We shall call (x(.), f(.)) a trajectory-selection pair of (1.1) if f(.) verifies (2.2) and
x(.) is defined by (2.3).

We shall use the following notations for the solution sets of (1.1).

(2.4) S(x0, y0) = {x(.); x(.) is a mild solution of (1.1)}.

In order to study problem (1.1) we introduce the following hypothesis.

Hypothesis 2.5. i) There exists an evolution operator {U(t, s)}t,s∈I associated
to the family {A(t)}t≥0.

ii) There exist M,M0 ≥ 0 such that |U(t, s)|B(X) ≤ M , | ∂∂sU(t, s)| ≤ M0, for all
(t, s) ∈ ∆.

F : I × X × X → P(X) and H : I × X → P(X) are two set-valued maps with
nonempty closed values, satisfying

iii) The set-valued maps t → F (t, u, v) and t → H(t, u) are measurable for all
u, v ∈ X.

iv) There exist l(.) ∈ L1(I,R) such that, for every u, u′ ∈ X,

D(H(t, u), H(t, u′)) ≤ l(t)|u− u′| a.e. (I).

v) There exist m(.) ∈ L1(I,R) and θ ∈ [0, 1) such that, for every u, v, u′, v′ ∈ X,

D(F (t, u, v), F (t, u′, v′)) ≤ m(t)|u− u′|+ θ|v − v′| a.e. (I).

vi) There exist f, g ∈ L1(I,R) such that

d(0, F (t, 0, 0)) ≤ f(t), d(0, H(t, 0)) ≤ g(t) a.e. (I).

In what follows N(t) = max{l(t),m(t)}, t ∈ I, N∗(t) =
∫ t
0
N(s)ds.

Given α ∈ R we denote by L1 the Banach space of all (equivalence classes of)
Lebesgue measurable functions σ : I → X endowed with the norm

|σ|1 =

∫ T

0

e−αN
∗(t)|σ(t)|dt.
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3. Main result. Even if the multifunction from the right-hand side of (1.1) has,
in general, nonclosed nonconvex values, its solution set S(x0, y0) defined in (2.4) has
some meaningful properties, stated in theorem below.

Theorem 3.1. Assume that Hypothesis 2.5 is satisfied and let α > 2M
1−θ . Then

1) For every (x0, y0) ∈ X×X, the solution set S(x0, y0) is nonempty and arcwise
connected in the space C(I,X).

2) For any (ξi, µi) ∈ X × X and any xi ∈ S(ξi, µi), i = 1, ..., p, there exists
a continuous function s : X × X → C(I,X) such that s(ξ, µ) ∈ S(ξ, µ) for any
(ξ, µ) ∈ X ×X and s(ξi, µi) = xi, i = 1, ..., p.

3) The set S = ∪(ξ,µ)∈X×XS(ξ, µ) is arcwise connected in C(I,X).
Proof. 1) For (ξ, µ) ∈ X ×X and f ∈ L1, set

(3.1) xξ,µ(t) = − ∂

∂s
U(t, 0)ξ + U(t, 0)µ+

∫ t

0

U(t, s)f(s)ds

and consider λ : X ×X → C(I,X) defined by λ(ξ, µ)(t) = − ∂
∂sU(t, 0)ξ + U(t, 0)µ.

We prove that the multifunctions φ : X×X×L1 → 2L
1

and ψ : X×X×L1×L1 →
2L

1

given by

φ((ξ, µ), u) = {v ∈ L1; v(t) ∈ H(t, xξ,µ(t)) a.e.(I)},

ψ((ξ, µ), u, v) = {w ∈ L1; w(t) ∈ F (t, xξ,µ(t), v(t)) a.e.(I)},

(ξ, µ) ∈ X ×X, u, v ∈ L1 satisfy the hypotheses of Lemma 2.1.
Since xξ,µ(.) is measurable and H satisfies Hypothesis 2.5 iii) and iv), the multi-

function t→ H(t, xξ,µ(t)) is measurable and nonempty closed-valued, it has a measur-
able selection. Therefore due to Hypothesis 2.5 vi), the set φ((ξ, µ), u) is nonempty.
The fact that the set φ((ξ, µ), u) is closed and decomposable follows by a simple
computation. In the same way we obtain that ψ((ξ, µ), u, v) is a nonempty closed
decomposable set.

Pick ((ξ, µ), u), ((ξ1, µ1), u1) ∈ X ×X × L1 and choose v ∈ φ((ξ, µ), u). For each
ε > 0 there exists v1 ∈ φ((ξ1, µ1), u1) such that, for every t ∈ I, one has

|v(t)− v1(t)| ≤ D(H(t, xξ,µ(t)), H(t, xξ1,µ1(t))) + ε ≤
l(t)[M0|ξ − ξ1|+M |µ− µ1|+M

∫ t
0
|u(s)− u1(s)|ds] + ε.

Hence

|v − v1|1 ≤ [M0|ξ − ξ1|+M |µ− µ1|]
∫ T
0
e−αN

∗(t)l(t)dt+M
∫ T
0
e−αN

∗(t)

l(t)(
∫ t
0
|u(s)− u1(s)|ds)dt+ εT ≤ 1

α [M0|ξ − ξ1|+M |µ− µ1|] + M
α |u− u1|1 + εT

for any ε > 0.
This implies

dL1(v, φ((ξ1, µ1), u1)) ≤ 1

α
[M0|ξ − ξ1|+M |µ− µ1|] +

M

α
|u− u1|1

for all v ∈ φ((ξ, µ), u). Therefore,

d∗L1(φ((ξ, µ), u), φ((ξ1, µ1), u1)) ≤ 1

α
[M0|ξ − ξ1|+M |µ− µ1|] +

M

α
|u− u1|1
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Consequently,

DL1(φ((ξ, µ), u), φ((ξ1, µ1), u1)) ≤ 1

α
[M0|ξ − ξ1|+M |µ− µ1|] +

M

α
|u− u1|1

which shows that φ is Hausdorff continuous and satisfies the assumptions of Lemma
2.1.

Pick ((ξ, µ), u, v), ((ξ1, µ1), u1, v1) ∈ X×X×L1×L1 and choose w ∈ ψ((ξ, µ), u, v).
Then, as before, for each ε > 0 there exists w1 ∈ ψ((ξ1, µ1), u1, v1) such that for every
t ∈ I

|w(t)− w1(t)| ≤ D(F (t, xξ,µ(t), v(t)), F (t, xξ1,µ1
(t), v1(t))) + ε ≤

m(t)[M0|ξ − ξ1|+M |µ− µ1|+M
∫ t
0
|u(s)− u1(s)|ds] + θ|v(t)− v1(t)|+ ε.

Hence

|w − w1|1 ≤ 1
α [M0|ξ − ξ1|+M |µ− µ1|] + M

α |u− u1|1 + θ|v − v1|1 + εT
≤ 1

α [M0|ξ − ξ1|+M |µ− µ1|] + (Mα + θ)(|u− u1|1 + |v − v1|1) + εT
≤ 1

α [M0|ξ − ξ1|+M |µ− µ1|] + (Mα + θ)dL1×L1((u, v), (u1, v1)) + εT.

As above, we deduce that

DL1(ψ((ξ, µ), u, v), ψ((ξ1, µ1), u1, v1)) ≤
1
α [M0|ξ − ξ1|+M |µ− µ1|] + (Mα + θ)dL1×L1((u, v), (u1, v1)).

namely, the multifunction ψ is Hausdorff continuous and satisfies the hypothesis of
Lemma 2.1.

Define Γ((ξ, µ), u) = ψ((ξ, µ), u, φ((ξ, µ), u)), ((ξ, µ), u) ∈ X2 × L1. According
to Lemma 2.1, the set Fix(Γ((ξ, µ), .)) = {u ∈ L1;u ∈ Γ((ξ, µ), u)} is nonempty
and arcwise connected in L1(I,X). Moreover, for fixed (ξi, µi) ∈ X2 and ui ∈
Fix(Γ((ξi, µi), .)), i = 1, ..., p, there exists a continuous function γ : X2 → L1 such
that

(3.2) γ((ξ, µ)) ∈ Fix(Γ((ξ, µ), .)), ∀(ξ, µ) ∈ X2,

(3.3) γ((ξi, µi)) = ui, i = 1, ..., p.

We shall prove that

(3.4) Fix(Γ((ξ, µ), .)) = {u ∈ L1; u(t) ∈ F (t, xξ,µ(t), H(t, xξ,µ(t))) a.e. (I)}.

Denote by A(ξ, µ) the right-hand side of (3.4). If u ∈ Fix(Γ((ξ, µ), .)) then there
is v ∈ φ((ξ, µ), v) such that u ∈ ψ((ξ, µ), u, v). Therefore, v(t) ∈ H(t, xξ,µ(t)) and

u(t) ∈ F (t, xξ,µ(t), v(t)) ⊂ F (t, xξ,µ(t), H(t, xξ,µ(t))) a.e. (I),

so that Fix(Γ((ξ, µ), .)) ⊂ A(ξ, µ).
Let now u ∈ A(ξ, µ). By Lemma 2.2, there exists a selection v ∈ L1 of the

multifunction t→ H(t, xξ,µ(t)) satisfying

u(t) ∈ F (t, xξ,µ(t), v(t)) a.e. (I).

Hence, v ∈ φ((ξ, µ), v), u ∈ ψ((ξ, µ), u, v) and thus u ∈ Γ((ξ, µ), u), which completes
the proof of (3.4).
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We next note that the function T : L1 → C(I,X),

T (u)(t) :=

∫ t

0

U(t, s)u(s)ds

is continuous and one has

(3.5) S(ξ, µ) = λ(ξ, µ) + T (Fix(Γ((ξ, µ), .))), (ξ, µ) ∈ X2.

Since Fix(Γ((ξ, µ), .)) is nonempty and arcwise connected in L1, the set S(ξ, µ)
has the same properties in C(I,X).

2) Let (ξi, µi) ∈ X2 and let xi ∈ S(ξi, µi), i = 1, ..., p be fixed. By (3.5) there
exists vi ∈ Fix(Γ((ξi, µi), .)) such that

xi = λ(ξi, µi) + T (vi), i = 1, ..., p.

If γ : X2 → L1 is a continuous function satisfying (3.2) and (3.3) we define, for every
(ξ, µ) ∈ X2,

s(ξ, µ) = λ(ξ, µ) + T (γ(ξ, µ)).

Obviously, the function s : X → C(I,X) is continuous, s(ξ, µ) ∈ S(ξ, µ) for all
(ξ, µ) ∈ X2 and

s(ξi, µi) = λ(ξi, µi) + T (γ(ξi, µi)) = λ(ξi, µi) + T (vi) = xi, i = 1, ..., p.

3) Let x1, x2 ∈ S = ∪(ξ,µ)∈X2S(ξ, µ) and choose (ξi, µi) ∈ X2, i = 1, 2 such
that xi ∈ S(ξi, µi), i = 1, 2. From the conclusion of 2) we deduce the existence
of a continuous function s : X2 → C(I,X) satisfying s(ξi, µi) = xi, i = 1, 2 and
s(ξ, µ) ∈ S(ξ, µ), (ξ, µ) ∈ X2. Let h : [0, 1] → X2 be a continuous mapping such
that h(0) = (ξ1, µ1) and h(1) = (ξ2, µ2). Then the function s ◦ h : [0, 1]→ C(I,X) is
continuous and verifies

s ◦ h(0) = x1, s ◦ h(1) = x2, s ◦ h(τ) ∈ S(h(τ)) ⊂ S, τ ∈ [0, 1],

which completes the proof.
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DYNAMICAL MODEL OF VISCOPLASTICITY

KONRAD KISIEL ∗

Abstract. This paper discusses the existence theory to dynamical model of viscoplasticity and
show possibility to obtain existence of solution without assuming weak safe-load condition.

Key words. viscoplasticity, coercive approximation, Yosida approximation, safe-load condition,
mixed boundary condition
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1. Introduction.
Systems of equations describing an inelastic deformation of metals, under fundamen-
tal assumption of small deformations, consist of linear partial differential equations
coupled with nonlinear differential inclusion.

The differential inclusion (inelastic constitutive equation) is experimental and de-
pend on the considered material. Therefore, there are many different inelastic consti-
tutive equations. H.-D. Alber in [1] defines a very large class of constitutive equations
(of pre-monotone type) which contains all models proposed in engineering sciences
known by author. However, the existence theory for such wide class of constitutive
equations is not complete. Therefore, we will focus on a certain subclass of possible
constitutive equations called viscoplastic models of gradient type (see Definition 1.1).
For models equipped with such constitutive equation it is quite common to assume
specific indirect assumption on data called weak safe-load condition (see Definition
1.2) as for example in: [3], [5], or [6]. However, in paper [4] authors were able to omit
this indirect assumption in the case of dynamical visco-poroplasticity. We observed
that similar methods can be used in case of viscoplastic models of gradient type.

1.1. Formulation of the model.
We assume that considered material (with the constant mass density ρ > 0) lies within
the subset Ω ⊂ R3 with smooth boundary ∂Ω. The system of equations describing
the inelastic deformation process can be written in the following form

ρutt(x, t)− divxT (x, t) = F (x, t),

T (x, t) = D (ε (u(x, t))− εp(x, t)) ,
εpt (x, t) ∈M(T (x, t)),

(1.1)

where ε (u(x, t)) denotes the symmetric part of the gradient of function u(x, t) i.e.

ε (u(x, t)) =
1

2

(
∇xu(x, t) +∇Tx u(x, t)

)
.

The first equation (1.1)1 is the balance of momentum coupled with the generalized
Hooke’s law (equation (1.1)2). The given functions are: F : Ω × [0, Te] → R3 which
describes a density of applied body forces and D : S(3) → S(3) = R3×3

sym which
is an elasticity tensor. D is assumed to be linear, symmetric, positive-definite and

∗Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa
75, 00-662 Warsaw, Poland (K.Kisiel@mini.pw.edu.pl).
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constant in time and space. Last equation (1.1)3 is called constitutive equation,
where M : D (M) ⊂ S (3)→ P (S (3)) is a given constitutive multifunction.

For any fixed Te > 0 we are interested in finding the following
• the displacement field u : Ω× [0, Te]→ R3,
• the inelastic deformation tensor εp : Ω× [0, Te]→ S(3) = R3×3

sym,
• the Cauchy stress tensor T : Ω× [0, Te]→ S(3),

Problem (1.1) will be considered with mixed boundary conditions

u(x, t) = gD (x, t), x ∈ ΓD, t > 0,

T (x, t)n(x) = gN (x, t), x ∈ ΓN , t > 0,
(1.2)

where n(x) is the outward pointing, unit normal vector at point x ∈ ∂Ω. The sets
ΓD, ΓN , are open subsets of ∂Ω such that ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅.

Furthermore, we also need to assume initial conditions in the form

for x ∈ Ω u(x, 0) = u0(x), ut(x, 0) = u1(x), εp(x, 0) = εp0(x). (1.3)

In this paper we consider viscoplastic models of gradient type. Therefore, we
assume that the inelastic constitutive multifunction M is viscoplastic of gradient type
which means

Definition 1.1.
We say that constitutive multifunction M : S (3)→ P (S (3)) is viscoplastic of gradient
type if there exist a convex function M0 : S(3)→ R such that

M (T ) = ∂M0 (T ) .

1.2. Main results.
In [3] K. Che lmiński introduce the coercive approximation process of model (1.1).
Moreover, in [3] author proved that the approximate solutions converge to the solu-
tion of the original problem. However, in order to obtain needed estimates author
assumed weak safe-load condition in the following form

Definition 1.2 (weak safe-load condition).
We say that the functions gD, gN satisfy the weak safe-load conditions if there exist
the initial conditions u∗0, u

∗
1 ∈ H1(Ω;R3) and the function F ∗ ∈ H1(0, Te;L

2(Ω;R3))
such that, there exists a solution (u∗, T ∗) of the linear system

ρu∗tt(x, t)− divxT
∗(x, t) = F ∗(x, t),

T ∗(x, t) = D(ε(u∗(x, t))),

with the initial–boundary conditions

u∗(x, 0) = u∗0(x) for x ∈ Ω,
u∗t (x, 0) = u∗1(x) for x ∈ Ω,
u∗(x, t) = gD(x, t) for x ∈ ΓD, t > 0,

T ∗(x, t)n(x) = gN (x, t) for x ∈ ΓN , t > 0,

and the regularity

u∗ ∈W 2,∞(0, Te;L
2(Ω;R3)), ε (u∗) ∈W 1,∞(0, Te;L

2(Ω;S3)),

T ∗ ∈ L∞(0, Te;L
∞(Ω;S3)).
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This indirect assumption on data is very difficult to check (especially in the case of
mixed boundary conditions). Therefore, natural question arise: If such assumption is
needed in case of viscoplasticity?

Now we are able to answer this question. It occurs that in order to prove the
existence of solution to viscoplasticity problem the weak safe-load condition can be
completely omitted. Namely, we are able to proof the following theorem

Theorem 1.3 (Main result).
Consider dynamical model of viscoplasticity (1.1) (where constitutive function is vis-
coplastic of gradient type) with the initial-boundary conditions (1.2)–(1.3). Assume
that the initial conditions, boundary data and external force satisfy (2.1)–(2.5) then,
there exists a solution (u, εp, T ) in the sense of Definition 2.2.

2. General information.
Before we start the main part of the discussion we would like to introduce regularity
assumptions then it is important to define the notation of a solution. Finally in the
last part of this section we introduce coercive approximation of the problem (1.1)–(1.3)
along with the existence result for approximate model.

2.1. Regularity assumption on data.
First of all let us state the regularity assumptions for needed data. To obtain existence
of solution to the problem (1.1)–(1.3) we assume the following (it is worth mentioning
that in fact we can prove existence under slightly lower assumption on data but, for
simplicity, we state them this way).
• Regularities of the external force

F ∈ H1(0, Te;L
2(Ω;R3)). (2.1)

• Regularities of the boundary conditions

gD ∈W 3,∞(0, Te;H
3
2 (ΓD;R3)),

gN ∈W 2,∞ (0, Te;L∞
(
ΓN ;R3

))
∩W 2,∞

(
0, Te;H

− 1
2

(
ΓN ;R3

))
,

(2.2)

• Regularities of the initial conditions

u0 ∈ H2(Ω;R3), u1 ∈ H1(Ω;R3), εp0 ∈ L2
div(Ω;S(3)). (2.3)

Moreover, we require compatibility conditions of the form

u0(x) = gD(x, 0), x ∈ ΓD,
u1(x) = gD,t(x, 0), x ∈ ΓD,

T0 (x)n(x) = gN (x, 0), x ∈ ΓN ,
(2.4)

where T0 (x) := D (ε(u0(x))− εp0(x)) is an initial stress.
We also need to assume that the initial stress lies in a domain of the constitutive

multifunction M , which means

Definition 2.1.
The initial data (u0, ε

p
0) are said to be admissible for problem (1.1) if

∃M∗ ∈ L2 (Ω;S (3)) such that M∗(x) ∈M (D (ε(u0(x))− εp0(x))) (2.5)

for almost every x ∈ Ω.
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2.2. Definition of solution.
We were able to obtain solution in the same sense as it is done in [3]. Our solution
satisfy problem (1.1) almost everywhere. Namely

Definition 2.2 (Solution).
We say that (u, εp, T ) is a solution of the problem (1.1)–(1.3) if:
1. The following regularities are satisfied

u ∈W 2,∞ (0, Te;L2
(
Ω;R3

))
, ε (u) ∈W 1,1

(
0, Te;L

1 (Ω;S(3))
)
,

εp ∈W 1,1
(
0, Te;L

1 (Ω;S(3))
)
,

T ∈W 1,∞ (0, Te;L2 (Ω;S(3))
)
, div T ∈ L∞

(
0, Te;L

2
(
Ω;R3

))
.

2. For almost every (x, t) ∈ Ω× (0, Te) the following problem is satisfied

ρutt(x, t)− div T (x, t) = F (x, t),

T (x, t) = D (ε (u (x, t))− εp (x, t)) ,

εpt (x, t) ∈M (T (x, t)) .

3. By γ let us denote the trace operator. Then

γ|ΓD×[0,Te] (u) = gD,

γ|ΓN×[0,Te] (T n) = gN .

4. For almost every x ∈ Ω initial conditions:

u(x, 0) = u0(x), ut(x, 0) = u1(x), εp(x, 0) = εp0(x)

are satisfied.

2.3. Approximation of the model.
Observe that the free energy of (1.1) is given by

ρψ(ε, εp)(t) =
1

2
D(ε− εp)(ε− εp).

The energy is only a positive semi–definite quadratic form and therefore our system
is non-coercive (for details see [1]). The lack of coercivity significantly hinders the
analysis. As a remedy we introduce a standard idea of the coercive approximation
(see for example [3]) of (1.1) as follows

ρ uktt(x, t)− divxT
k(x, t) = F (x, t),

T k(x, t) = D
((

1 +
1

k

)
ε(uk(x, t))− εp,k(x, t)

)
,

T̂ k(x, t) = T k(x, t)− 1

k
D(ε(uk(x, t))),

εp,kt (x, t) ∈ ∂M0(T̂ k(x, t)),

(2.6)

where k > 1.
Now if we fix k, the free energy of (2.6) is given by

ρψk
(
εk, εp,k

)
(t) =

1

2
D
(
εk − εp,k

) (
εk − εp,k

)
+

1

2k
D
(
εk
)
εk.
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One can see that now the energy is a positive-definite quadratic form. Models with
that type of energy are called coercive. The total energy of the discussed model is in
the form

Ek(uk,λt , εk,λ, εp,k,λ)(t) =
ρ

2

∫

Ω

∣∣∣uk,λt (x, t)
∣∣∣
2

dx+

∫

Ω

ρψk
(
εk,λ(x, t), εp,k,λ(x, t)

)
dx.

Now we can state the existence result for model (2.6).

Theorem 2.3 (Existence of solution to problem (2.6)).
Assume that the initial conditions u0, u1, εp0, given boundary data gD, gN and external
forces F , have the regularity (2.1)–(2.3). Moreover, suppose that initial data are
admissible and along with boundary data satisfy the compatibility conditions (2.4).
Then, for every k ∈ N+, there exists a unique solution (uk, εp,k, T k) of (2.6) with the
initial-boundary conditions (1.2)–(1.3) such that

uk ∈W 2,∞ (0, Te;L2(Ω;R3)
)
, ε(uk) ∈W 1,∞ (0, Te;L2(Ω;S(3))

)
,

εp,k ∈W 1,∞ (0, Te;L2(Ω;S(3))
)
, divT k ∈ L∞

(
0, Te;L

2
(
Ω;R3

))
.

Proof of Theorem 2.3 is very similar to the proof presented in [5, section 4 and
5] (computation is very similar however it have to be done for plasticity not for poro-
plasticity model). Main idea of the proof is quite simple. One have to approximate
differential inclusion be sequence of differential equations given by

εp,k,λt (x, t) = (∂M0)
λ
(
T̂ k,λ(x, t)

)
,

where (∂M0)
λ

denotes the Yosida approximation of the operator ∂M0. This approxi-
mation is maximal-monotone and globally Lipschitz with Lipschitz constant 1/λ (for
details see [2]). Then, in the case when the right hand side of a constitutive equation
is globally Lipschitz vector field, one can prove existence by the same reasoning as in
[5, section 4] (Galerkin approximation and fixed point method). Therefore, in order
to obtain solution to (2.6) for any fixed k one have to pass to the limit with λ in its
Yosida approximation which also can be done due to quite standard reasoning (see
for example [5, secton 5] or [6, section 4]).

3. Passing to the limit in coercive approximation.
The main part of the classic existence proof, where weak safe-load condition is needed,
is proving the energy estimates (see [3, Theorem 3]). In the rest of the proof [3, The-
orems 4,5,6] this assumption is not essential. Therefore, here we are going to present
only the quick sketch of the proof of energy estimates and the rest of reasoning will
be omitted.

Theorem 3.1 (Energy estimates).
Assume (2.1)–(2.5) then, for every t ∈ [0, Te] the following estimates hold:

ess sup
τ∈(0,t)

Ek
(
ukt , ε

k, εp,k
)

(τ) +

t∫

0

∫

Ω

εp,kt T̂ k dxdτ 6 C, (3.1)

ess sup
τ∈(0,t)

Ek
(
uktt, ε

k
t , ε

p,k
t

)
(τ) 6 C, (3.2)
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∥∥∥εp,kt
∥∥∥
L∞(0,t;L1(Ω))

6 C, (3.3)

where (uk, εp,k) is a solution of (2.6) with the initial-boundary conditions (1.2)–(1.3).
Constant C > 0 is independent of k and t.

Proof.
Firstly, one have to prove the following

ess sup
τ∈(0,t)

Ek
(
uktt, ε

k
t , ε

p,k
t

)
(t) 6 C + C

∥∥∥εp,kt
∥∥∥
L∞(0,t;L1(Ω))

for a.e. t ∈ (0, Te). (a)

To begin let us introduce a special notation for translated in time function, i.e.
(
ukt,h(t), εkh(t), εp,kh (t)

)
:=
(
ukt (t+ h), εk(t+ h), εp,k(t+ h)

)
,

where h > 0 is a sufficiently small constant.

Then, computing 1
h2

d
dtEk

(
ukt,h − ukt , εkh − εk, εp,kh − εp,k

)
(t) and using similar meth-

ods as presented in [4, Theorem 7.1] in order to pass to the limit with h give

Ek
(
uktt, ε

k
t , ε

p,k
t

)
(t) 6C ·

(∥∥ukt
∥∥
L∞(0,t;L1(∂Ω))

+
∥∥T kn

∥∥
L∞

(
0,t;H−

1
2 (∂Ω)

)
)

+ C(ν) + ν · Ek
(
uktt, ε

k
t , ε

p,k
t

)
(t),

(3.4)

where ν is an arbitrary positive constant. Using trace theorems and some elementary
inequalities allows to obtain:

∥∥T k(t)n
∥∥
H−

1
2 (∂Ω)

6 C(ν) + ν · ess sup
(0,t)

Ek(uktt, ε
k
t , ε

p,k
t )(t). (3.5)

∥∥ukt (t)
∥∥
L1(∂Ω)

6C (ν) + C
∥∥∥εp,kt

∥∥∥
L∞(0,t;L1)

+ ν · ess sup
(0,t)

Ek(uktt, ε
k
t , ε

p,k
t )(t). (3.6)

Using (3.5) and (3.6) in (3.4), taking the supremum over (0, t) and fixing a sufficiently
small ν finally give (a).

Secondly, one have to prove that

ess sup
τ∈(0,t)

Ek
(
ukt , ε

k, εp,k
)

(τ) +

t∫

0

∫

Ω

εp,kt T̂ k dxdτ 6C(µ1) + µ1

∥∥∥εp,kt
∥∥∥
L∞(0,t;L1(Ω))

+ C
∥∥∥εp,kt

∥∥∥
L1(0,t;L1(Ω))

,

(b)

where µ1 is an arbitrary positive constant.
We start by computing d

dtEk
(
ukt , ε

k, εp,k
)

(t) then, after using few elementary
estimates and integrating over time (0, t) one can obtain

Ek
(
ukt , ε

k, εp,k
)

(t) +

t∫

0

∫

Ω

εp,kt T̂ k dxdτ 6C(ν) + ν · ess sup
(0,t)

Ek
(
ukt , ε

k, εp,k
)

+ C
∥∥T kn

∥∥
L∞

(
0,t;H−

1
2 (∂Ω)

)

+ C
∥∥ukt

∥∥
L1(0,t;L1(∂Ω))

,

(3.7)
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where ν is an arbitrary positive constant. By using trace theorems and some elemen-
tary inequalities one can prove the following inequalities

∥∥T k(t)n
∥∥
H−

1
2 (∂Ω)

6C(ν, µ1) + ν · ess sup
(0,t)

Ek(ukt , ε
k, εp,k)(t)

+
µ1

2

∥∥∥εp,kt
∥∥∥
L∞(0,t;L1(Ω))

.
(3.8)

∥∥ukt
∥∥
L1(0,t;L1(∂Ω))

6C (ν, µ1) +
µ1

2

∥∥∥εp,kt
∥∥∥
L∞(0,t;L1(Ω))

+ C
∥∥∥εp,kt

∥∥∥
L1(0,t;L1(Ω))

+ ν · ess sup
(0,t)

Ek(ukt , ε
k, εp,k)(t).

(3.9)

Hence, by using (3.8) and (3.9) in (3.7), taking the supremum over (0, t) and, fixing
sufficiently small ν > 0 one can obtain (b).

As a third step one have to prove the following inequality:
∥∥∥εp,kt

∥∥∥
L1(0,t;L1(Ω))

6 C (µ2) + µ2

∥∥∥εp,kt
∥∥∥
L∞(0,t;L1(Ω))

, (c)

where µ2 is an arbitrary positive constant.
Due to the monotonicity of ∂M0 one can obtain that for any δ0 > 0 the following

inequality holds
∣∣∣εp,kt

∣∣∣ 6 1

δ0
εp,kt T̂ k +

1

δ0
sup
|σ|6δ0

|m (∂M0 (σ))|
(∣∣∣T̂ k

∣∣∣+ δ0

)
, (3.10)

where m (∂M0 (σ)) is the element of ∂M0 (σ) of minimal norm.
Integrating (3.10) over Ω× (0, t) for t 6 Te, using some elementary inequalities along
with (b) and fixing a sufficiently large δ0 (it is possible due to viscoplasticity assump-
tion) give (c).

In the last step one have to prove that
∥∥∥εp,kt (τ)

∥∥∥
L∞(0,t;L1(Ω))

6 C. (d)

which finally allows to close estimates (c), (b) (a) and therefore ends the proof.
Using inequality (c) in (b) gives

Ek
(
ukt , ε

k, εp,k
)

(t) +

t∫

0

∫

Ω

εp,kt T̂ k dxdτ 6 C(µ) + µ
∥∥∥εp,kt

∥∥∥
L∞(0,t;L1(Ω))

, (3.11)

where µ > 0 is an arbitrary constant.
After integrating (3.10) over Ω and using some elementary inequalities along with
(3.11) one can obtain for almost every t ∈ (0, Te)
∥∥∥εp,kt (t)

∥∥∥
L1(Ω)

6 1

δ0

∫

Ω

εp,kt (t) T̂ k(t) dx+ µ
∥∥∥εp,kt

∥∥∥
L∞(0,t;L1(Ω))

+ C(µ, δ0). (3.12)

Computing d
dtEk

(
ukt , ε

k, εp,k
)

(t) and using standard inequalities lead to
∫

Ω

εp,kt (t) T̂ k(t) dx 6C − d

dt

(
Ek
(
ukt , ε

k, εp,k
)

(t)
)

+ Ek
(
ukt , ε

k, εp,k
)

(t)

+ C
∥∥T k(t)n

∥∥
H−

1
2 (∂Ω)

+ C
∥∥ukt (t)

∥∥
L1(∂Ω)

.

(3.13)
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Using (3.5) and (3.6) along with (a) leads to

∥∥T k(t)n
∥∥
H−

1
2 (∂Ω)

+
∥∥ukt (t)

∥∥
L1(∂Ω)

6 C + C
∥∥∥εp,kt

∥∥∥
L∞(0,t;L1(Ω))

. (3.14)

Using (3.11), (3.14) and (a) in (3.13) yields for almost every t ∈ (0, Te)

∫

Ω

εp,kt (t) T̂ k(t) dx 6C + C
∥∥∥εp,kt

∥∥∥
L∞(0,t;L1(Ω))

. (3.15)

After inserting (3.15) into (3.12), taking the essential supremum, fixing sufficiently
small µ > 0 and sufficiently large δ0 > 0 (possible because constitutive function is
viscoplastic) one can finally obtain (d), which ends the proof.
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NONLINEAR DIFFUSION EQUATIONS WITH PERTURBATION
TERMS ON UNBOUNDED DOMAINS

SHUNSUKE KURIMA∗

Abstract. This paper considers the initial-boundary value problem for the nonlinear diffusion
equation with the perturbation term

ut + (−∆ + 1)β(u) +G(u) = g in Ω× (0, T )

in an unbounded domain Ω ⊂ RN with smooth bounded boundary, where N ∈ N, T > 0, β is a
single-valued maximal monotone function on R, e.g.,

β(r) = |r|q−1r (q > 0, q 6= 1)

and G is a function on R which can be regarded as a Lipschitz continuous operator from (H1(Ω))∗

to (H1(Ω))∗. The present work establishes existence and estimates for the above problem.

Key words. porous media equations, fast diffusion equations, subdifferential operators

AMS subject classifications. 35K59, 35K35, 47H05

1. Introduction. In this paper we consider the initial-boundary value problem
for the nonlinear diffusion equation with the perturbation term





ut + (−∆ + 1)β(u) +G(u) = g in Ω× (0, T ),

∂νβ(u) = 0 on ∂Ω× (0, T ),

u(0) = u0 in Ω,

(P)

where Ω is an unbounded domain in RN (N ∈ N) with smooth bounded boundary
∂Ω (e.g., Ω = RN \ B(0, R), where B(0, R) is the open ball with center 0 and radius
R > 0) or Ω = RN or Ω = RN+ , T > 0, and ∂ν denotes the derivative with respect to
the outward normal of ∂Ω. Though the precise conditions for β, G, g and u0 will be
given in (A1)-(A4) stated later, we roughly explain that β is a single-valued maximal
monotone function, e.g.,

β(r) = |r|q−1r,

where the problem is the porous media equation in the case that q > 1 (see e.g.,
[1, 13, 17, 18]) and is the fast diffusion equation in the case that 0 < q < 1 (see e.g.,
[5, 15, 17]); G can be regarded as a Lipschitz continuous operator from (H1(Ω))∗ to
(H1(Ω))∗; g and u0 are known functions.

Nonlinear diffusion equations on unbounded domains are not so substantially
studied from a viewpoint of the operator theory, whereas in the case that Ω = RN
the equations are studied by the method of real analysis (see e.g., [11]). The case
of unbounded domains would be important in both mathematics and physics. Also,
since compact methods do not work directly on unbounded domains, it would be worth
studying the case of unbounded domains mathematically. Also, the perturbation term
G(u) makes proving existence for (P) without growth conditions for β be difficult (see

∗Department of Mathematics, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo
162-8601, Japan (shunsuke.kurima@gmail.com).
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Remark in the end of this section). Although we give an example ofG only asG(u) = u
in this paper, if we can weaken the condition for G and we can take G(u) = −β(u),
then we can possibly deal with the “pure” diffusion equation as ut −∆β(u) = g.

In the case that G ≡ 0, in [12] and [9], existence of weak solutions to (P) and
their estimates were shown by monotonicity methods.

The new point of this paper is that the perturbation term “G(u)” is added to the
left-hand side of the equation ut + (−∆ + 1)β(u) = g studied in [12] and [9]. The
purpose of this paper is to show existence of weak solutions to (P) and to obtain their
estimates. In particular, we prove existence for (P) by using Brézis’s theory which is
a monotonicity method for an abstract evolution equation including a subdifferential
operator and a perturbation term.

We first give assumptions, notations and definitions used in this paper before
introducing main results.

Assume that β, G, g and u0 satisfy the following conditions:

(A1) The following (A1a), (A1b) and (A1c) hold:
(A1a) β : R→ R is a single-valued maximal monotone function and

β(r) = β̂ ′(r) = ∂β̂(r),

where β̂ ′ and ∂β̂ respectively denote the differential and subdifferential
of a proper differentiable (lower semicontinuous) convex function β̂ :

R→ [0,+∞] satisfying β̂(0) = 0. This entails β(0) = 0.
(A1b) There exist constants m > 1 and c0, c

′
0 > 0 such that for all r ∈ R,

β̂(r) ≥ c0|r|m

and

|β(r)| ≤ c′0|r|m−1

hold.
(A1c) For all z ∈ H1(Ω), if β̂(z) ∈ L1(Ω), then β(z) ∈ L1

loc(Ω). For all

z ∈ H1(Ω) and all ψ ∈ C∞c (Ω), if β̂(z) ∈ L1(Ω), then β̂(z+ψ) ∈ L1(Ω).

(A2) G : (H1(Ω))∗ → (H1(Ω))∗ is a Lipschitz continuous operator.

(A3) g ∈ L2
(
0, T ;L2(Ω)

)
.

(A4) u0 ∈ L2(Ω) and β̂(u0) ∈ L1(Ω).

From (A3) we can fix a solution f ∈ L2
(
0, T ;H2(Ω)

)
of

{
(−∆ + 1)f(t) = g(t) a.e. in Ω,

∂νf(t) = 0 in the sense of traces on ∂Ω

for a.a. t ∈ (0, T ), that is,
∫

Ω

∇f(t) · ∇z +

∫

Ω

f(t)z =

∫

Ω

g(t)z for all z ∈ H1(Ω).

An example of (A2) is given as G(v∗) = v∗ for all v∗ ∈ (H1(Ω))∗.
We define the Hilbert spaces

H := L2(Ω), V := H1(Ω)
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with inner products (·, ·)H and (·, ·)V , respectively. Moreover we put

W :=
{
z ∈ H2(Ω) | ∂νz = 0 a.e. on ∂Ω

}
.

The notation V ∗ denotes the dual space of V with duality pairing 〈·, ·〉V ∗,V . Moreover
the Riesz representation theorem ensures the existence of a bijective mapping F : V →
V ∗ satisfying

〈Fv1, v2〉V ∗,V := (v1, v2)V for all v1, v2 ∈ V

and we define the inner product in V ∗ as

(v∗1 , v
∗
2)V ∗ :=

〈
v∗1 , F

−1v∗2
〉
V ∗,V

for all v∗1 , v
∗
2 ∈ V ∗.

We remark that (A3) implies

Ff(t) = g(t) for a.a. t ∈ (0, T ). (1.1)

We give the definition of weak solutions to (P).
Definition 1.1. A pair (u, µ) with

u ∈ H1(0, T ;V ∗), µ ∈ L2(0, T ;V )

is called a weak solution of (P) if (u, µ) satisfies

〈
u′(t) +G(u(t)), z

〉
V ∗,V

+
(
µ(t), z

)
V

= 0 for all z ∈ V and a.a. t ∈ (0, T ), (1.2)

µ(t) = β(u(t))− f(t) in V for a.a. t ∈ (0, T ), (1.3)

u(0) = u0 a.e. on Ω. (1.4)

We next state the main result which asserts existence and estimates for (P).

Theorem 1.2. Assume (A1)-(A4). Then there exists a unique weak solution
(u, µ) of (P) satisfying u ∈ H1(0, T ;V ∗), µ ∈ L2(0, T ;V ). Moreover, if it holds that
G(v∗) = av∗ for v∗ ∈ V ∗, where a ∈ R, then there exists a constant M > 0 such that
for a.a. t ∈ (0, T ), u(t) ∈ H and

|u(t)|2H ≤M, (1.5)
∫ t

0

∣∣u′(s)
∣∣2
V ∗
ds+ a|u(t)|2V ∗ ≤M, (1.6)

∫ t

0

|µ(s)|2V ds ≤M, (1.7)

∫ t

0

|β(u(s))|2V ds ≤M. (1.8)

In the case that G ≡ 0, in [12], existence of weak solutions to (P) was proved by
rewriting (P) to

u′(t) + ∂φ(u(t)) = g(t) in V ∗,

where φ is a proper lower semicontinuous convex function on V ∗ and ∂φ is the subdif-
ferential of φ, and by applying Brézis’s theory ([3, Theorem 3.6]). Also, the m-growth
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condition for β was assumed to derive the lower semicontinuity of φ : V ∗ → R. The
examples are the porous media equation and the fast diffusion equation. Recently, in
[9], the approximation

u′ε(t) + (−∆ + 1)(ε(−∆ + 1)uε(t) + β(uε(t)) + πε(uε(t))) = g (P)ε

was considered and existence of weak solutions to (P)ε with their estimates was shown;
moreover, existence of weak solutions to (P) with their estimates was obtained without
growth conditions for β, and existence of weak solutions to (P), their estimates were
obtained without growth conditions for β by passing to the limit in (P)ε as ε ↘ 0.
In addition to the porous media equation and fast diffusion equation, the examples
of (P) include the Stefan problem (see e.g., [2, 4, 6, 7, 8, 10]) which is described by
(P) with

β(r) =





ksr if r < 0,

0 if 0 ≤ r ≤ L,
k`(r − L) if r > L

for all r ∈ R, where ks, k`, L are positive constants.
The strategy for the proof of Theorem 1.2 is to prove existence for (P) under

the m-growth condition for β by setting some proper lower semicontinuous convex
function φ : V ∗ → R appropriately as in [12, Section 3], by rewriting (P) to

u′(t) + ∂φ(u(t)) +G(u(t)) = g in V ∗

and by applying Brézis’s theory to the above abstract evolution equation with the
perturbation term.

Remark. At the moment, we do not know whether existence of weak solutions to
(P) can be proved in a similar way to [9] or not. Since existence of weak solutions to
the approximation of (P)

u′ε(t) + (−∆ + 1)
(
ε(−∆ + 1)uε(t) + β(uε(t)) + πε(uε(t))

)
+G(uε(t)) = g (1.9)

can be proved in a similar way to the above strategy for (P), we can prove existence
of weak solutions to (P) by passing the limit in (1.9) if we can obtain estimates for
(1.9). In this paper we will directly prove existence of weak solutions to (P) under the
m-growth condition for β without approximation (1.9). We hope that we can avoid
growth conditions for β in a future work.

The plan of this paper is as follows. In Section 2 we prove existence of weak
solutions to (P). Section 3 obtains estimates for (P). In Section 4 we present the
porous media equation and the fast diffusion equation as examples of (P).

2. Proof of Theorem 1.2 (existence). In this section we will prove existence
of a unique weak solution to (P). The following lemma is known in the Brézis’s theory
for a nonlinear evolution equation with a perturbation term including a subdifferential
operator (see e.g., [3, Proposition 3.12]) and plays an important role in this section.

Lemma 2.1. Let X be a real Hilbert space, let ψ : X → R be a proper l.s.c.
convex function and let G : X → X be a Lipschitz continuous operator. If u0 ∈ D(ψ)
and f̃ ∈ L2(0, T ;X), then there exists a unique function u such that u ∈ H1(0, T ;X),
u(t) ∈ D(∂ψ) for a.a. t ∈ (0, T ) and u solves the following initial value problem:

{
u′(t) + ∂ψ(u(t)) +G(u(t)) 3 f̃(t) in X for a.a. t ∈ (0, T ),

u(0) = u0 in X.



NONLINEAR DIFFUSION EQUATIONS WITH PERTURBATION TERMS 41

Proof of Theorem 1.2 (existence). Defining φ : V ∗ → R as

φ(z) =





∫

Ω

β̂(z(x)) dx if z ∈ D(φ) := {z ∈ V ∗ ∩ Lm(Ω) | β̂(z) ∈ L1(Ω)},

+∞ otherwise,

we deduce from [12, Section 3] that this φ is proper lower semicontinuous convex on
V ∗ and

β(z) ∈ V, ∂φ(z) = Fβ(z) (2.1)

hold for all z ∈ D(∂φ). Hence, from (1.1) and (2.1) we can rewrite (1.2)-(1.4) in
Definition 1.1 to




u′(t) + ∂φ(u(t)) +G(u(t)) = g(t) in V ∗ for a.a. t ∈ [0, T ],

u(0) = u0 in V ∗.
(2.2)

Invoking Lemma 2.1, we can find a unique solution u ∈ H1(0, T ;V ∗) of (2.2) and
u(t) ∈ D(∂φ) for a.a. t ∈ (0, T ). Hence there exists a unique weak solution of (P).

3. Proof of Theorem 1.2 (estimates). We will obtain the estimates for weak
solutions of (P) in this section.

Proof of Theorem 1.2 (estimates). In addition to (A2) we assume further that

G(v∗) = av∗

for all v∗ ∈ V ∗, where a ∈ R. For λ > 0 we put

A := −∆ : D(A) := W ⊂ H → H,

Jλ := (I + λA)−1 : H → H,

Aλ := λ−1(I − Jλ) : H → H,

and

Ã := F − I : V → V ∗,

J̃λ :=
(
I + λÃ

)−1
: V ∗ → V.

Let u ∈ H1(0, T ;V ∗) be a unique solution of (2.2). We first show (1.5). Noting that

J̃
1/2
λ : V ∗ → H is defined as a bounded operator (see e.g., [14, Lemma 3.3]) and

putting

uλ(t) := J̃
1/2
λ u(t) for all t ∈ (0, T ),

we derive from [12, Lemma 3.3] that

uλ ∈ H1(0, T ;H)

and

u′λ(t) + J̃
1/2
λ Fβ(u(t)) + J̃

1/2
λ G(u(t)) = J

1/2
λ g(t).
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Then we obtain

1

2

d

ds
|uλ(s)|2H ≤

1

2
|g(s)|2H +

1

2
|uλ(s)|2H +

(
J̃

1/2
λ G(u(s)), uλ(s)

)
H

(3.1)

in a similar way to [12, Section 3]. Here we have

(
J̃

1/2
λ G(u(s)), uλ(s)

)
H

= a
(
J̃

1/2
λ u(s), uλ(s)

)
H

= a|uλ(s)|2H . (3.2)

Thus combining (3.1) and (3.2) yields

1

2

d

ds
|uλ(s)|2H ≤

1

2
|g(s)|2H +

(
a+

1

2

)
|uλ(s)|2H ,

and hence the inequality

|uλ(t)|2H ≤ e|2a+1|T |u0|2H + e|2a+1|T |g|2L2(0,T ;H)

holds for all t ∈ (0, T ). Therefore it follows from a similar way to [12, Section 3, Proof
of Theorem 1.1 (continued)] that for a.a. t ∈ (0, T ),

u(t) ∈ H

and there exists a positive constant C such that

‖u‖L∞(0,T ;H) ≤ C,

which means that the estimate (1.5) holds.
Next we verify (1.6). The equation in (2.2) yields that

∣∣u′(s)
∣∣2
V ∗

= −
(
u′(s), ∂φ(u(s))

)
V ∗

+
(
u′(s), Ff(s)

)
V ∗
− a
(
u′(s), u(s)

)
V ∗

= −
(
u′(s), ∂φ(u(s))

)
V ∗

+
(
u′(s), Ff(s)

)
V ∗
− a

2

d

ds
|u(s)|2V ∗ . (3.3)

Here we have

(
u′(s), ∂φ(u(s))

)
V ∗

=
d

ds
φ(u(s))

(see e.g., Showalter [16, Lemma IV.4.3]) and it follows from the definition of (·, ·)V ∗
and Young’s inequality that

(
u′(s), Ff(s)

)
V ∗

=
〈
u′(s), f(s)

〉
V ∗,V

≤ 1

2

∣∣u′(s)
∣∣2
V ∗

+
1

2
|f(s)|2V .

Integrating (3.3) combined with these facts leads to the inequality

1

2

∫ t

0

∣∣u′(s)
∣∣2
V ∗
ds ≤ −φ(u(t)) + φ(u0) +

1

2
|f |2L2(0,T ;V ) −

a

2
|u(t)|2V ∗ +

a

2
|u0|2V ∗ ,

i.e.,

1

2

∫ t

0

∣∣u′(s)
∣∣2
V ∗
ds+

∫

Ω

β̂(u(t)) +
a

2
|u(t)|2V ∗ ≤

∫

Ω

β̂(u0) +
1

2
|f |2L2(0,T ;V ) +

a

2
|u0|2V ∗ .
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Since (A1a) implies

∫

Ω

β̂(u(t)) ≥ 0,

it holds that

∫ t

0

∣∣u′(s)
∣∣2
V ∗
ds+ a|u(t)|2V ∗ ≤ 2

∫

Ω

β̂(u0) + |f |2L2(0,T ;V ) + a|u0|2V ∗ .

Next we show (1.7). The fact that µ(s) = −F−1
(
u′(s)

)
implies

∫ t

0

|µ(s)|2V ds =

∫ t

0

∣∣F−1
(
u′(s)

)∣∣2
V
ds

=

∫ t

0

∣∣u′(s)
∣∣2
V ∗
ds.

Hence (1.7) can be obtained from (1.6).

Next we prove (1.8). We see from (1.3) and the definition of µ(·) that

|β(u(s))|2V =
(
−F−1

(
u′(s)

)
− au(s) + f(s), β(u(s))

)
V

≤
(∣∣F−1

(
u′(s)

)∣∣
V

+ |a||u(s)|V ∗ + |f(s)|V
)
|β(u(s))|V

≤
∣∣F−1

(
u′(s)

)∣∣2
V

+ a2|u(s)|2V ∗ + |f(s)|2V +
3

4
|β(u(s))|2V

=
∣∣u′(s)

∣∣2
V ∗

+ a2|u(s)|2V ∗ + |f(s)|2V +
3

4
|β(u(s))|2V .

Integrating this inequality, we have

∫ t

0

|β(u(s))|2V ds ≤ 4

∫ t

0

∣∣u′(s)
∣∣2
V ∗
ds+ 4a2

∫ t

0

|u(s)|2V ∗ ds+ 4|f |2L2(0,T ;V ).

Therefore there exists a constant M > 0 satisfying (1.5), (1.6), (1.7) and (1.8). More-
over, (1.5) means that u ∈ L∞(0, T ;H).

4. Examples. An example of G : (H1(Ω))∗ → (H1(Ω))∗ is given by G(v∗) = v∗

for all v∗ ∈ (H1(Ω))∗. As to β, we give the following two examples.

The porous media equation. We consider

β(r) = |r|q−1r (q > 1).

This β is the function in the porous media equation (see e.g., [1, 13, 17, 18]).

The fast diffusion equation. Consider

β(r) = |r|q−1r (0 < q < 1).

This β is the function in the fast diffusion equation (see e.g., [5, 15, 17]).

In both examples we can show that β satisfies (A1), (A4) (see [12, Section 6]).
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Gakkōtosho, Tokyo, 2001.

[8] T. Fukao, Convergence of Cahn–Hilliard systems to the Stefan problem with dynamic boundary
conditions, Asymptot. Anal., 99 (2016), pp. 1–21.

[9] T. Fukao, S. Kurima, and T. Yokota, Nonlinear diffusion equations as asymptotic limits of
Cahn–Hilliard systems on unbounded domains via Cauchy’s criterion, preprint.

[10] A. Haraux and N. Kenmochi, Asymptotic behaviour of solutions to some degenerate parabolic
equations, Funkcial. Ekvac., 34 (1991), pp. 19–38.

[11] C. E. Kenig, “Degenerate Diffusions”, Initial value problems and local regularity theory. EMS
Tracts in Mathematics, 1. European Mathematical Society (EMS), Zürich, 2007.
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ON BEHAVIOR OF SOLUTIONS TO A CHEMOTAXIS SYSTEM
WITH A NONLINEAR SENSITIVITY FUNCTION∗

TAKASI SENBA† AND KENTAROU FUJIE‡

Abstract. In this paper, we consider solutions to the following chemotaxis system with general
sensitivity





τut = ∆u−∇ · (u∇χ(v)) in Ω× (0,∞),
ηvt = ∆v − v + u in Ω× (0,∞),
∂u

∂ν
=
∂u

∂ν
= 0 on ∂Ω× (0,∞).

Here, τ and η are positive constants, χ is a smooth function on (0,∞) satisfying χ′(·) > 0 and Ω is
a bounded domain of Rn (n ≥ 2).

It is well known that the chemotaxis system with direct sensitivity (χ(v) = χ0v, χ0 > 0) has
blowup solutions in the case where n ≥ 2. On the other hand, in the case where χ(v) = χ0 log v with
0 < χ0 � 1, any solution to the system exists globally in time and is bounded.

We present a sufficient condition for the boundedness of solutions to the system and some related
systems.

Key words. Chemotaxis system, nonlinear sensitivity, time-global existence

AMS subject classifications. 35B45, 35K45, 35Q92, 92C17

1. Introduction. We treat this system,

(PP )





τut = ∇ · (∇u− u∇χ(v)) in Ω× (0, T ),
ηvt = ∆v − v + u in Ω× (0, T ),
∂u

∂ν
=
∂v

∂ν
= 0 on ∂Ω× (0, T ),

u(·, 0) = u0, v(·, 0) = v0 in Ω.

Here, η and τ (time constants) are positive constants, Ω ⊂ Rn (n ≥ 2) is a bounded
domain with smooth boundary ∂Ω, χ is smooth on (0,∞) satisfying χ′(v) > 0 (v > 0),
ν = ν(x) is the outer normal unite vector at x ∈ ∂Ω and initial conditions u0 and v0

are positive in Ω.
This system (PP) is introduced to describe the aggregation of cellular slime molds.

Normally the living things move around as individual amoebas, performing a simple
random walk. But when the environmental situation worsens, they suddenly change
their behavior and aggregate to a single milt-cellular body. During this aggregation
process, a chemical signal is secreted by cells to guide the collective movements. Un-
known functions u and v in (PP) represent the density of the living things and the
chemical concentration, respectively.

The maximal principle guarantees that

u > 0 and v > 0 in Ω× (0, Tmax).

∗The first author was partially supported by Grant-in-Aid for Scientific Research (C) (No.
26400172), Japan Society for the Promotion of Science.
†Faculty of Science, Fukuoka University, Fukuoka, 814-0180,JAPAN (senba@fukuoka-u.ac.jp).
‡Faculty of Science Division I, Tokyo University of Science, Tokyo, 162-8601, JAPAN

(fujie@rs.tus.ac.jp).
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Here, Tmax is the maximal existence time of the classical solution (u, v). It follows
from the boundary condition that

‖u(t)‖L1(Ω) = ‖u0‖L1(Ω) for t ∈ [0, Tmax).(1.1)

The function χ(v) represents the relation between the movement of cells and the
chemical concentration. The term uχ′(v)∇v represents the flow due to the stimulus
of the chemical substance. This property is so called chemotaxis. Then, the positivity
of χ′ means that the chemical substance is an attractant. When χ(v) = av and a is
positive constant, we refer to this function as linear sensitivity function. The following
functions are used in biological models frequently.

χ(v) = av, a log v,
av

b+ v
(a > 0, b > 0).

Except the linear sensitivity function, they satisfy that

lim
v→∞

χ′(v) = 0.(1.2)

This property represents saturation of the stimulus.
The following are our problem and our landmark.

Our problem
(i) Find a condition of sensitivity functions for the boundedness of solutions.
(ii) Find a condition of sensitivity functions for the existence of blowup solutions.
Our conjecture
(i) All solutions exist globally in time and are bounded, if one of the following two
conditions holds:
· limv→∞ χ′(v) = 0 and n = 2, or
· lim supv→∞ vχ′(v) < n

n−2 and n ≥ 3.
(ii) There exist blowup solutions, if lim supv→∞ vχ′(v) > n

n−2 and n ≥ 3.

Here, we say that a solution (u, v) to (PP) blows up at a time T, if

lim sup
t→T

(
‖u(t)‖L∞(Ω) + ‖v(t)‖L∞(Ω)

)
=∞.

2. Known results. In this section, we describe known results.
Firstly, we describe those in the case where χ(v) is a linear function.
Theorem 2.1. Suppose that χ(v) = χ1v, χ1 > 0, η > 0 and τ > 0 and that Ω is

a bounded domain of Rn (n ≥ 2) with smooth boundary. Then, the following hold:
(i) Suppose n = 2. Then, solutions exist globally in time and are bounded, if one of

the following two conditions holds ([10]):
· ‖u0‖L1(Ω) < 4π/χ1, or
· Ω is a bounded disk and u0 is a radial function satisfying ‖u0‖L1(Ω) < 8π/χ1.

(ii) If Ω is a bounded disk of R2 and u0 is a radial function satisfying ‖u0‖L1(Ω) >
8π/χ1, there are blowup solutions ([7]).

(iii) If Ω is a bounded ball of Rn (n ≥ 3), there are blowup solutions ([16]).
Then, in the linear sensitivity case, the behavior of solutions depends on the

constant χ1 and the L1 norm of the solution u if n = 2, and there exist blowup
solutions for any positive constant χ1 if n ≥ 3.

When χ is a nonlinear function satisfying (1.2), classical solutions to (PP) satisfy
the following properties.

Theorem 2.2. Suppose that Ω is a bounded domain of Rn (n ≥ 2) with smooth
boundary. Then, the following hold:
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(i) If χ′(v) ≤ a/(b + v)p, a > 0 and p > 1, solutions to (PP) exist globally in time
and are bounded ([14, 5]).

(ii) If χ(v) = a log v and a <
√

2/n, solutions to (PP) exist globally in time and are
bounded ([15, 1]).

The above sensitivity functions χ(v) satisfy that lim supv→∞ vχ′(v) <
√

2/n.
Then, those conditions for global existence of classical solutions are not critical in the
sense of our conjecture.

3. limiting systems. When the sensitivity function is a linear function, the
condition for global existence of classical solutions is critical. The condition comes
from a Lyapunov function and the Trudinger-Moser inequality ([10, 7, 16]). On the
other hand, when the sensitivity function is not linear, it seems that conditions pre-
sented at the moment are not critical. In this case, we do not have any tools such as
the Lyapunov function. Then, we consider the limiting system of (PP) as τ or η = 0.
Because, those systems are simpler than (PP).

First, we consider the limiting system of (PP) as τ = 0. For simplicity, we assume
η = 1.

(PE)





ut = ∇ · (∇u− u∇χ(v)) in Ω× (0, T ),
0 = ∆v − v + u in Ω× (0, T ),
∂u

∂ν
=
∂v

∂ν
= 0 on ∂Ω× (0, T ),

u(·, 0) = u0 in Ω.

Classical solutions to this system satisfy the following properties.
Theorem 3.1. Suppose that Ω is a bounded domain of Rn (n ≥ 2) with smooth

boundary and that limv→∞ χ′(v) = 0. Then, the following hold:
(i) If n = 2, solutions to (PE) exist globally in time and are bounded ([2]).
(ii) If n ≥ 3, Ω is a bounded ball, u0 is radial, χ(v) = a log v and a < 2/(n− 2), then

solutions to (PE) exist globally in time and are bounded ([11]).
(iii) If n ≥ 3, Ω is a bounded ball, u0 is radial, χ(v) = a log v and a > 2n/(n − 2),

there are blowup solutions to (PE) ([11]).
We think that the assumption (1.2) is almost necessary condition in two dimen-

sional case. Because, if Ω is a bounded disk of R2 and infv>0 χ
′(v) > 0, we can find

blowup solutions to (PE) by using an argument similar to the one in [9].
In the case of n ≥ 3, the conditions for global existence of solutions and existence

of blowup solutions are not critical. Because, in our conjecture, the critical number
is n/(n− 2).

Next, we consider the limiting system of (PP) as τ = 0. For simplicity, we assume
η = 1.

(EP )





0 = ∇ · (∇u− u∇χ(v)) in Ω× (0, T ),
vt = ∆v − v + u in Ω× (0, T ),
∂u

∂ν
=
∂v

∂ν
= 0 on ∂Ω× (0, T ),

v(·, 0) = v0 in Ω,∫

Ω

u(x, t)dx = λ in (0, T ),

where λ is a given positive constant. The last condition means the conservation of
mass. Since solutions to the original system (PP) satisfy (1.1), then we impose this
property also for solutions to (EP).
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This system (EP) can be transformed into a non-local parabolic equation. In fact,
the first equation and the boundary condition of (EP) guarantee that

log u = χ(v) + C,

where C is a constant. This and the last condition of (EP) ensure that

u =
λ exp(χ(v))∫

Ω
exp(χ(v))dx

.

Therefore, the system (EP) is equivalent to the following system,

(NLP )





vt = ∆v − v +
λ exp(χ(v))∫

Ω
exp(χ(v))dx

in Ω× (0, T ),

u =
λ exp(χ(v))∫

Ω
exp(χ(v))dx

in Ω× (0, T ),

∂v

∂ν
= 0 on ∂Ω× (0, T ),

v(·, 0) = v0 in Ω.

Here, λ is a given positive constant.
Classical solutions to (NLP) satisfy the following properties.
Theorem 3.2 ([12]). Suppose that Ω is a bounded domain of Rn (n ≥ 2) with

smooth boundary and that χ satisfies (1.2). Then, the following hold:
(i) If n = 2, solutions to (NLP) exist globally in time and are bounded.
(ii) If n ≥ 3 and lim supv→∞ vχ′(v) < n/(n− 2), solutions to (NLP) exist globally in

time and are bounded.
(iii) If n ≥ 3, Ω is a bounded ball of Rn, χ(v) = a log v and a > n/(n− 2), there are

blowup solutions to (NLP).
In two dimensional case, (1.2) is the sufficient condition for the global existence

of solutions to (PE) and (NLP). We expect that (1.2) is also the sufficient condition
for (PP). In the case of n ≥ 3, the threshold number n/(n − 2) in Theorem 3.2 is
same as the one in our conjecture. Then, we think that this result is an evidence for
our conjecture.

4. Our results. Considering results on the limiting systems mentioned in the
previous section, we consider also almost limiting systems which are the systems (PP)
in the case where τ or η is sufficient small.

In two dimensional case, classical solutions to those almost systems satisfy the
following properties.

Theorem 4.1 ([3, 4]). Suppose that Ω is a bounded domain of R2 with smooth
boundary and that limv→∞ χ′(v) = 0. Then, the following hold:
(i) If Ω is a bounded disk, (u0, v0) is radial and η is sufficiently small, then solutions

to (PP) exist globally in time and are bounded.
(ii) If Ω is convex and τ is sufficiently small, then solutions to (PP) exist globally in

time and are bounded.
Remark 4.2. If our conjecture is correct, the smallness of constants η and τ and

the symmetry of (u0, v0) are not necessary in two dimensional case.
In high dimensional case, classical solutions to the almost limiting system satisfy

the following property.
Theorem 4.3 ([4]). If n ≥ 3, Ω is a bounded and convex domain of Rn, τ is

sufficiently small and lim supv→∞ vχ′(v) < n/(n − 2), then solutions to (PP) exist
globally in time and are bounded.
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Remark 4.4. If our conjecture is correct, we expect that the smallness of τ and
the convexity of Ω are not necessary. Moreover, the research on blowup solutions is
necessary.

5. Idea of proof of Theorem 4.3. In this section, we describe the idea of the
proof of Theorem 4.3. For simplicity, we assume η = 1.

Lemma 5.1. There exist positive constants Tmin > 0 and L > 0 satisfying

‖(u, v)‖C([0,Tmin]×Ω) ≤ L for τ ∈ (0, 1].

Lemma 5.2. There exists a positive constant vmin satisfying

v ≥ vmin in Ω× [0, Tmax) for τ ∈ (0, 1].

Lemma 5.1 comes from the standard energy argument and Lemma 5.2 comes from
minΩ v0 > 0 and ‖u‖L1(Ω) > 0.

Let z =
exp(χ(v))∫

Ω
exp(χ(v))dx

and w =
u

z
. Those functions satisfy the following system,

(TPP )





∂v

∂t
= ∆v − v + w

exp (χ(v))∫
Ω

exp (χ(v)) dx
in Ω× (0, T ),

τ
∂w

∂t
=

1

z
∇ · (z∇w)− τ

z

∂z

∂t
w in Ω× (0, T ),

∂v

∂ν
=
∂w

∂ν
= 0 on ∂Ω× (0, T ),

v(·, 0) = v0, w(·, 0) =

∫

Ω

exp(χ(v0))dx
u0

exp(χ(v0))
in Ω.

Let H = 2 max(‖u0‖L1(Ω), ‖w(0)‖L∞(Ω), L) and let

S(τ) = sup{T > 0; sup
0<t<T

‖w(t)‖L∞(Ω) ≤ H},

where L is the constant in Lemma 5.1.
Lemma 5.3. There exists a constant θ ∈ (0, 1) such that

‖v‖C2+θ,(2+θ)/2(Ω×[0,S(τ)]) < C(H),

where here and henceforth we will denote by C(H) a positive generic constant (possibly
changing from line to line) depending on H.

Proof. For q > n/2, n/q < 2β < 2, the semi-group property of the Laplacian
guarantees that

‖v(t)‖L∞(Ω) ≤ ‖v0‖L∞(Ω) +

∫ t

0

‖e(t−s)(∆−1)w(s)z(s)‖L∞(Ω)ds

≤ ‖v0‖L∞(Ω) + C

∫ t

0

es−t

(t− s)β ‖w(s)‖L∞(Ω)‖z(s)‖Lq(Ω)ds.

Here and henceforth, we will denote by C a positive generic constant (possibly chang-
ing from line to line). We see that

‖z(t)‖Lq(Ω) =
‖ exp(χ(v)))‖Lq(Ω)

‖ exp(χ(v)))‖L1(Ω)



50 T. SENBA AND K. FUJIE

≤
‖ exp(χ(v))‖1/qL1(Ω)‖ exp(χ(v))‖(q−1)/q

L∞(Ω)

‖ exp(χ(v))‖L1(Ω)

≤ C(H)
‖(v + 1)µ‖(q−1)/q

L∞(Ω)

(|Ω| exp(χ(vmin)))(q−1)/q
.

Since lim supv→∞ vχ′(v) < µ < n/(n− 2), we can take q and β such that

q > n/2, n/q < 2β < 1 and µ
q − 1

q
< 1.

Then, we have that ‖v‖L∞(Ω×[0,S(τ)]) ≤ C(H). We obtain this lemma from this
estimate and the parabolic regularity argument.

By those and the parabolic regularity argument, we get a unique classical solution
(v, w) to (TPP) in Ω× [0, S(τ)].

We will show that S(τ) =∞ if τ is sufficiently small. Assume to the contrary that
S(τ) <∞ for τ ∈ (0, 1]. For an integer J ≥ 2 and j = 0, 1, 2, · · · , J , put T = S(τ)/J
and zj = z(jT ). Then, for j = 0, 1, 2, · · · , J − 1 and t ∈ (jT, (j + 1)T ] we have

τwt =
1

zj
∇ · zj∇w +∇ log

z

zj
· ∇w − τ zt

z
w in Ω.

For j = 0, 1, 2, · · · , J − 1, put ζ = (t − jT )/τ , W (x, ζ) = w(x, t), Z(x, ζ) = z(x, t),
Z0(x) = zj(x) and Q(x, ζ) = zt(x, t)/z(x, t). Then, those functions satisfy that

∂W

∂ζ
=

1

Z0
∇ · Z0∇W +∇ log

Z

Z0
· ∇W − τQW in Ω× (0, T/τ).

Put A = Z−1
0 ∇ · Z0∇ in Ω with ∂ · /∂ν = 0 on ∂Ω. The function W satisfies that

W (ζ) = eζAW (0) +

∫ ζ

0

e(ζ−ξ)AF (ξ)dξ for ζ ∈ (0, T/τ),

where

F = ∇ log
Z

Z0
· ∇W − τQW.

There exists a positive constant Λ depending on infΩ Z0, ‖Z0‖∞ and Ω such that

‖∇eζAW (0)‖Lq(Ω) ≤ Ce−ζΛ‖∇W (0)‖Lq(Ω) for ζ ∈ (0, T/τ),
∫ ζ

0

‖∇e(ζ−ξ)A∇ log
Z(ξ)

Z0
· ∇W (ξ)‖Lq(Ω)dξ ≤ C(H)T θ/2e−ζΛ sup

ξ∈[0,ζ]

eξΛ‖∇W (ξ)‖Lq(Ω)

for ζ ∈ (0, T/τ),
∫ ζ

0

‖∇e(ζ−ξ)AτQ(ξ)W (ξ)‖Lq(Ω)dξ ≤ C(H)τ (q−1)/q for ζ ∈ (0, T/τ)

and that

sup
ξ∈[0,T/τ ]

eξΛ‖∇W (ξ)‖Lq(Ω)

≤ C‖∇W (0)‖Lq(Ω) + C(H)T θ/2 sup
ξ∈[0,T/τ ]

eξΛ‖∇W (ξ)‖Lq(Ω) + C(H)τ (q−1)/qeTΛ/τ .
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Here, θ is the constant in Lemma 5.3. Taking 0 < τ � T � 1, we have that

‖∇w((j + 1)T )‖Lq(Ω) ≤ Ce−TΛ/τ‖∇w(jT )‖Lq(Ω) + C(H)τ (q−1)/q

for j = 0, 1, 2, · · · , J − 1.

and that

‖∇w(jT )‖Lq(Ω) ≤ Ce−jTΛ/τ‖∇w(jT )‖Lq(Ω) + C(H)τ (q−1)/q for j = 1, 2, 3, · · · , J.

Those estimates guarantee that

‖∇w(t− jT )‖Lq(Ω) ≤ Ce−(t−jT )Λ/τ‖∇w(jT )‖Lq(Ω) + C(H)τ (q−1)/q

for t ∈ [jT, (j + 1)T ]. Take x(t) ∈ Ω such that w(x(t), t) = ‖w(t)‖L∞(Ω). We have
that

λ =

∫

Ω

u(t)dx =

∫

Ω

w(t)z(t)dx

≥
∫

Ω

w(x(t), t)z(t)dx− diam(Ω)

∫

Ω

|w(x, t)− w(x(t), t)|
|x−x(t)| z(t)dx,

where diam(Ω) = sup{|x− y|;x, y ∈ Ω}. Then, we obtain that

‖w(t)‖L∞(Ω) ≤ λ+ C(Ω, H, q)‖∇w(t)‖Lq(Ω) < H for t ∈ [0, S(τ)],

if τ is sufficiently small. This means that S(τ) =∞, a contradiction. Then, we have
that S(τ) =∞ if τ is sufficiently small. Therefore, we get Theorem 4.3.
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VIRAL INFECTION MODEL WITH DIFFUSION AND
STATE-DEPENDENT DELAY: A CASE OF LOGISTIC GROWTH

ALEXANDER V. REZOUNENKO∗

Abstract. We propose a virus dynamics model with reaction-diffusion and logistic growth
terms, intracellular state-dependent delay and a general non-linear infection rate functional response.
Classical solutions with Lipschitz in-time initial functions are investigated. This type of solutions
is adequate to the discontinuous change of parameters due to, for example, drug administration.
The Lyapunov functions approach is used to analyse stability of interior infection equilibria which
describe the cases of a chronic disease.

Key words. Reaction-diffusion, evolution equations, Lyapunov stability, state-dependent delay,
virus infection model.

AMS subject classifications. 93C23, 34K20,35K57, 97M60

1. Introduction. Our goal is to discuss a wide class of mathematical models
of viral diseases. Many viruses (as Ebola virus, Zika virus, HIV, HBV, HCV and
others) continue to be a major global public health issues, according to World Health
Organization. Particularly, from The Global hepatitis report (WHO, April 2017)
[25] we know that ”a large number of people - about 325 million worldwide in 2015
- are carriers of hepatitis B or C virus infections, which can remain asymptomatic
for decades.” and ”Viral hepatitis caused 1.34 million deaths in 2015, a number
comparable to deaths caused by tuberculosis and higher than those caused by HIV.
However, the number of deaths due to viral hepatitis is increasing over time, while
mortality caused by tuberculosis and HIV is declining.”

In such a situation any steps toward understanding the dynamics of viral diseases
are important.

There are variety of models described by systems of ordinary differential equations
and/or partial differential equations with or without delays which describe dynamics
of different viral infections. Delays could be bounded or unbounded, concentrated or
distributed, constant, time-dependent or state-dependent.

The classical models [12, 14] contain ordinary differential equations (without de-
lay) for three variables: susceptible host cells T , infected host cells T ∗ and free virus
particles V . The intracellular delay is an important property of the biological problem,
so we start with the delay problem





Ṫ (t) = λ− dT (t)− f(T (t), V (t)),

Ṫ ∗(t) = e−ωhf(T (t− h), V (t− h))− δT ∗(t),
V̇ (t) = NδT ∗(t)− cV (t).

(1.1)

In system (1.1), susceptible cells T are produced at a rate λ, die at rate dT , and
become infected at rate f(T, V ). Properties and examples of incidence function f
are discussed below. Infected cells T ∗ die at rate δT ∗, free virions V are produced by
infected cells at rate NδT ∗ and are removed at rate cV (t). In (1.1) h denotes the delay

∗V.N.Karazin Kharkiv National University, Kharkiv, 61022, Ukraine (rezounenko@gmail.com)
and Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic,
P.O. Box 18, 182 08 Praha, CR
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between the time a virus particle contacts a target cell and the time the cell becomes
actively infected (start producing new free virions). It is clear that the constancy of
the delay is just an extra assumption which essentially simplifies the study, but has
no biological background.

To the best of our knowledge, viral infection models with state-dependent delay
(SDD) have been considered for the first time in [20] (see also [21]). It is well known
that differential equations with discrete state-dependent delay are always non-linear
by its nature (see the review [5] for more details and discussion).

As usual in the study of delay systems with (maximal) delay h > 0 [4, 8], for a
function v(t), t ∈ [a − h, b] ⊂ R, b > a, we denote the history segment vt = vt(θ) ≡
v(t+ θ), θ ∈ [−h, 0], t ∈ [a, b].

Consider a connected bounded domain Ω ⊂ Rn with a smooth boundary ∂Ω. Let
T (t, x), T ∗(t, x), V (t, x) represent the densities of uninfected cells, infected cells and
free virions at position x ⊂ Ω at time t.

In [22] the following system with SDD η is investigated





Ṫ (t, x) = λ− dT (t, x)− f(T (t, x), V (t, x)) + d1∆T (t, x),

Ṫ ∗(t, x) = e−ωhf(T (t− η(ut), x), V (t− η(ut), x))− δT ∗(t, x) + d2∆T ∗(t, x),

V̇ (t, x) = NδT ∗(t, x)− cV (t, x) + d3∆V (t, x).
(1.2)

Here the dot over a function denotes the partial time derivative i.g, Ṫ (t, x) = ∂T (t,x)
∂t ,

all the constants λ, d, δ,N, c, ω are positive while di, i = 1, 2, 3 (diffusion coefficients)
are non negative. In (1.2) (and in (1.3) below), a solution denoted by u(t) = u(t, ·) =
(T (t, ·), T ∗(t, ·), V (t, ·)), see the argument of the state-dependent delay η in the second
equation. The precise definition of a solution is given below (Def. 2.1).

We consider a general functional response f(T, V ) satisfying natural assumptions
presented below. In earlier models (with constant or without delay) the study was
started in case of bilinear f(T, V ) = const · TV and then extended to more general
classes of non-linearities. For more details and discussion see [1, 3, 7, 11, 22].

We mention that the term e−ωh in front of f (see the second equation (1.2)), in
fact, states that only a part of the cell population survived during the virus incubation
period. Clearly, it should be less than 1. It is an assumption which is not too precise
in nonlinear systems. It could be regarded as a coefficient (strictly smaller than 1)
and could be easily incorporated into the definition of the function f . We keep this
coefficient in the form of e−ωh for the only reason to simplify for the reader the
comparison of computations with the constant delay case.

In this note we are interested in the following PDEs system with state-dependent
delay η





Ṫ (t, x) = rT (t, x)
(

1− T (t,x)
TK

)
− dT (t, x)− f(T (t, x), V (t, x)) + d1∆T (t, x),

Ṫ ∗(t, x) = e−ωhf(T (t− η(ut), x), V (t− η(ut), x))− δT ∗(t, x) + d2∆T ∗(t, x),

V̇ (t, x) = NδT ∗(t, x)− cV (t, x) + d3∆V (t, x).
(1.3)

Let us discuss the principal difference in the first equations of (1.2) and (1.3). In
system (1.2), uninfected target cells T are produced by the body at a constant rate λ
which is relevant, for example, in case of HIV. In contrast, the first term in the first
equation of (1.3) is the classical logistic growth term (Pierre Verhulst term) for the
population of uninfected cells T . The constant TK is the so-called carrying capacity
for the population T , which has the clear biological meaning. System (1.3) is more
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relevant in case of chronic infections with viruses such as, for example, hepatitis B
(HBV) and hepatitis C (HCV). Here T (t, x) and T ∗(t, x) represent uninfected and
infected liver cells (hepatocytes). The carrying capacity could be also considered for
the sum of uninfected and infected cells (c.f. [6]), but we decide to use it for uninfected
hepatocytes (liver cells) only for the following biological reason. It is well-known that
the development of HBV, HCV infections is usually connected with development of
fibrosis. The last indicates that the regeneration of healthy hepatocytes is not quick
enough to fill all the available (free) space in liver. This available space appears as a
result of natural death of both uninfected and infected hepatocytes as well as killing
of infected cells by immune system. The above suggests that the presence of infected
cells does not make essential restriction on the regeneration of healthy hepatocytes T .

Boundary conditions are of Neumann type for the corresponding unknown if di 6=
0 i.e. ∂T (t,x)

∂n |∂Ω = 0 if d1 6= 0 and similarly for T ∗(t, x) and V (t, x). Here ∂
∂n is the

outward normal derivative on ∂Ω. In case di = 0, no boundary conditions are needed
for the corresponding unknown(s). For more discussion see [22].

Our main goals are to present the existence and uniqueness results for the model
(1.3) in the sense of classical solutions, and to study the local asymptotic stability
of non-trivial disease equilibria. We apply the Lyapunov approach [9] to the state-
dependent delay PDE model (1.3) and allow, but not require, diffusion terms in each
state equation. For the Lyapunov approach in context of viral infection models (with
constant delay or nondelay cases) see e.g. works by A.Korobeinikov, C.McCluskey
[7, 11] and references therein. Our main interest is in discussion of the state-dependent
delay.

2. Main results. We use the basic functional framework described in [10] and
applied to the system (1.2) in [22].

Define the following linear operator −A0 = diag (d1∆, d2∆, d3∆) in C(Ω;R3)
with D(A0) ≡ D(d1∆)×D(d2∆)×D(d3∆). Here, for di 6= 0 we set D(di∆) ≡ {v ∈
C2(Ω) : ∂v(x)

∂n |∂Ω = 0} and D(dj∆) ≡ C(Ω) for dj = 0. We omit the space coordinate

x, for short, for unknown u(t) = (T (t), T ∗(t), V (t)) ∈ X ≡ [C(Ω)]3 ≡ C(Ω;R3).
It is well-known that the closure −A (in X) of the operator −A0 generates a C0-
semigroup e−At on X which is analytic and nonexpansive [10, p.5]. We denote the
space of continuous functions by C ≡ C([−h, 0];X) equipped with the sup-norm
||ψ||C ≡ maxθ∈[−h,0] ||ψ(θ)||X .

We write, the system (1.3) in the following abstract form

d

dt
u(t) +Au(t) = F (ut), t > 0.(2.1)

The non-linear continuous mapping F : C → X is defined by

F (ϕ)(x) =




r ϕ1(0, x)
(

1− ϕ1(0,x)
TK

)
− dϕ1(0, x)− f(ϕ1(0, x), ϕ3(0, x))

e−ωhf(ϕ1(−η(ϕ), x), ϕ3(−η(ϕ), x))− δϕ2(0, x)
Nδϕ2(0, x)− cϕ3(0, x)


 .(2.2)

Here ϕ = (ϕ1, ϕ2, ϕ3) ∈ C. Mapping F is not Lipschitz on the space C which is
typical for a mapping which includes discrete state-dependent delays (see review [5]
for ODE case and works [15, 16, 17, 2] for PDEs).

We need initial conditions u(θ, x) = ϕ(θ, x) = (T (θ, x), T ∗(θ, x), V (θ, x)), θ ∈
[−h, 0] for the delay problem (2.1) (c.f. (1.3)):
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ϕ ∈ Lip([−h, 0];X) ≡
{
ψ ∈ C : sup

s6=t

||ψ(s)− ψ(t)||X
|s− t| <∞

}
, ϕ(0) ∈ D(A).(2.3)

In our study we use the standard (c.f. [13, Def. 2.3, p.106] and [13, Def. 2.1, p.105])

Definition 2.1. A function u ∈ C([−h, T ];X) is called a mild solution

on [−h, T ) of the initial value problem (2.1), (2.3) if it satisfies (2.3) and u(t) =

e−Atϕ(0) +
∫ t

0
e−A(t−s)F (us) ds, t ∈ [0, T ).

A function u ∈ C([−h, T );X)
⋂
C1((0, T );X) is called a classical solution

on [−h, T ) of the initial value problem (2.1), (2.3) if it satisfies (2.3), u(t) ∈ D(A)
for 0 < t < T and (2.1) is satisfied on (0, T ).

Assume the non-linear function f : R2 → R is Lipschitz continuous and satisfies

(Hf1) there exists µ > 0 such that |f(T, V )| ≤ µ|T | for all T, V ∈ R.(2.4)

We have the following result

Theorem 2.2. Let nonlinear function f be Lipschitz and satisfy (Hf1) (see
(2.4)), state-dependent delay η : C → [0, h] is locally Lipschitz. Then the initial value
problem (2.1), (2.3) has a unique classical solution which is global in time i.e. defined
for all t ≥ 0.

Proof of Theorem 2.2 follows the line of the proof of [22, Proposition 1].
Define the set (c.f. (2.3)), which is different from the one ΩLip in [22]:

ΩlogLip ≡
{
ϕ = (ϕ1, ϕ2, ϕ3) ∈ Lip([−h, 0];X)) ⊂ C, ϕ(0) ∈ D(A) :

0 ≤ ϕ1(θ) ≤
(

1− d

r

)
TK , 0 ≤ ϕ2(θ) ≤ µ

δ

(
1− d

r

)
TKe

−ωh,

0 ≤ ϕ3(θ) ≤ Nµ

c

(
1− d

r

)
TKe

−ωh, θ ∈ [−h, 0]

}
,(2.5)

where µ is defined in (Hf1) and all the inequalities hold pointwise w.r.t. x ∈ Ω.

We need further assumptions (which include (Hf1)) on Lipschitz function f :

(Hf1+)





f(T, 0) = f(0, V ) = 0, and f(T, V ) > 0 for all T > 0, V > 0;
f is strictly increasing in both coordinates for all T > 0, V > 0;
there exists µ > 0 such that |f(T, V )| ≤ µ|T | for all T, V ∈ R.

(2.6)

We have the following result

Theorem 2.3. Let non-linear Lipschitz function f satisfy (Hf1+) (see (2.6)),

state-dependent delay η : C → [0, h] is locally Lipschitz. Then ΩlogLip is invariant i.e.

for any ϕ ∈ ΩlogLip the unique solution to problem (2.1), (2.3) satisfies ut ∈ ΩlogLip for
all t ≥ 0.

Proof of Theorem 2.3. The existence and uniqueness of solution is proven in
theorem 2.2. The proof of the invariance part follows the invariance result of [10]
with the use of the almost Lipschitz property of nonlinearity F . The estimates (for
the subtangential condition) are the same as for the constant delay case, see e.g. [11,
Theorem 2.2]. We do not repeat it here. It is important to notice that the solutions
are classic for all t ≥ 0 (but not for t ≥ h as could be in the case of merely continuous
initial functions ϕ ∈ C). For more details see, e.g. [22]. The proof of Theorem 2.3 is
complete.



VIRAL INFECTION MODEL WITH DIFFUSION AND STATE-DEPENDENT DELAY 57

2.1. Stationary solutions. Let us discuss stationary solutions of (1.3). By
such solutions we mean time independent û which, in general, may depend on x ∈ Ω.
Consider the system (1.3) with u(t) = u(t− η(ut)) = û and denote the coordinates (a

possible triple of coordinates) of a stationary solution by (T̂ , T̂ ∗, V̂ ) = û ≡ ϕ̂(θ), θ ∈
[−h, 0]. Since stationary solutions of (1.3) do not depend on the type of delay (state-
dependent or constant) we have

{
0 = rT̂

(
1− T̂

TK

)
− dT̂ − f(T̂ , V̂ ), 0 = e−ωhf(T̂ , V̂ )− δT̂ ∗,

0 = NδT̂ ∗ − cV̂ .
(2.7)

Equations hold pointwise w.r.t. x ∈ Ω.
It is easy to see that the trivial stationary solution (

(
1− d

r

)
TK , 0, 0) always exists.

We are interested in nontrivial disease stationary solutions of (1.3). We have from the

first and second equations of (2.7) T̂ ∗ = r
δ e
−ωh · T̂

(
1− T̂

TK

)
− d

δ e
−ωhT̂ and from the

third equation V̂ = Nδ
c T̂
∗. It gives the condition on the coordinate T̂ which should

belong to (0,
(
1− d

r

)
TK ]. Denote (c.f. [11, 20])

hlogf (s) ≡ f
(
s ,
Nr

c
e−ωh · s

(
1− s

TK

)
− Nd

c
e−ωh · s

)

−r · s
(

1− s

TK

)
+ d · s.(2.8)

Assume f satisfies

(Hf log2 ) hlogf (s) = 0 has at least one and at most a finite number

of roots on (0,
(
1− d

r

)
TK ].

We denote an arbitrary root of hlogf (s) = 0 by T̂ and define the corresponding T̂ ∗ ≡
r
δ e
−ωh · T̂

(
1− T̂

TK

)
− d

δ e
−ωhT̂ and V̂ ≡ Nδ

c T̂
∗ = Nr

c e
−ωh · T̂

(
1− T̂

TK

)
− Nd

c e
−ωhT̂ .

The point (T̂ , T̂ ∗, V̂ ) satisfies (2.7), so it is a a disease stationary solution of (1.3). We

notice that in [22] the corresponding equation was written for coordinate T̂ ∗, while

(2.8) is designed for s = T̂ .

Remark (c.f. [22]). We notice that the finiteness of roots (which are obviously
isolated) does not allow the existence of equilibria which depend on spatial coordinate
x ∈ Ω. We remind that Ω is a connected set, so a function v ∈ C(Ω) may take either

one or continuum values. Assumption (Hf log2 ) implies T̂ ∗(x) ≡ T̂ ∗ ∈ R, so (T̂ , T̂ ∗, V̂ )
is independent of x ∈ Ω.

Remark. It is important to mention that usually in study of stability properties
of stationary solutions (for viral dynamics problems) one uses conditions on the so-
called reproduction numbers. These conditions are used to separate the case of a
unique stationary solution. Then the global stability of the equilibrium is investigated.
In our study, taking into account the state-dependence of the delay, we discuss the
local stability. As a consequence, it allows the co-existence of multiple equilibria.
We believe this framework provides a way to model more complicated situations with
rich dynamics (in contrast to a globally stable equilibrium). The conditions on the
reproduction numbers do not appear explicitly here, but could be seen as particular
sufficient conditions for (Hf log2 ).
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2.2. Stability of disease stationary solutions. In this section we use the
following local assumptions on f in a small neighborhood of a disease equilibrium
(given by (Hf log2 )).

(Hf3)

(
V

V̂
− f(T, V )

f(T, V̂ )

)
·
(
f(T, V )

f(T, V̂ )
− 1

)
> 0.(2.9)

One can check that the DeAngelis-Beddington functional response [1, 3] of the
form f(T, V ) = kTV

1+k1T+k2V
, with k, k1 ≥ 0, k2 > 0 satisfies (Hf3) globally. We also

mention that the DeAngelis-Beddington functional response includes as a special case
(k1 = 0) the saturated incidence rate f(T, V ) = kTV

1+k2V
.

We will also use the assumption

(Hf4) Function f is differentiable in a neighborhood of (T̂ , V̂ ).

The main result is the following

Theorem 2.4. Let the nonlinear Lipschitz function f satisfy (Hf1+), (Hf log2 ),

(Hf3), (Hf4) (see (2.6), (2.9)), a root T̂ of hlogf (s) = 0 (see (2.8) and (Hf log2 )) satisfy

T̂ > 1
2 (1 − d

r )TK . Let state-dependent delay η : C → [0, h] be locally Lipschitz in

C and continuously differentiable in a neighbourhood of equilibrium ϕ̂ ≡ (T̂ , T̂ ∗, V̂ ).
Then the stationary solution ϕ̂ is locally asymptotically stable.

In the proof we use the following Lyapunov functional with state-dependent delay
along a solution of (1.3)

U sdd(t) ≡
∫

Ω

{(
T (t, x)− T̂ −

∫ T (t,x)

T̂

f(T̂ , V̂ )

f(θ, V̂ )
dθ

)
e−ωh + T̂ ∗ · v

(
T ∗(t, x)

T̂ ∗

)

+
V̂

N
· v
(
V (t, x)

V̂

)
+ δT̂ ∗

∫ t

t−η(ut)

v

(
f(T (θ, x), V (θ, x))

f(T̂ , V̂ )

)
dθ

}
dx.(2.10)

In (2.10) the Volterra function v(s) = s− 1− ln s : (0,+∞)→ R+ (c.f. [7, 11]) is
used. The form of the functional is standard except the low limit of the last integral
in (2.10) which is state-dependent. This state-dependence was first considered in [20]
(see also [21]). For PDE (1.2) with constant delay case and d1 = d2 = 0, see e.g.
[11] and for PDE with state-dependent delay (1.2) see [22]. We do not repeat here
detailed calculations of the time derivative of U sdd(t) along a solution of (1.3). They
are similar to the ones of [22] and differ in the parts where the connection between

coordinates of the stationary solution ϕ̂ = (T̂ , T̂ ∗, V̂ ) is used. The logistic growth
term also makes difference to the study presented in [20, 22].
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BOUNDEDNESS IN A FULLY PARABOLIC CHEMOTAXIS SYSTEM
WITH SIGNAL-DEPENDENT SENSITIVITY

AND LOGISTIC TERM∗

MASAAKI MIZUKAMI†

Abstract. This paper deals with the chemotaxis system with signal-dependent sensitivity and
logistic term

ut = ∆u−∇ · (uχ(v)∇v) + µu(1− u),

vt = ∆v + u− v

in Ω×(0,∞), where Ω is a bounded domain in Rn (n ≥ 2) with smooth boundary, µ > 0 is a constant
and χ is a function generalizing

χ(s) =
K

(1 + s)2
(K > 0, s > 0).

In the case that µ = 0 global existence and boundedness were established under some conditions
([14]); however, conditions for global existence and boundedness in the above system have not been
studied. The purpose of this paper is to construct conditions for global existence and boundedness
in the above system.

Key words. chemotaxis; signal-dependent sensitivity; logistic term; global existence.

AMS subject classifications. Primary: 35K51; Secondary: 35A01, 92C17.

1. Introduction. Chemotaxis is the property such that species move towards
higher concentration of a chemical substance when they plunge into hunger. The
following problem which describes the movement of species with chemotaxis

ut = ∆u−∇ · (uχ(v)∇v) + µu(1− u), vt = ∆v + u− v,

where χ is a function and µ ≥ 0 is a constant, is called a Keller–Segel system or a
chemotaxis system, and is studied intensively. The function χ appearing in the above
problem is called signal-dependent sensitivity, and examples of this function χ are as
follows: χ(s) = K (constant), χ(s) = K

s (singular), χ(s) = K
(1+s)2 (regular) for s > 0

with some constant K > 0. Previous works which deal with the constant sensitivity
can be found in [2, 7, 8, 15, 18, 19]; the singular sensitivity is treated in [3, 5, 6, 9, 10];
we can find works related to the regular sensitivity in [5, 6, 11, 13, 14, 16, 17, 20];
variation of chemotaxis systems are in [1]. Here we focus on the case that χ is a
function generalizing the regular sensitivity:

χ(s) ≤ K

(a+ s)k
(s > 0) (1.1)

with some constants a ≥ 0, k > 1 and K > 0. In a mathematical view, one of
difficulties caused by the sensitivity function χ is to deal with the additional term
uχ′(v)|∇v|2 which does not appear in the case that χ is a constant. In the case that

∗This work was supported by JSPS Research Fellowships for Young Scientists (No. 17J00101).
†Department of Mathematics, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo

162-8601, Japan (masaaki.mizukami.math@gmail.com).
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µ = 0, by using an energy estimate to overcome the difficulties of the sensitivity
function, under the condition that χ fulfils (1.1) with some constants a ≥ 0, k > 1
and K > 0 satisfying

K < k(a+ η)k−1

√
2

n
, (1.2)

where η is a constant defined as

η := sup
τ>0

(
min

{
e−2τ min

x∈Ω
v0(x), c0‖u0‖L1(Ω)(1− e−τ )

})
≥ 0

(see [4, 14]), global existence and boundedness were established ([14]). Recently,
Fujie–Senba [5, 6] established conditions for global existence and boundedness in a
problem generalizing the chemotaxis system with µ = 0. More related works which
deal with a two-species chemotaxis system with competitive kinetics can be found in
[11, 12, 13, 16, 17, 20]; global existence and boundedness are in [11, 13, 16, 17, 20];
asymptotic behavior is shown in [11, 12].

In summary, the conditions (1.1)–(1.2) lead to global existence and boundedness
in the chemotaxis system with µ = 0. However, the case that µ > 0 has not been
studied. The purpose of this work is to derive conditions for global existence and
boundedness in the chemotaxis system.

In this paper we consider the chemotaxis system with signal-dependent sensitivity
and logistic term





ut = ∆u−∇ · (uχ(v)∇v) + µu(1− u), x ∈ Ω, t > 0,

vt = ∆v + u− v, x ∈ Ω, t > 0,

∇u · ν = ∇v · ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.3)

where Ω is a bounded domain in Rn (n ≥ 2) with smooth boundary ∂Ω and ν is the
outward normal vector to ∂Ω; µ > 0 is a constant; the initial data u0 and v0 are
assumed to be nonnegative functions. The unknown function u(x, t) represents the
population density of species and v(x, t) shows the concentration of the substance at
place x and time t. As to the sensitivity function χ, we are interested in functions
generalizing

χ(s) =
K

(1 + s)2
(s > 0),

where K > 0 is a constant.
In order to achieve our purpose we shall suppose that χ satisfies that

χ ∈ C1+λ((0,∞)) and 0 ≤ χ(s) ≤ K

(a+ s)k
(s > 0) (1.4)

with some λ > 0, k > 1, a > 0 and K > 0 fulfiling

K < kak−1

√
2

n
. (1.5)

Now the main result reads as follows.
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Theorem 1.1. Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with smooth boundary
and let µ > 0. Assume that χ satisfies (1.4) with some λ > 0, k > 1, a > 0, K > 0
fulfiling (1.5). Then for any u0, v0 satisfying

0 ≤ u0 ∈ C(Ω) \ {0} and 0 ≤ v0 ∈W 1.q(Ω) \ {0} (1.6)

with some q > n, there exists an exactly one pair (u, v) of positive functions

u, v ∈ C(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞))

which solves (1.3). Moreover, the solution (u, v) is uniformly bounded, i.e., there
exists a constant C > 0 such that

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,q(Ω) ≤ C

for all t > 0.

Here we give one remark: The condition (1.5) is more restricted condition than
(1.2) except the case that η = 0 (which is the case that minx∈Ω v0(x) = 0). The
reason is that it is difficult to see the uniform-in-time lower estimate for v because of
lacking information about the lower estimate for u. Moreover, the condition (1.5) is
independent of µ > 0: The question “can the logistic term relax conditions for global
existence and boundedness?” is still open problem in (1.3).

The strategy for the proof of Theorem 1.1 is to construct the Lp-estimate for u
with some p > n

2 . One of keys for this strategy is to derive the inequality

d

dt

∫

Ω

upϕ(v) ≤ c
∫

Ω

upϕ(v)− µp
∫

Ω

up+1ϕ(v)

for some constant c > 0, where

ϕ(s) := exp

{
−r
∫ s

0

1

(a+ τ)k
dτ

}
(s ≥ 0)

with some r > 0. Thanks to this strategy, we obtain

∫

Ω

upϕ(v) ≤ C

with some C > 0, which together with the lower estimate for ϕ implies the Lp-
estimate for u. Thus in light of the well-known semigroup estimates, we can attain
the L∞-estimate for u.

2. Proof of the main result. In this section we will prove Theorem 1.1. We
first recall the well-known result about local existence of solutions to (1.3) (see e.g.,
[1, Lemma 3.1]).
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Lemma 2.1. Assume that χ satisfies (1.4) with some λ > 0, k > 1, a > 0, K > 0
and the initial data u0, v0 fulfil (1.6) for some q > n. Then there exist Tmax ∈ (0,∞]
and exactly one pair (u, v) of positive functions

u ∈ C(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

v ∈ C(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)) ∩ L∞loc([0, Tmax);W 1,q(Ω))

which solves (1.3) in the classical sense. Moreover, if Tmax <∞, then

lim
t↗Tmax

(‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,q(Ω)) =∞.

In the following, we let (u, v) be the solution of (1.3) on [0, Tmax) as in Lemma
2.1. For the proof of Theorem 1.1 we will recall a useful fact to derive the L∞-estimate
for u.

Lemma 2.2. Assume that the solution (u, v) of (1.3) satisfies

‖u(·, t)‖Lp(Ω) ≤ C(p) (2.1)

for all t ∈ (0, Tmax) with some p > n
2 and C(p) > 0. Then there exists a constant

C ′ > 0 such that

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,q(Ω) ≤ C ′

for all t ∈ (0, Tmax).

Proof. The same argument as in the proof of [1, Lemma 3.2] yields this result.

Thanks to Lemmas 2.1 and 2.2 we will only make sure that the Lp-estimate for
u holds with some p > n

2 to show global existence and boundedness of solutions to
(1.3). To establish (2.1) we introduce the functions g and ϕ by

g(s) := −r
∫ s

0

1

(a+ τ)k
dτ, ϕ(s) := exp{g(s)} (s ≥ 0), (2.2)

where r > 0 is a constant fixed later. Here we note from straightforward calculations
that

ϕ(s) = Cϕ exp

{
r

(k − 1)(a+ s)k−1

}

with Cϕ = exp{−r(k − 1)−1a−k+1} > 0. Now we shall prove the following inequality
by using the test function ϕ(v).

Lemma 2.3. Assume that χ satisfies (1.4) with some λ > 0, k > 1, a > 0, K > 0.
Then there exists c > 0 such that

d

dt

∫

Ω

upϕ(v) ≤
∫

Ω

upHr(v)ϕ(v)|∇v|2 + c

∫

Ω

upϕ(v)− µp
∫

Ω

up+1ϕ(v), (2.3)

where Hr is the function defined by

Hr(s) := − kr

(a+ s)k+1
+

(
p(p− 1)K2

4
+

r2

p− 1

)
1

(a+ s)2k
(2.4)
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for s ≥ 0.

Proof. Let p ≥ 1. From (1.3) we have

d

dt

∫

Ω

upϕ(v) = p

∫

Ω

up−1ϕ(v)∇ · (∇u− uχ(v)∇v) + µp

∫

Ω

upϕ(v)(1− u)

+

∫

Ω

upϕ′(v)(∆v − v + u). (2.5)

Then integration by parts derives

p

∫

Ω

up−1ϕ(v)∇ · (∇u− uχ(v)∇v) +

∫

Ω

upϕ′(v)∆v

= −p
∫

Ω

∇(up−1ϕ(v)) · (∇u− uχ(v)∇v)−
∫

Ω

∇(upϕ′(v)) · ∇v

= −p(p− 1)

∫

Ω

up−2ϕ(v)|∇u|2 +

∫

Ω

up−1 (p(p− 1)ϕ(v)χ(v)− 2pϕ′(v))∇u · ∇v

+

∫

Ω

up(−ϕ′′(v) + pϕ′(v)χ(v))|∇v|2. (2.6)

Due to the Young inequality, we infer that
∫

Ω

up−1 (p(p− 1)ϕ(v)χ(v)− 2pϕ′(v))∇u · ∇v

≤ p(p− 1)

∫

Ω

up−2ϕ(v)|∇u|2 +

∫

Ω

up
(p(p− 1)ϕ(v)χ(v)− 2pϕ′(v))2

4p(p− 1)ϕ(v)
|∇v|2. (2.7)

Thus a combination of (2.5), (2.6) and (2.7) yields that

d

dt

∫

Ω

upϕ(v) ≤
∫

Ω

upFϕ(v)|∇v|2 + µp

∫

Ω

upϕ(v)(1− u) +

∫

Ω

upϕ′(v)(−v + u),

(2.8)

where

Fϕ(s) := −ϕ′′(s) +
p(p− 1)

4
χ(s)2ϕ(s) +

pϕ′(s)2

(p− 1)ϕ(s)
(s ≥ 0).

Noting that

ϕ′(s) = g′(s)ϕ(s) and ϕ′′(s) = g′′(s)ϕ(s) + g′(s)2ϕ(s) (s ≥ 0),

we can rewrite the function Fϕ(s) as

Fϕ(s) =

(
−g′′(s) +

p(p− 1)

4
χ(s)2 +

g′(s)2

p− 1

)
ϕ(s) (s ≥ 0).

Recalling by (2.2) that

g′(s) =
−r

(a+ s)k
and g′′(s) =

rk

(a+ s)k+1
(s ≥ 0),

we obtain from (1.4) that

Fϕ(s) ≤ Hr(s)ϕ(s) for all s ≥ 0, (2.9)
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where Hr is defined as (2.4). Therefore we see from (2.8) together with (2.9) that

d

dt

∫

Ω

upϕ(v) ≤
∫

Ω

upHr(v)ϕ(v)|∇v|2 + µp

∫

Ω

upϕ(v)(1− u)− r
∫

Ω

upϕ(v)
(−v + u)

(a+ v)k
.

We finally verify from the boundedness of the function s 7→ s
(a+s)k

on [0,∞) (k > 1)

and the positivity of u, v and ϕ that there is a constant c1 > 0 satisfying

−r
∫

Ω

upϕ(v)
(−v + u)

(a+ v)k
≤ c1

∫

Ω

upϕ(v),

and thus we obtain (2.3).

Now we shall confirm the following inequality which enables us to see the Lp-
boundedness of u.

Lemma 2.4. Assume that (1.4) and (1.5) are satisfied with some λ > 0, k > 1,
a > 0 and K > 0. Then there exist p > n

2 and r > 0 such that

Hr(s) ≤ 0 for all s ≥ 0, (2.10)

where Hr is defined as (2.4), which implies that

d

dt

∫

Ω

upϕ(v) ≤ c
∫

Ω

upϕ(v)− µp
∫

Ω

up+1ϕ(v) (2.11)

holds.

Proof. The same argument as in the proof of [14, Lemma 4.1] with ε = 0 leads to
(2.10). Moreover, from a combination of Lemma 2.3 and (2.10) we obtain (2.11).

Now we are ready to show the Lp-estimate for u. By using an argument similar
to that in the proof of [13, Lemma 3.2] we can verify the following lemma.

Lemma 2.5. Assume that (1.4) and (1.5) are satisfied with some λ > 0, k > 1,
a > 0 and K > 0. Then there exist p > n

2 and C > 0 such that

‖u(·, t)‖Lp(Ω) ≤ C

for all t ∈ (0, Tmax).

Proof. From Lemma 2.4 we obtain (2.11) with some p > n
2 and r > 0. We shall

show the Lp-estimate for u by using (2.11). We first note from the definition of ϕ (see
(2.2)) that

Cϕ ≤ ϕ(s) ≤ 1 (s ≥ 0). (2.12)

Noticing from the Hölder inequality and (2.12) that

∫

Ω

upϕ(v) ≤
(∫

Ω

ϕ(v)

) 1
p+1
(∫

Ω

up+1ϕ(v)

) p
p+1

≤ |Ω| 1
p+1

(∫

Ω

up+1ϕ(v)

) p
p+1

,

we infer from (2.11) that

d

dt

∫

Ω

upϕ(v) ≤ c
∫

Ω

upϕ(v)− µp|Ω|− 1
p+1

(∫

Ω

upϕ(v)

) p+1
p

,
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which implies that there exists C > 0 satisfying

∫

Ω

upϕ(v) ≤ C.

Therefore we obtain from (2.12) that

∫

Ω

up ≤ CC−1
ϕ ,

which entails this lemma.

Proof of Theorem 1.1. Lemmas 2.2 and 2.5 directly lead to the conclusion of
Theorem 1.1.
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Abstract. We establish an upper bound on the Kolmogorov’s entropy of the locally compact
attractor for strongly damped wave equation posed in locally uniform spaces in subcritical case using
the method of trajectories.
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1. Introduction. We are interested in the asymptotic properties of the strongly
damped wave equation

utt + βut − α∆ut −∆u+ f(u) = g, t > 0, x ∈ Rd, (1.1)

where f : R → R is a nonlinear function specified later and α, β > 0, supplemented
by the initial datum

u(0) = u0 ∈W 1,2
b (Rd), ut(0) = u1 ∈ L2

b(Rd).

The strongly damped wave equation has a number of relevant physical applications,
see e.g. [5].

Asymptotic properties of the equation (1.1) in bounded domains have been thor-
oughly studied. Let us mention some of the results briefly. In [2] the authors estab-
lish the existence of global attactor for the critical case. Exponential attractors in
the subcritical and critical case have been studied in [11] and [16]. The existence of
global attractor for critical and supercritical exponents has been shown for a strongly
damped wave equation with memory in [5]. The finite dimensionality of the attractor
has been shown in [6]. The situation in supercritical case is studied in detail in [8].

In the non-autonomous case when g = g(t), the resulting uniform attractor might
have infinite fractal dimension induced by the time-dependence of the external forces.
To measure the complexity of the attractor one can employ Kolmogorov’s ε-entropy
instead of fractal dimension. In [9] the authors establish an upper bound on Kol-
mogorov’s ε-entropy of the attractor of equation similar to (1.1) in bounded domain
and show that if the time-dependent right-hand side is finite-dimensional in the ap-
propriate sense, the resulting attractor is finite dimensional.

In unbounded domains the results are more scarce. In [1] and [4] the authors
study the equation (1.1) posed in the classical space W 1,2(Rd)×L2(Rd) and show the
existence of a connected universal attractor in the subcritical and critical case. In the
context of locally uniform spaces, the non-autonomous wave equation with weak linear
damping, i.e. with α = 0, has been studied in detail in [17] including an upper bound

∗This research was supported by the Charles University, project GA UK No. 200716.
†Department of Mathematical Analysis, Charles University, Sokolovská 83, Prague 186 75, Czech

Republic (slavikj@karlin.mff.cuni.cz).
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on Kolmogorov’s ε-entropy of an attractor reflecting the non-compactness induced
both by time-dependent external forces and the unboundedness of the spatial domain.
The strongly damped wave equation has been studied in [3], where the well-posedness
of the equation in a more regular subspace of locally uniform space W 2,p

b (Rd)×Lpb(Rd),
p > d/2, p ≥ 2, and the existence of a locally compact attractor have been shown
for the critical case. In [15] the authors generalized these results to the space of
locally uniform functions W 1,2

b (Rd)×L2
b(Rd) and obtained a result on the asymptotic

regularity of the solutions, cf. the end of this section. In [14] the author studies a
variant of the strongly damped wave equation with fractional damping and shows the
existence of a locally compact attractor in the critical case together with space-time
regularity of the solutions.

The aim of this paper is to establish an upper bound on the Kolmogorov’s ε-
entropy of the attractor of the equation (1.1) in the subcritical case. To this end
we use the method of trajectories and a technique similar to the ones used for a
wave equation with nonlinear damping in [12] for bounded domains, resp. in [10] for
unbounded domains. However, compared to [10] or [14], solutions of (1.1) do not
possess neither a finite speed of propagation nor a smoothing property, and thus the
argument must be adapted.

Let φ be a weight function, x̄ ∈ Rd and ε > 0. We denote

Φx̄,ε = W 1,2
x̄,ε (Rd)× L2

x̄,ε(Rd), Wx̄,ε = W 1,2
x̄,ε (Rd)×W 1,2

x̄,ε (Rd),

Φb,φ = W 1,2
b,φ (Rd)× L2

b,φ(Rd), Wb,φ = W 1,2
b,φ (Rd)×W 1,2

b,φ (Rd),

Wloc = W 1,2
loc (Rd)×W 1,2

loc (Rd),

with the convention that we omit the subscript φ if φ ≡ 1 and write for example Φb
instead of Φb,1. For definitions of weight functions and weighted and locally uniform
spaces see Section 2.

For simplicity let us choose α = β = 1. The nonlinear term f ∈ C1(R,R) satisfies
the following conditions:

• (growth condition) there exist C > 0 and 0 ≤ q ≤ 4/(d− 2) such that

|f(r)− f(s)| ≤ C|r − s| (1 + |r|q + |s|q) , ∀r, s ∈ R. (1.2)

The nonlinearity is critical if q = 4/(d− 2) and subcritical if q < 4/(d− 2).
• (dissipation condition) there exist k ≥ 1 and µ0 > 0 such that for every
µ ∈ (0, µ0] there exist Cµ, C0 ∈ R such that

kF (s) + µs2 − Cµ ≤ sf(s), −C0 ≤ F (s) ∀s ∈ R,

where F (s) =
∫ s

0
f(r) dr.

These conditions are the same as in [3] and [15].
The weak solution of (1.1) is defined in the sense of distributions on (0,∞)×Rd

and has the regularity

(u, ut) ∈ C([0, T ]; Φx̄,ε), ‖u‖2
W 1,2
b

+ ‖ut‖2L2
b
∈ L∞((0, T )),

for every T > 0, x̄ ∈ Rd and ε > 0. Using a standard density argument it can be
shown that the equation can be tested by functions

ϕ ∈ L2(0, T ;W 1,2
x̄,ε (Rd)) ∩W 1,2(0, T ;L2

x̄,ε(Rd))
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for arbitrary T > 0, x̄ ∈ Rd, ε > 0.
The existence and uniqueness of weak solutions has been shown in [15, Section 3]

using semigroup theory in the subspace of more regular initial data continuous with
respect to spatial to translations. We also have the following dissipative estimates:
there exist t0, C > 0 such that for every t > t0 we have

‖u‖
W 1,2
b

+ ‖ut‖W 1,2
b

+ ‖utt‖L2
b
≤ C. (1.3)

For proofs see [15, Section 4]. Let us denote the absorbing set by B and assume that
B is closed and positively invariant.

In [15], the authors also show the existence of a locally compact attractor in the
critical case, namely the existence an invariant set A ⊆ Φb bounded and closed in
W 2,2
b (Rd) ×W 1,2

b (Rd) and compact in Wloc, which attracts the bounded sets of Φb
in the Wloc-norm, and the asymptotic regularity, namely the existence of a closed
and bounded set B1 ⊆ W 2,2

b (Rd) × W 1,2
b (Rd), a constant ν > 0, and a positive

monotonically increasing function Q(·) such that for every bounded B ⊆ Φb we have

distΦb (S(t)B,B1) ≤ Q(‖B‖Φb)e−νt ∀t > 0.

For proofs see [15, Theorem 1.1 and 1.2]. It is worth noting that the technique
presented in this paper do not rely on the asymptotic regularity of the attractor.

This paper is organized as follows: in Section 2 we review the basic definitions of
function spaces used in the rest of the paper. In Section 3 we define the trajectory
spaces and the trajectory semigroup and show that the trajectory semigroup has a
squeezing property which is then used in Section 4 to establish an upper estimate on
the locally compact attractor of the equation (1.1).

2. Function spaces. A function φ : Rd → (0,∞) is called a weight function of
growth µ ≥ 0 if

C−1
φ e−µ|x−y| ≤ φ(x)/φ(y) ≤ Cφeµ|x−y|, |∇φ| ≤ C̃φµφ, for a.e. x, y ∈ Rd, (2.1)

for some Cφ ≥ 1 and some C̃φ > 0. For x̄ ∈ Rd and ε > 0 we denote

φx̄,ε(x) = exp(−ε|x− y|).

Clearly φx̄,ε is a weight function of growth ε.
For p ∈ [1,∞), x̄ ∈ Rd and ε > 0 we define the weighted Lebesgue space Lpx̄,ε(Rd)

by

Lpx̄,ε(Rd) = {u ∈ Lploc(Rd); ‖u‖p
Lpx̄,ε

=

∫

Rd
|u(x)|pφx̄,ε(x) dx <∞}.

In the case p = 2 we use the notation ‖·‖
L2
x̄,ε
≡ ‖·‖x̄,ε and denote the scalar product in

L2
x̄,ε(Rd) by (·, ·)x̄,ε. The weighted Sobolev spaces are defined in an obvious manner.

Observe that the space W k,p
x̄,ε (Rd) cannot be embedded into Lqx̄,ε(Rd) for any

q > p. However, assuming that k, l ∈ N0 and p, q ∈ [1,∞) satisfy k ≥ l, q ≥ p
and W k,p(Rd) ↪→ W l,q(Rd), then for ε̃ = εq/p we have the continuous embedding

W k,p
x̄,ε (Rd) ↪→ W l,q

x̄,ε̃(Rd). Moreover, if the embedding W k,p(B) ↪→↪→ W l,q(B) is com-

pact, where B = B(0, 1) ⊆ Rd then for ε̃ > εq/p the embedding W k,p
x̄,ε (Rd) ↪→↪→

W l,q
x̄,ε̃(Rd) is compact as well.
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Let φ be a weight function and p ∈ [1,∞). We define the weighted locally uniform
space Lpb,φ(Rd) by

Lpb,φ(Rd) = {u ∈ Lploc(Rd); sup
x̄∈Rd

φ(x̄)1/p‖u‖Lp(C1
x̄) <∞},

where CRx denotes the cube in Rd of side R > 0 and centred at x ∈ Rd. We equip the
space with a norm equivalent to supx̄∈Rd φ(x̄)1/p‖u‖

Lp(C1
x̄)

defined by

‖u‖Lpb = sup
k∈Zd

φ(k)1/p‖u‖Lp(C1
k). (2.2)

Also one can see that if we take any bounded neighbourhood of x̄ in (2.2) instead of
C1
k , we again obtain an equivalent norm.

Theorem 2.1 (see e.g. [7, Theorem 2.1]). Let k ∈ N0, p ∈ [1,∞) and ε > 0.

Let φ be a weight function of growth rate 0 ≤ µ < ε and u ∈ W k,p
loc (Rd). Then

u ∈W k,p
b,φ (Rd) if and only if u ∈W k,p

x̄,ε (Rd) for every x̄ ∈ Rd and

sup
x̄∈Rd

φ(x̄)1/p‖u‖
Wk,p
x̄,ε

<∞. (2.3)

Moreover, the left-hand side of (2.3) defines a norm equivalent to the W k,p
b,φ (Rd)-

norm.
For O ⊆ Rd denote I(O) = {k ∈ Zd;C1

k ∩ O 6= ∅} and we define the W k,p
b,φ (O)-

seminorm by

‖u‖
Wk,p
b,φ (O)

= sup
l∈I(O)

φ(l)1/p‖u‖Wk,p(C1
l ). (2.4)

Lemma 2.2 ([17, Proposition 1.2]). For 1 ≤ p < ∞ and ε > 0 fixed there exist
C1, C2 > 0 such that for x̄ ∈ Rd and u ∈ Lpx̄,ε(Rd) with we have

C1‖u‖pLpx̄,ε ≤
∫

Rd
φx̄,ε(x)‖u‖pLp(B(x,1) dx ≤ C2‖u‖pLpx̄,ε .

Let ` > 0 and let φ be a weight function. We define the parabolic locally uniform
spaces L2

b,φ(0, `;L2(Rd)), L2
b,φ(0, `;W 1,2(Rd)) ⊆ L2

loc((0, `)× Rd) by

L2
b,φ(0, `;L2) = {u; ‖u‖2L2

b,φ(0,`;L2) = sup
x̄∈Rd

φ(x̄)‖u‖2L2(0,`;L2(C1
x̄)) <∞},

L2
b,φ(0, `;W 1,2) = {u; ‖u‖2L2

b,φ(0,`;W 1,2) = sup
x̄∈Rd

φ(x̄)‖u‖2L2(0,`;W 1,2(C1
x̄)) <∞}.

Lemma 2.3 ([7, Theorem 2.4]). Let ε > 0 be fixed and let φ be a weight function
of growth rate µ ∈ [0, ε). Then

‖u‖2L2
b,φ(0,`;L2) ≈ sup

x̄∈Rd
φ(x̄)

∫ `

0

∫

Rd
|u(x, t)|2φx̄,ε(x) dx dt,

‖u‖2L2
b,φ(0,`;W 1,2) ≈ sup

x̄∈Rd
φ(x̄)

∫ `

0

∫

Rd

(
|u(x, t)|2 + |∇u(x, t)|2

)
φx̄,ε(x) dx dt.
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In particular the previous lemma implies that for a weight function φ of growth
rate µ ∈ [0,min{ε1, ε2}) for some ε1, ε2 > 0 one has

sup
x̄∈Rd

φ(x̄)

∫ `

0

∫

Rd
|u(x)|2φx̄,ε2(x) dx dt ≈ sup

x̄∈Rd
φ(x̄)

∫ `

0

∫

Rd
|u(x)|2φx̄,ε1(x) dx dt

and similarly in the case of L2
b,φ(0, `;W 1,2). For O ⊆ Rd we can define the seminorms

L2
b,φ(0, `;L2(O)) and L2

b,φ(0, `;W 1,2(O)) similarly as in (2.4).
Lemma 2.4 (Ehrling’s lemma in weighted spaces, see e.g. [13, Lemma 7.6]). Let

p, q ≥ 1 and ε, ε̃ > 0 be such that the embedding W 1,p
x̄,ε (Rd) ↪→↪→ Lqx̄,ε̃(Rd) holds.

Then for every θ > 0 and 1 ≤ α < q there exist C, R > 0 such that for every
u : (0, `)× Rd → R one has

∫ `

0

‖u(t)‖αLqx̄,ε̃ dt ≤ θ
∫ `

0

‖u(t)‖α
W 1,p
x̄,ε

dt+ C

∫ `

0

∫

B(x̄,R)

|u(t, x)|α dxdt. (2.5)

3. Squeezing property. We define the energy functional by

E[u](t, x) =
1

2

(
|ut(t, x)|2 + |u(t, x)|2 + |∇u(t, x)|2

)
.

Let us define the space of trajectories

X = {(χ, χt);χ ∈ L2
loc((0, `)× Rd) solves (1.1) on (0, `) with (χ(0), χt(0)) ∈ B}.

Let ` > 0 be fixed. The trajectory semigroup L(t) : X → X and the end-point
operator e : X → Φb are given by

(L(t)(χ, χt))(s) = (S(t)χ(s), ∂tS(t)χ), s ∈ (0, `), e(χ) = (χ(`), χt(`)).

Let us also denote L ≡ L(`). For a weight function φ we also define

Φ`b,φ = L2
b,φ(0, `;W 1,2(Rd))× L2

b,φ(0, `;L2(Rd)),

W `
b,φ = L2

b,φ(0, `;W 1,2(Rd))× L2
b,φ(0, `;W 1,2(Rd))

and define respective seminorms similarly as in (2.4) for the parabolic spaces.
Lemma 3.1. There exists µ0 > 0 such that for all weight functions of growth

µ ∈ [0, µ0) and all ` > 0 the operators L : Φ`b,φ → W `
b,φ and e : Φ`b,φ → Wb,φ are

Lipschitz continuous on X .
In the next section we will use a weaker version of Lemma 3.1, more precisely

the Lipschitz continuities L : W `
b,φ → W `

b,φ and e : W `
b,φ → Wb,φ, both of which

follow from the proof by adding ‖∇wt(s)‖2x̄,ε to the right-hand side of (3.1). A similar
remark also applies to Lemma 4.1.

Proof. Let χ1, χ2 ∈ X , let u1 and u2 be the respective solutions and denote
w = u1 − u2. By Lemma [15, Lemma 9.2] the semigroup S(t) : Φx̄,ε → Wx̄,ε is
Lipschitz continuous on B uniformly w.r.t. t ∈ [0, T ], i.e.

‖w(t)‖2x̄,ε + ‖∇w(t)‖2x̄,ε + ‖wt(t)‖2x̄,ε + ‖∇wt(t)‖2x̄,ε
≤ Ct,s

(
‖w(s)‖2x̄,ε + ‖∇w(s)‖2x̄,ε + ‖wt(s)‖2x̄,ε

)
(3.1)
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for 0 < s < t and ε > 0 sufficiently small. The Lipschitz continuity of L then follows
by integration over s ∈ (0, `), t ∈ (`, 2`), multiplication by φ(x̄), applying supremum
over x̄ ∈ Rd to both sides of the estimate and using the equivalence of norms from
Lemma 2.3. The Lipschitz continuity of e follows in a similar manner.

Definition 3.2. The mapping L : X → X has a squeezing property for weight
function φ if there exists ε > 0 such that for every γ > 0 we may find `, κ, R > 0 so
that for every χ1, χ2 ∈ X and their respective solutions u1 and u2 we have

sup
x̄∈Rd

φ(x̄)

∫ 2`

`

∫

Rd

(
E[w] + |∇wt|2

)
φx̄,ε dx dt ≤ γ sup

x̄∈Rd
φ(x̄)

∫ `

0

∫

Rd
E[w]φx̄,ε dx dt

+ κ

(
sup
x̄∈Rd

φ(x̄)

∫ `

0

∫

B(x̄,R)

|w|2 dx dt+ sup
x̄∈Rd

φ(x̄)

∫ `

0

∫

B(x̄,R)

|wt|2 dx dt
)

(3.2)

+ κ

(
sup
x̄∈Rd

φ(x̄)

∫ 2`

`

∫

B(x̄,R)

|w|2 dx dt+ sup
x̄∈Rd

φ(x̄)

∫ 2`

`

∫

B(x̄,R)

|wt|2 dx dt
)
,

where w = u1 − u2.
Lemma 3.3. Let the nonlinear term f be subcritical, i.e. let 0 ≤ q < 4/(d − 2).

Then for every weight function φ of sufficiently small growth the operator L has the
squeezing property.

Proof. The proof is similar to [12, Lemma 3.1]. Let χ1, χ2 ∈ X and let u1, u2 be
the respective solutions. Let 0 < τ < ` and denote w = u1 − u2. We test both the
equations for u1 and u2 by wt + w/2 to get

1

2

(
‖wt(2`) +

1

2
w(2`)‖2x̄,ε +

1

8
‖w(2`)‖2x̄,ε +

3

4
‖∇w(2`)‖2x̄,ε

)
+

1

2

∫ 2`

τ

‖wt‖2x̄,ε dt

+

∫ 2`

τ

‖∇wt‖2x̄,ε +
1

2
‖∇w‖2x̄,ε dt+

∫ 2`

τ

(
f(u1)− f(u2), wt +

1

2
w
)
x̄,ε
dt

+

∫ 2`

τ

(
∇wt, (wt +

1

2
w)∇φx̄,ε

)
+
(
∇w, (wt +

1

2
w)∇φx̄,ε

)
dt

=
1

2

(
‖wt(τ) +

1

2
w(τ)‖2x̄,ε +

1

8
‖w(τ)‖2x̄,ε +

3

4
‖∇w(τ)‖2x̄,ε

)
. (3.3)

Relying on a standard but a rather tedious argument comprised of using Lemma 2.2,
Hölder’s and Young’s inequalities, subcritical growth estimates (1.2) on the nonlinear-
ity f and compact Sobolev embedding on bounded domains together with dissipation
estimates (1.3) we obtain

∣∣∣∣
∫

Rd
(f(u1)− f(u2))(wt + w)φx̄,ε dx

∣∣∣∣ ≤ η(‖w‖2x̄,ε + ‖∇w‖2x̄,ε) + C‖wt‖2Lpx̄,ε
for η > 0 determined later and 1 ≤ p < 2d/(d − 2). Putting the previous estimates
into (3.3) and employing (2.1) and Young’s inequality we get

C

(
‖wt(2`) +

1

2
w(2`)‖2x̄,ε + ‖w(2`)‖2x̄,ε + ‖∇w(2`)‖2x̄,ε

)

+ ζ

∫ 2`

`

‖wt‖2x̄,ε + ‖∇wt‖2x̄,ε + ‖∇w‖2x̄,ε + ‖w‖2x̄,ε dt

≤
∫

Rd
E[w](τ)φx̄,ε dx+ C

∫ 2`

0

‖w‖2x̄,ε + ‖wt‖2Lpx̄,ε + ‖w‖2Lpx̄,ε dt
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for some ζ > 0. We note that from now on the value of ε will not change. We integrate
over τ ∈ (0, `) and apply the weighted version of Ehrling’s lemma (Lemma 2.4) to the
functions w(t) and wt(t) both on the time intervals (0, `) and (`, 2`) to obtain

ζ`

∫ 2`

`

∫

Rd

(
E[w] + |∇wt|2

)
φx̄,ε dx dt ≤

∫ `

0

∫

Rd
E[w]φx̄,ε dx dt+ C`

∫ 2`

0

‖w‖2x̄,ε dt

+ C`θ

(∫ `

0

‖w‖2
W 1,2
x̄,ε̃

dt+

∫ `

0

‖wt‖2W 1,2
x̄,ε̃

dt+

∫ 2`

`

‖w‖2
W 1,2
x̄,ε̃

dt+

∫ 2`

`

‖wt‖2W 1,2
x̄,ε̃

dt

)

+ C`

(∫ `

0

∫

B(x̄,R)

|w|2 + |wt|2 dx dt+

∫ 2`

`

∫

B(x̄,R)

|w|2 + |wt|2 dx dt
)

for some R > 0 fixed, θ > 0 determined later and some ε̃ > 0 such that W 1,2
x̄,ε̃ (Rd) ↪→↪→

Lqx̄,ε(Rd), i.e. 2ε/q > ε̃. If we restrict ourselves to weight functions φ of growth

µ ∈ [0,min{ε, ε̃}), multiply by φ(x̄) and apply supremum over x̄ ∈ Rd, then by
Lemma 2.3 and by choosing θ sufficiently small we obtain

ζ̃` sup
x̄∈Rd

φ(x̄)

∫ 2`

`

∫

Rd

(
E[w] + |∇wt|2

)
φx̄,ε dx dt ≤ C sup

x̄∈Rd
φ(x̄)

∫ `

0

∫

Rd
E[w]φx̄,ε dx dt

+ C`

(
sup
x̄∈Rd

φ(x̄)

∫ `

0

∫

B(x̄,R)

|w|2 dx dt+ sup
x̄∈Rd

φ(x̄)

∫ `

0

∫

B(x̄,R)

|wt|2 dx dt
)

+ C`

(
sup
x̄∈Rd

φ(x̄)

∫ 2`

`

∫

B(x̄,R)

|w|2 dx dt+ sup
x̄∈Rd

φ(x̄)

∫ 2`

`

∫

B(x̄,R)

|wt|2 dx dt
)
.

for some 0 < ζ̃ < ζ. The conclusion follows by dividing by ζ̃` and choosing ` suffi-
ciently large.

4. Entropy estimate. Let X be a metric space and let K ⊆ X be precompact.
We define the Kolmogorov’s ε-entropy by

Hε (K,X) = lnNε(K,X),

where Nε(K,X) is the smallest number of ε-balls in X with centres in K that cover
the set K.

Lemma 4.1. Let O ⊆ Rd be bounded and let

I(O) ≤ C0 vol(O) (4.1)

for some C0 > 0. Let ε > 0 and θ ∈ (0, 1). Let (u0, u1) ∈ B and let (χ0, (χ0)t) be
the trajectory starting from (u0, u1). Let φ be a weight function such that the operator
L has the squeezing property for φ and denote B = Bε((χ0, (χ0)t); Φ`b,φ) ∩ X . Then
there exist C1, ` > 0 such that

Hθε

(
(LB)|O,W `

b,φ(O)
)
≤ C1 vol(O),

where the constant C1 depends only on C0 and θ and is independent of (u0, u1), ε, φ
and O as long as (4.1) holds and the constants in (2.1) remain the same.

Proof. The proof combines the technique of [12, Lemma 4.1] and [7, Lemma 2.6]
and adapts these to the squeezing property at hand. We will prove the assertion for
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φ ≡ 1. The general case then follows by the same argument as in [7, Lemma 2.6],
namely by showing that ‖χ‖

L2
b,φ(0,`;W 1,2(O))

≈ ‖Fχ‖
L2
b,1(0,`;W 1,2(O))

with F : χ →
φ1/2χ.

First fix 0 < γ < θ2 and using Lemma 3.3 find κ, ` > 0 such that L has the
squeezing property for the weight function φ and γ. Let δ > 0 be such that γ+4κδ2 <
θ2. For x1, x2, x3, x4 ∈ Rd fixed we denote

Px1,x2,x3,x4
((χ, ∂tχ)) =

(
χ|B(x1,R), ∂tχ|B(x2,R), Lχ|B(x3,R), ∂tLχ|B(x4,R)

)
,

where R > 0 comes from the squeezing property (3.2). Employing the standard
Aubin-Lions lemma and the Lipschitz continuity of L we observe that the set

X(x1, x2, x3, x4) = {Px1,x2,x3,x4 ((χ, ∂tχ)) ; (χ, ∂tχ) ∈ B}

equipped with the product topology
∏4
i=1 L

2(0, `;L2(B(xi, R))) can be covered by N
balls of diameter δε with N independent of ε and xi.

Let now χ1, χ2 ∈ B, let u1, u2 be their respective solutions and set w = u1 − u2.
Then we find xMi ∈ Rd such that

sup
x̄∈Rd

∫ `

0

∫

B(x̄,R)

|w|2 dx dt+ sup
x̄∈Rd

∫ `

0

∫

B(x̄,R)

|wt|2 dx dt

+ sup
x̄∈Rd

∫ 2`

`

∫

B(x̄,R)

|w|2 dx dt+ sup
x̄∈Rd

∫ 2`

`

∫

B(x̄,R)

|wt|2 dx dt

≤
∫ `

0

∫

B(xM1 ,R)

|w|2 dx dt+

∫ `

0

∫

B(xM2 ,R)

|wt|2 dx dt

+

∫ 2`

`

∫

B(xM3 ,R)

|w|2 dx dt+

∫ 2`

`

∫

B(xM4 ,R)

|wt|2 dx dt+
1

M

with M ∈ N large enough to have γε2 + 4κδ2ε2 + κ/M ≤ θ2ε2. By the previ-
ous observation we may cover the set X(xM1 , xM2 , xM3 , xM4 ) by δε-balls centered at
PxM1 ,xM2 ,xM3 ,xM4

((
χi, ∂tχ

i
))

for some (χi, ∂tχ
i) ∈ B, i = 1, . . . , N . For arbitrary

(χ, ∂tχ) ∈ B we may now find (χi, ∂tχ
i) ∈ B such that

‖PxM ((χ, ∂tχ))− PxM
((
χi, ∂tχ

i
))
‖X(xM1 ,xM2 ,xM3 ,xM4 ) < δε.

The squeezing property now leads to the estimate

sup
x̄∈Rd

∫ 2`

`

∫

Rd

(
E[w] + |∇wt|2

)
dx dt ≤ γε2 + 4κδ2ε2 +

κ

M
≤ θ2ε2,

which finishes the proof.
We will use the following auxiliary function in the spirit of [17]: let x̄ ∈ Rd, R > 0

and ν > 0. Define

ψ(x̄, R) = ψ(x̄, R)(x) =

{
1, |x− x̄| ≤ R+

√
d,

exp
(
ν
(
R+
√
d− |x− x̄|

))
, otherwise.

The function ψ(x̄, R) is clearly a weight function of growth ν with, in the notation of
(2.1), Cψ(x̄,R) = 1 for every x̄ ∈ Rd and R > 0. Also we have

Hε

(
B|B(x̄,R),Wb(B(x̄, R))

)
≤ Hε

(
B,Wb,ψ(x̄,R)

)
, (4.2)
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where Wb(B(x̄, R)) is a seminorm defined similarly as in (2.4) and B ⊆W `
b .

Lemma 4.2 ([7, Lemma 5.4]). For every ε0 > 0 we there exists R′ > 0 such that
for every x̄ ∈ Rd, R ≥ 1, ε ∈ (0, ε0) and χ1, χ2 ∈W `

b,ψ(x̄,R) one has

‖χ1 − χ2‖W `
b,ψ(x̄,R)

≤ max
{
ε, ‖χ1 − χ2‖W `

b,ψ(x̄,R)
(B(x̄,R+R′ ln(ε0/ε)))

}
.

Recall that A ⊆W 2,2
b (Rd)×W 1,2

b (Rd) is the locally compact attractor of the set
(1.1) defined in Section 1.

Theorem 4.3. There exist constants C0, C1, ε0 > 0 such that for every ε ∈
(0, ε0), x̄ ∈ Rd and R ≥ 1 one has the estimate

Hε

(
A|B(x̄,R),Wb(B(x̄, R))

)
≤ C0

(
R+ C1 ln

ε0

ε

)d
ln
ε0

ε
.

Proof. The proof is standard and runs in almost the same way as in [10, Theorem
6.5] and [7, Theorem 5.1] with only minor differences.

Let x̄ ∈ Rd, R ≥ 1 and let ψ(x̄, R) be of sufficiently small growth such that L has
the squeezing property for ψ(x̄, R) and let ` > 0 be such that Lemma 4.1 holds with
θ = 1/2 Lip(L) < 1, where Lip(L) denotes the Lipschitz constant of L from Lemma
3.1. The smallness of growth of ψ(x̄, R) can always be achieved by choosing ν small
in the definition of ψ(x̄, R). By the Lipschitz continuity of e and the property of the
weight function ψ(x̄, R) (4.2) we get

Hε

(
A|B(x̄,R),Wb(B(x̄, R))

)
≤ Hε

(
A,Wb,ψ(x̄,R)

)
≤ Hε/Lip(e)

(
A`,W `

b,ψ(x̄,R)

)
,

where A` = {(χ, χt) ∈ Φ`b; (χ(0), χt(0) ∈ A}. By the dissipation estimates (1.3) and
the invariance of A we observe that actually A` ⊆W `

b and A` is invariant w.r.t. L(t).
Also the dissipation estimates (1.3) imply that for some χ ∈ A` and ε0 > 0 sufficiently
large we have

Hε0/Lip(e)

(
A`,W `

b,ψ(x̄,R)

)
= 0.

The key part of the proof is to show that for k ∈ N ∪ {0} one has

Hε02−k/Lip(e)

(
A`,W `

b,ψ(x̄,R)

)
≤ C

(
R+ C ′ ln 2k

)d
k (4.3)

for some C ′ > 0. Indeed, once we have established (4.3) for given ε ∈ (0, ε0) we may
find k ∈ N such that 2−kε0 ≤ ε < 2−k+1ε0 and the desired entropy bound follows.

The estimate (4.3) clearly holds for k = 0. Assume that (4.3) holds for k ≥ 0, i.e.

A` ⊆
Nk⋃

i=1

Bε02−k/Lip(e)

(
(χi, χit);W

`
b,ψ(x̄,R)

)
(4.4)

for some Nk ∈ N such that lnNk ≤ C(R+C ′ ln 2k)dk and (χi, χit) ∈ A` for 1 ≤ i ≤ Nk.
Applying L to (4.4) and recalling the invariance of A` under L and the Lipschitz
continuity of L, we get

A` = L(A`) ⊆
N⋃

i=1

BLip(L)ε02−k/Lip(e)

(
(Lχi, ∂tLχ

i);W `
b,ψ(x̄,R)

)
(4.5)
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By Lemma 4.1 with θ = 1/2 Lip(L) each of the balls on the right-hand side of (4.5)
localized to the spatial domain B(x̄, R+R′ ln 2k+1) can be covered by ε02−(k+1)-balls
in the space W `

b,ψ(x̄,R) in such a way that

Hε02−(k+1)/Lip(e)

(
A`|B(x̄,R+R′ ln 2k+1),W

`
b,ψ(x̄,R)(B(x̄, R+R′ ln 2k+1))

)

≤ Hε02−k/Lip(e)

(
A`,W `

x̄,ψ(x̄,ε)

)
+ C

(
R+R′ ln 2k+1

)d

≤ C
(
R+R′ ln 2k+1

)d
(k + 1).

The proof is finished since by Lemma 4.2 every ε02−(k+1)/Lip(e)-covering in the space
W `
b,ψ(x̄,R)(B(x̄, R(ε02−(k+1)))) is also an ε02−(k+1)/Lip(e)-covering in W `

b,ψ(x̄,R) .
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THE TREE-GRID METHOD WITH CONTROL-INDEPENDENT
STENCIL

IGOR KOSSACZKÝ , MATTHIAS EHRHARDT , AND MICHAEL GÜNTHER ∗

Abstract. The Tree-Grid method is a novel explicit convergent scheme for solving stochastic
control problems or Hamilton-Jacobi-Bellman equations with one space dimension. One of the char-
acteristics of the scheme is that the stencil size is dependent on space, control and possibly also on
time. Because of the dependence on the control variable, it is not trivial to solve the optimization
problem inside the method. Recently, this optimization part was solved by brute-force testing of
all permitted controls. In this paper, we present a simple modification of the Tree-Grid scheme
leading to a control-independent stencil. Under such modification an optimal control can be found
analytically or with the Fibonacci search algorithm.

Key words. Tree-Grid Method, Hamilton-Jacobi-Bellman equation, Stochastic control problem,
Fibonacci algorithm

AMS subject classifications. 65M75, 65C40

1. Introduction. Stochastic control problems (SCP) arise in many fields where
some stochastic process is controlled in order to maximize (or minimize) an expected
value of an uncertain outcome. An effective approach to solve such problems presents
the Hamilton-Jacobi-Bellman (HJB) equation. As the analytical solutions are in
most cases not feasible, the development of numerical methods dealing either with
HJB equation or directly with the SCP is essential. A large class of methods is
based on approximating the stochastic process by a Markov chain [5]. Another way
presented e.g. in [2] is to solve the HJB equation with an implicit finite-difference
method (FDM). A method based on Ricatti transformation of the HJB equation was
proposed in [3].

Recently a new method having similarities with Markov chain approximations as
well as with the explicit FDMs was presented in [4]. The advantage of this method is
its independence on the space-stepping of the grid, as well as its unconditional con-
vergence. However, as well as in FDMs and Markov chain methods, an optimization
problem needs to be solved in each step.

In this paper, we want to present a modification of the Tree-Grid method, that
will allow us to solve the optimization problem more effectively.

2. Problem formulation. The Tree-Grid method is a numerical scheme for
searching the value function V (s, t) of the following general stochastic control problem:

∗University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
igor.vyr@gmail.com, ehrhardt@math.uni-wuppertal.de, guenther@math.uni-wuppertal.de
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V (s, t) = max
θ(s,t)∈Θ̄

E

(∫ T

t

exp

(∫ k

t

r(Sl, l, θ(Sl, l))dl

)
f(Sk, k, θ(Sk, k))dk

+ exp

(∫ T

t

r(Sk, k, θ(Sk, k))dk

)
VT (ST )

∣∣∣St = s

)
, (2.1)

dSt =µ(St, t, θ(St, t))dt+ σ(St, t, θ(St, t))dWt, (2.2)

0 <t < T, s ∈ R,

where s is the state variable and t denotes time. Here, Θ̄ is the space of all suitable
control functions from R × [0, T ] to a set Θ. In the original Tree-Grid method [4],
Θ is supposed to be discrete. If this is not the case, the set Θ should be discretized.
Another option arising from this paper would be to search for an optimum analytically,
that will be discussed later. Now following Bellman’s principle, the following dynamic
programming equation holds:

V (s, tj) = max
θ(s,t)∈Θ̄tj

E

(∫ tj+1

tj

exp

(∫ k

tj

r(Sl, l, θ(Sl, l))dl

)
f(Sk, k, θ(Sk, k))dk

+ exp

(∫ tj+1

tj

r(Sk, k, θ(Sk, k))dk

)
V (Stj+1

, tj+1)
∣∣∣Stj = s

)
, (2.3)

where 0 ≤ tj < tj+1 ≤ T are some time-points and Θ̄tj is a set of control functions
from Θ̄ restricted to the R × [tj , tj+1) domain. Using this equation (2.3), it can
be shown [7], that solving the SCP (2.1),(2.2) is equivalent to solving the so-called
Hamilton-Jacobi-Bellman (HJB) equation:

∂V

∂t
+ max

θ∈Θ

(
σ(·)2

2

∂2V

∂s2
+ µ(·)∂V

∂s
+ r(·)V + f(·)

)
= 0, (2.4)

V (s, T ) = VT (s), (2.5)

0 < t < T, s ∈ R,

where σ(·), µ(·), r(·), f(·) are functions of s, t, θ. This HJB formulation was used to
prove the convergence of the scheme [4].

We should note that the maximum operator in (2.1) and (2.4) can be replaced
by a minimum, (supremum, infimum) operator and the whole following analysis will
hold analogously.

3. The Tree-Grid Method. The main idea of the Tree-Grid method is ap-
proximating the continuous stochastic process (2.2) with a discrete one, attaining
only values from the grid inside the computational domain, or values outside the
computational domain, that are assumed to be predefined. Then, a discretized ver-
sion of (2.3) is used to compute the approximation of the value function in each node
of the grid. The underlying discretized stochastic process can be easily represented
by a scenario tree. However, such a tree is “growing” from every time-space node of
an (arbitrarily chosen) grid, what explains the name of the method. We illustrate this
structure in Figure 3.1. Alternatively, the method can be also interpreted in terms
of finite differences which is discussed concisely in [4]. We will use this alternative
representation also in the Sections 5, 6.
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Fig. 3.1. Illustration of the Tree-Grid structure. From each grid node in current time layer
three branches are growing (bottom-to-top), determining which values from grid in later time layer
influence the value in the current node.

Now we will quickly recapitulate the Tree-Grid method algorithm. We compute
the approximation of the solution on a rectangular domain [sL, sR]× [0, T ] with some
grid as in usual finite difference schemes for PDEs. The grid-points are denoted as
[si, tj ], i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . ,M}, k < l ⇒ sk < sl, tk < tl, t1 = 0, tM = T ,
s1 = sL, sN = sR. The grid is possibly non-equidistant in space with space-steps
∆is = si+1−si and ∆s = maxi ∆is. We will use an equidistant discretization in time
with a time-step ∆t. A generalization to non-equidistant time-stepping is straightfor-
ward, however the implementation is less effective in means of computational time in
that case. The numerical approximation of V (si, tj) will be denoted by vji .

The whole scheme is then defined by the discrete approximation of the dynamic
programming equation (2.3)

vji = max
θ∈Θ

(
f ji (θ)∆t+ (1 + rji (θ)∆t)

·
(
p(i−,θ)v

j+1
(i−,θ) + p(i,θ)v

j+1
i + p(i+,θ)v

j+1
(i+,θ)

))
. (3.1)

for i = 2, 3, . . . , N − 1 and

vj1 = BCL(s1, tj), vjN = BCR(sN , tj). (3.2)

Here, f ji (θ) = f(si, tj , θ), r
j
i (θ) = r(si, tj , θ) and

vj+1
(i∗,θ) =





vj+1
k so that sk = s(i∗,θ) if s(i∗,θ) ∈ {s1, s2, . . . , sN}
BCL(s(i∗,θ), tj+1) if s(i∗,θ) < s1

BCR(s(i∗,θ), tj+1) if s(i∗,θ) > sN

for the ∗ ∈ {−,+}. Here BCL(s, t) and BCR(s, t) are functions defining an ap-
proximation of the value function behind the boundaries and s(i−,θ), si, s(i+,θ) are
states that the discretized process may attain with the probabilities p(i−,θ), pi, p(i+,θ)
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under the control θ after the time-step ∆t if the previous state was si. It holds
s(i−,θ) < si < s(i+,θ). In order to match the moments of this discretized process with
the original time-continuous process (2.2) the probabilities are chosen in the following
manner:

p(i−,θ) =
−µ∆t(∆+s− µ∆t) + V ar

∆−s(∆−s+ ∆+s)
, (3.3)

p(i,θ) =
(−∆−s− µ∆t)(∆+s− µ∆t) + V ar

−∆−s∆+s
, (3.4)

p(i+,θ) =
(−∆−s− µ∆t)(−µ∆t) + V ar

(∆+s+ ∆−s)∆+s
. (3.5)

Here, ∆+s = s(i+,θ) − si, ∆−s = si − s(i−,θ), µ := µ(si, tj , θ) and V ar :=
V ar(si, tj , θ) is chosen in such manner, that V ar/∆t is equal or at least converges
to σ2(si, tj , θ) with ∆t,∆s → 0. As explained in [4], these probabilities sum up to
one. However, we need to choose states s(i−,θ), s(i+,θ) such that all probabilities are
positive. Let us assume that the drift µ is positive. Then p(i+,θ) is positive, and
p(i−,θ), p(i,θ) are positive if the following condition holds:

∆−s∆+s+ µ∆t(∆+s−∆−s) ≥ (µ∆t)2 + V ar ≥ µ∆t∆+s (3.6)

We choose

s(i−,θ) =
⌊
si −

√
(µ(si, tj , θ)∆t)2 + V ar(si, tj , θ)

⌋
s
, (3.7)

s(i+,θ) =
⌈
si +

√
(µ(si, tj , θ)∆t)2 + V ar(si, tj , θ)

⌉
s
, (3.8)

where des denotes rounding to the nearest greater element from s1, s2, . . . , sN , and bcs
denotes rounding to the nearest smaller element from s1, s2, . . . , sN . If such element
does not exist, dxes and bxcs will return just x. This corresponds to the boundary
cases where x < s1 or x > sN . Now it holds

√
(µ∆t)2 + V ar ≤ ∆−s,∆+s ≤

√
(µ∆t)2 + V ar + ∆s (3.9)

and the first inequality in (3.6) holds. For the second inequality in (3.6) it is sufficient
if

(µ∆t)2 + V ar ≥
(√

(µ∆t)2 + V ar + ∆s
)
µ∆t (3.10)

For V ar = A(si, tj , θ) with

A(si, tj , θ) = 1/2
(
−(µ∆t)2 + 2|µ|∆t∆s+ |µ|∆t

√
(µ∆t)2 + 4|µ|∆t∆s

)
(3.11)

condition (3.10) is fulfilled as equality, for larger V ar as inequality. Therefore we set

V ar = max
(
σ2(si, tj , θ)∆t, A(si, tj , θ)

)
(3.12)
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and compute s(i−,θ), s(i+,θ) according to (3.7), (3.8) using this value. We should
note, that in (3.11) we replaced µ with |µ| to cover also the analogous case of a
negative drift µ. Now, also the second part of the inequality (3.6), is fulfilled. It holds
V ar/∆t → σ2(si, tj , θ) with ∆t,∆s → 0 and it is easy to check that the difference
|V ar − σ2(si, tj , θ)∆t| is smaller or equal than in the original paper [4]. Following
[4], the scheme is then consistent and formula (3.12) is even better then the original
version [4], as potentially less artificial diffusion is added.

4. Modification: control-independent stencil. The dependence of the pos-
sible states s(i−,θ), s(i+,θ) on the control variable θ implies also a dependence of vj+1

(i−,θ),

vj+1
(i+,θ) on θ and makes the optimization problem in (3.1) harder to solve. Therefore,

our goal now is to find a θ-independent choice of possible states si−, si+, while pre-
serving condition (3.6) (and its analogue for negative drift). We will assume a positive
drift µ(si, tj , θ), the case of negative drift is treated analogously.

Let us define

WM = max
θ∈Θ

(
σ2(si, tj , θ)∆t+ (µ(si, tj , θ)∆t)

2
)

= σ2(si, tj , θM )∆t+ (µ(si, tj , θM )∆t)2, (4.1)

E = max
θ∈Θ
|µ(si, tj , θ)∆t| , (4.2)

WE = 1/2
(
E2 + 2∆sE + E

√
E2 + 4∆sE

)
. (4.3)

It holds WE = E(
√
WE + ∆s) and for all W ≥WE : W > E(

√
W + ∆s). Finally, let

us define

W = max (WE ,WM ) (4.4)

and

si− =
⌊
si −

√
W
⌋
s
≥ si − (

√
W + ∆s), (4.5)

si+ =
⌈
si +

√
W
⌉
s
≤ si + (

√
W + ∆s). (4.6)

Moreover, we redefine also the variance V ar(si, tj , θ):

V ar = max
(
σ2∆t, |µ∆t| (

√
W + ∆s)− (µ∆t)2

)
, (4.7)

where σ = σ(si, tj , θ), µ = µ(si, tj , θ). It is easy to check that V ar/∆t → σ2 as
∆t,∆s→ 0 and therefore the consistency is preserved. Now it holds

∆−s, ∆+s ≥
√
W ≥

√
WM =

√
σ2(si, tj , θM )∆t+ (µ(si, tj , θM )∆t)2.

Therefore it also holds

∆−s∆+s+ µ∆t(∆−s−∆+s) ≥ σ2(si, tj , θM )∆t+ (µ(si, tj , θM )∆t)2

≥ σ2(si, tj , θ)∆t+ (µ(si, tj , θ)∆t)
2. (4.8)

It also holds

∆−s∆+s+ µ∆t(∆−s−∆+s) ≥W ≥ E(
√
W + ∆s) ≥ |µ∆t|(

√
W + ∆s). (4.9)
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From (4.8) and (4.9) the first inequality of (3.6) holds. The second inequality of (3.6)
holds, because

V ar + (µ(si, tj , θ)∆t)
2 ≥ µ∆t∆+s. (4.10)

Equation (4.10) also holds if we replace µ∆t∆+s with |µ∆t|∆−s which is important for
the case of a negative drift. Now substituting s(i−,θ), s(i+,θ) with si−, si+ for all values

of θ, we get also θ-independent values vj+1
(i−,θ), v

j+1
(i+,θ) (that can be written as vj+1

i− , vj+1
i+ ,

and the scheme (3.1) still remains consistent and monotone (p(i−,θ), pi, p(i−,θ) ≥ 0).
In the next section, we employ this “modified scheme” to effectively solve the control
problem arising in each node in equation (2.3).

5. Analytical solution of the control problem in the modified scheme.
According to [4] where also relationship of the Tree-Grid method with the FDMs is
discussed, the numerical scheme (3.1) can be written as

vji = max
θ∈Θ

(
f ji (θ)∆t+ (1 + rji (θ)∆t)

·
(
vj+1
i + µji (θ)∆jtD1v

j+1
i + 1/2

(
V arji (θ) + (µji (θ)∆jt)

2
)
D2v

j+1
i

))

:= max
θ∈Θ

F ji (θ), (5.1)

where µji (θ) = µ(si, tj , θ), V ar
j
i (θ) = V ar(si, tj , θ) and D1, D2 are standard finite

difference approximations of the first and second derivative on nonuniform grids:

D1v
j+1
i =

(
si+ − si
si+ − si−

)
vj+1
i − vj+1

i−
si − si−

+

(
si − si−
si+ − si−

)
vj+1
i+ − vj+1

i

si+ − si−
, (5.2)

D2v
j+1
i =

(
vj+1
i+ − vj+1

i

si+ − si−
− vj+1

i − vj+1
i−

si − si−

)/(si+ − si−
2

)
. (5.3)

Now, under the modification presented in the previous section, si+ and si− are control-
independent and hence also D1v

j+1
i and D2v

j+1
i are control independent. Then, for

a fixed node (si, tj) the function F ji (θ) is some combination of the functions f ji (θ),

rji (θ), µ
j
i (θ) and V arji (θ). As these functions are typically in closed form, it should

be possible to search for the maxθ∈Θ F
j
i (θ) analytically, and it is not necessary to

discretize Θ (if it is for example an interval).
However, V arji (θ) is defined as the maximum of two different functions in (4.7)

and therefore may switch its form in several points of the interval Θ. This can make the
analytical computation of maxθ∈Θ F

j
i (θ) quite difficult. This problem is not present,

if we can assure V arji (θ) = σ(si, tj , θ)
2∆t. That condition is typically fulfilled for a

relatively large diffusion coefficient σ compared to the drift coefficient µ.

6. Fibonacci algorithm for finding the optimal control. Because of the
possible complications arising by the search for the analytical solution of the control
problem maxθ∈Θ F

j
i (θ) presented in the previous section, our aim is now to present

another, more straightforward approach.



THE TREE-GRID METHOD WITH CONTROL-INDEPENDENT STENCIL 85

Let us suppose:

1. Θ is a one-dimensional interval.
2. Discount rate rji (θ) is constant in θ.

3. Increment rate f ji (θ) and drift µji (θ) are linear in θ.
4. Volatility σ2(si, tj , θ) is convex in θ.

These conditions are fulfilled in many applications. Under these conditions, it
is easy to verify, that also 1/2(V arji (θ) + (µji (θ)∆jt)

2) is convex. Then, F ji (θ) is
convex or concave and therefore has at most one local (and global) extreme inside the
interval Θ and has at least one extreme on the boundary. This makes the problem
maxθ∈Θ F

j
i (θ) suitable for the Fibonacci algorithm for maximum search [1]:

Discretize the interval Θ into Φn points θ1, θ2, . . . θΦn where Φn is the n-th
Fibonacci number.
Set a = 1, b = Φn, c1 = Φn−2, c2 = Φn−1

for j = n− 1, n− 2, . . . , 3 do

if F ji (θc1) > F ji (θc1) then
b := c2;
c2 := c1;
c1 := a− 1 + Φj−2;

else
a := c1;
c1 := c2;
c2 := a− 1 + Φj−1;

end

end

maxθ∈Θ F
j
i (θ) ≈ max(F ji (θa), F ji (θc1), F ji (θc2), F ji (θb), F

j
i (θ1), F ji (θΦn))

Algorithm 1: Fibonacci algorithm for finding the optimal control

In the last step of the algorithm we included for testing also values F ji (θ1), F ji (θΦn)

for the case that the function F ji (θ) is convex and the maximum is on the boundary.
The computational time of the Fibonacci algorithm is O(n) = O(log(Φn)) which is
much better than the computational time of the brute-force search approach [4] that
is O(Φn) for Φn controls.

7. Numerical experiment. We will test this modified Tree-Grid method with
control-independent stencil, and the Fibonacci algorithm for control search on a Pass-
port option pricing problem. This problem is solved with implicit FDM in [6]. In [4],
a “capped payoff” is used as terminal condition, and the performance of the implicit
FDM and of the Tree-Grid method is compared. Here, we will use the same param-
eters, terminal and boundary conditions as in [4]. For convenience we repeat here
briefly the problem formulation. Passport options are contracts that allow the buyer
to run a trading account for a certain amount of time. After the maturity, the buyer
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of this contract can keep the profit, or some part of it, however the potential loss will
be covered by the seller. The HJB equation for the price of a passport option is

∂V

∂t
+ max
|θ|≤1

(σ2

2
(x− θ)2 ∂

2V

∂x2

+
(

(r − rc − γ)θ − (r − rt − γ)x
)∂V
∂x
− γV

)
= 0 (7.1)

Here, t is time, V is the option price divided by asset price S and x = W/S, where W
is wealth accumulated on the trading account. By r, we denote the risk-free interest
rate, γ is the dividend rate, rc is the cost of carry rate, rt is the interest rate for the
trading account and σ is the volatility. The number of shares that the investor holds
(control variable) is denoted by θ, and it does not have to be an integer. In this case
the seller of the option requires the constraint |θ| ≤ 1. We used the same parameter
values as in [6]: r = 0.08, γ = 0.03, rc = 0.12, rt = 0.05, σ = 0.2.

Computational domain: The maturity of the option will be one year (T = 1), the
spatial domain will be restricted to [−3, 4]. The grid will be uniformly spaced in time,
and non-uniformly in space. On the coarsest grid, the time-step size is 0.01. At each
refinement, a four-times smaller time-step is taken. Basis for the space grid is vector
of nodes:

S0 = [− 3,−2,−1.5,−1,−0.75,−0.5,−0.375,−0.25,−0.1875,−0.125,

− 0.0625, 0, 0.0625, 0.125, 0.1875, 0.25, 0.375, 0.5, 0.75, 1, 1.5, 2, 3, 4] (7.2)

On the coarsest grid, 15 another nodes are equidistantly inserted between each two
neighbouring nodes of S0. Moreover, at each refinement, a new space-node is inserted
between each two neighbouring space-nodes.

Terminal and boundary conditions: As terminal condition we use the “capped”
payoff:

V (T, x) = VT (x) =





0 if x ≤ 0

x if 0 < x ≤ 1

1 if x > 1

,

and the Dirichlet boundary conditions:

V (xmin, t) = BCL(xmin) = 0, V (xmax, t) = BCR(xmax) = 1,

xmin = −3, xmax = 4.

Results: In the Figure 7.1, we illustrate results of numerical simulations. The
left figure presents a comparison of error and computational time of the original
Tree-Grid method [4] with the modified Tree-Grid method with control-independent
stencil for different discretizations. To compute the error, we used as a benchmark
solution a solution computed on a very fine grid (having twice as much space and
time nodes as the grid at the last refinement level) with an implicit FDM from [6].
In both cases, the control interval was discretized into 9 different controls, and we
used brute-force search for the optimal control. We see that the modified Tree-Grid
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Fig. 7.1. Left: Comparison of the natural logarithm of estimated absolute error of numerical
solution against natural logarithm of computational time (in seconds) for the original Tree-Grid
(TG) method and the modified Tree-Grid method with control independent stencil. Brute-force
search for optimal control is done in both cases. Right: Computational time (in seconds) of the
modified Tree-Grid method with control independent stencil for different number of controls in cases
of brute-force search and Fibonacci search for optimal control.

(TG) method converges, however the original method performs better. This may be
of course compensated for finer discretizations of the control interval, if the optimal
control is searched analytically or with a Fibonacci search algorithm in the modified
scheme.

This illustrates the right figure. Here we used a coarse grid with 24 space-nodes
defined by (7.2), 100 (equidistant) time-steps and a varying number of controls. As
number of controls (on the x-axis), we used the Fibonacci numbers from the fifth (8)
to the 14th (610). We compared the computational time of the modified Tree-Grid
method with a brute-force search for control and with a Fibonacci search for control.
We observe that for a large number of controls the Fibonacci search performs better
due to its logarithmic time-complexity (in contrast to the linear time complexity of
brute-force search). We should note that the actual values presented here in the
figure are strongly implementation dependent, but they are sufficient in illustrating
the proof of concept.

8. Conclusion. In this paper we presented modification of the Tree-Grid
method [4] leading to a control independent “stencil” (control independent possible
future states sj+1

− , sj+1
+ ). Due to this modification, it is possible to solve the optimiza-

tion problem arising in each step analytically. As this approach may be still quite
complicated in some cases, we proposed solving the control problem with a Fibonacci
search algorithm, if certain conditions on the problem parameters are fulfilled. We
analyzed the performance of the original and the modified method using an example
of HJB equation from finance, and illustrated the logarithmic time-complexity of the
Fibonacci search algorithm that can be applied in the modified scheme. In Section 3,
we also improved the strategy of adding artificial diffusion from [4].
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MULTIPLE POSITIVE SOLUTIONS FOR A p-LAPLACE CRITICAL
PROBLEM (p > 1), VIA MORSE THEORY

GIUSEPPINA VANNELLA∗

Abstract. We consider the quasilinear elliptic problem

(Pλ)

{
−∆pu = λuq−1 + up

∗−1 in Ω
u > 0 in Ω
u = 0 on ∂Ω

where Ω is bounded in RN, N ≥ p2, 1 < p ≤ q < p∗, p∗ = Np
N−p , λ > 0 is a parameter.

Denoting by P1(Ω) the Poincaré polynomial of Ω, we state that, for any p > 1, there exists λ∗ > 0
such that, for any λ ∈ (0, λ∗), either (Pλ) has at least P1(Ω) distinct solutions or, if not, (Pλ) can
be approached by a sequence of problems (Pn)n∈N, each having at least P1(Ω) distinct solutions.
These results have been proved in [12] only as regards the case p ≥ 2, while they will be completely
proved in the forthcoming work [13] in the case p ∈ (1, 2).
Note that, when p ∈ (1, 2), the Euler functional associated to (Pλ) is never C2, so the approach
already used for p ≥ 2 fails. This problem will be faced exploiting recent results given in [7] and [8].

Key words. Morse theory in Banach spaces, p-laplace equations, critical exponent, critical
groups, multiplicity, perturbation results, functionals with lack of smoothness, generalized Morse
index

AMS subject classifications. 58E05, 35J92, 35B33, 35B20

1. Introduction. Let us consider the quasilinear elliptic problem

(Pλ)




−∆p u = λuq−1 + up

∗−1 in Ω
u > 0 in Ω
u = 0 on ∂Ω

where Ω is a bounded domain in RN with smooth boundary, N ≥ p2, 1 < p ≤ q < p∗,
p∗ = Np/(N − p), λ > 0 is a parameter.

This problem was introduced by Brezis and Nirenberg in the famous paper [3],
in the semilinear case in which p = q = 2. Their result was later extended to the
quasilinear case p = q 6= 2 by Azorero and Peral [2], and Guedda and Veron [14].
Alves and Ding in [1] achieved a multiplicity result for the quasilinear problem (Pλ),
under the hypothesis p ≥ 2. More precisely, they proved that, if N ≥ p2 and 2 ≤ p ≤
q < p∗, then (Pλ) has at least cat(Ω) solutions, where cat(Ω) denotes the Ljusternik-
Schnirelmann category of Ω in itself.

Our goal is to exploit Morse theory in order to improve the previous result and
extend it to the case p > 1.

Solutions to (Pλ) are critical points of the energy functional Iλ : W 1, p
0 (Ω) → R

defined by

Iλ(u) =
1

p

∫

Ω

|∇u|p dx− λ

q

∫

Ω

(u+)q dx− 1

p∗

∫

Ω

(u+)p
∗
dx.

∗Department of Mechanics, Mathematics and Management (DMMM), Polytechnic University of
Bari, Campus Universitario, Via Orabona 4, 70126 Bari, Italy (giuseppina.vannella@poliba.it).
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When p 6= 2, W 1, p
0 (Ω) is a Banach space, but not a Hilbert one, and this brings

a lot of problems when trying to apply Morse theory.
Furthermore, when p ∈ (1, 2), Iλ is just a C1 functional, not C2.

2. Morse theory: recalls and considerations.

We need to recall some notions about this topic (cf. [5, 6]).
In the sequel, let K be a field.

Definition 2.1. For any B ⊂ A ⊂ Rn, we denote Pt(A,B) the Poincaré
polynomial of the topological pair (A,B), defined by

Pt(A,B) =

+∞∑

k=0

dimHk(A,B) tk.

where Hk(A,B) stands for the k-th Alexander-Spanier relative cohomology group of
(A,B), with coefficient in K; we also set Hk(A) = Hk(A, ∅) so that

Pt(A) = Pt(A, ∅)(2.1)

is the Poincaré polynomial of A.

Definition 2.2. Let Y be a Banach space and J a C1 functional on Y . Let C
be a closed subset of Y . A sequence (un) in C is a Palais-Smale sequence for J if
‖J(un)‖ ≤M uniformly in n, while J ′(un)→ 0 as n→ +∞.

We say that J satisfies (P.S.) on C, if any Palais-Smale sequence in C has a strongly
convergent subsequence.
Let c ∈ R. We say that J satisfies (P.S.)c if any sequence (un) in Y , such that
J(un)→ c and J ′(un)→ 0 as n→ +∞, has a strongly convergent subsequence.

Definition 2.3. Let Y be a Banach space, J ∈ C2(Y,R) and z a critical point
of J . The Morse index of J in z is the supremum of the dimensions of the subspaces
of Y on which J ′′(z) is negative definite. It is denoted by m(J, z). The large Morse
index of J in z is the supremum of the dimensions of the subspaces of Y on which
J ′′(z) is negative semidefinite. It is denoted by m∗(J, z).

Definition 2.4. Let Y be a Banach space, J ∈ C1(Y,R) and z a critical point
of J . We call

Cq(J, z) = Hq(Jc, Jc \ {z})

the q-th critical group of J at z, where c = J(z), q ∈ N and Hq(A,B) stands for the
q-th Alexander-Spanier cohomology group of the pair (A,B) with coefficients in K.
We call multiplicity of z the number

+∞∑

q=0

dimCq(J, z).(2.2)

In the context of a C1 functional defined on a Banach space, a topological version
of Morse relation holds.
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Theorem 2.5. Let Y be a Banach space, J ∈ C1(Y,R) and z a critical point of
J . Let a, b ∈ R be two regular values for J , with a < b. If J satisfies (P.S.)c condition
for any c ∈ (a, b), and z1, . . . , zl are the critical points of J in J−1(a, b), then

+∞∑

q=0




l∑

j=1

dimCq(J, zj)


 tq = Pt(Jb, Ja) + (1 + t)Q(t)

where Q(t) is a formal series with coefficients in N ∪ {+∞}.

By the previous theorem, building a suitable barycenter map, in [12] we proved
that there exists λ∗ > 0 such that, for any λ ∈ (0, λ∗), (Pλ) has at least P1(Ω)
solutions, possibly counted with their multiplicities, (see (2.1) and (2.2)).

This is an improvement on the result previously obtained in [1] via Ljusternik-
Schnirelmann theory, at least when Ω is a topologically rich domain. In fact, for
example, if Ω is obtained by cutting off k holes from an open contractible domain,
then P1(Ω) = k + 1, while cat(Ω) = 2.

At the same time, we do not know what is the minimum number of distinct
solutions to (Pλ), as we have no information about the multiplicity of each solution.
The situation would have been different if the energy functional had been defined on
a Hilbert space.

In fact, if H is a Hilbert space, J ∈ C2(H,R), and z is a nondegenerate critical
point of J , namely if J ′′(z) : H → H∗ is invertible, then, using Morse splitting
Lemma, a crucial relation between differential and topological information about z
holds.

Theorem 2.6. If z is a nondegenerate critical point of J , then

Cq(J, z) ∼= K if q = m(J, z),

Cq(J, z) = {0} if q 6= m(J, z)

being m(J, z) the Morse index of J in z.

Consequently, in a Hilbert space, the multiplicity of any nondegenerate critical
point is 1.

Moreover, nondegeneracy assumption holds quite often, as proved by the remark-
able result [15] due to Marino and Prodi, in which it is showed that, if the second
derivative is a Fredholm operator, an isolated degenerate critical point can be “solved”
in a finite number of nondegenerate critical points by a small local perturbation of J .

When we pass to consider a functional J ∈ C2(Y,R) defined on a Banach space
(not Hilbert) Y , a lot of difficulties arise, in fact:

• it is not clear what can be a reasonable definition of nondegenerate critical
point, as it makes no sense to require that the second derivative of J in a critical
point is invertible, since a Banach space, in general (and W 1, p

0 (Ω), in particular),
is not isomorphic to its dual space;

• moreover in [16] it has been proved that the existence of a nondegenerate
critical point having finite Morse index, implies the existence of an equivalent
Hilbert structure on Y ;

• Morse Lemma does not hold;
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• J ′′(z) is not a even Fredholm operator from Y to Y ∗, because if J ′′(z) is a
Fredholm operator, then Y is isomorphic to its dual space;

• extensions of Morse lemma of Gromoll-Meyer type can not be applied, and no
perturbation argument of Marino-Prodi type can be applied.

In this context, is it possible to relate critical groups to differential features of
critical points?

Various experts addressed the issue. We just quote, among them, Uhlenbeck [18],
Tromba [17] and Chang [4].

First of all, they tried to give a suitable definition of nondegenerate critical points
in Banach spaces, but these definitions were quite involved and not easy to verify. For
example, let us see the following one given in [4].

Definition 2.7. Let X be a Banach space and f : X → R a C2 function. A
critical point x0 of f is said to be s-nondegenerate if

• x0 is isolated;

• there exists a neighborhood U of x0 and an hyperbolic operator Lx0
≡ L :

X → X such that

〈f ′′(x0)Lx, y〉 = 〈f ′′(x0)x, Ly〉 ∀x, y ∈ X;
〈f ′′(x0)Lx, x〉 > 0 ∀ x ∈ X \ {0};
〈f ′(x), L(x− x0)〉 > 0 ∀ x ∈ f c ∩ (U \ {x0}), where c = f(x0).

Our approach is different.

3. A new approach: I) case p ≥ 2.

Let us return to consider problem (Pλ). In the case p ≥ 2, the energy functional Iλ is
of class C2 on W 1, p

0 (Ω), which is not a Hilbert space when p > 2. In [11] we consider
a class of functionals including

Jα,f (u) =
1

p

∫

Ω

((
α2 + |∇u|2

) p
2

)
dx− λ

q

∫

Ω

(u+)qdx− 1

p∗

∫

Ω

(u+)p
∗
dx−

∫
f(x)u(x)dx

where α > 0 and f ∈ C1(Ω). We give the following new definition of nondegen-
erate critical point, introduced for the first time in [10].

Definition 3.1. A critical point u of Jα,f is nondegenerate if

J ′′α,f (u) : W 1,p
0 (Ω)→W−1,p′(Ω) is injective.

In [11], using this new notion, we obtain critical groups estimates in the spirit of
differential Morse relation (cf. Theorem 2.6). More precisely:

Theorem 3.2. Let p > 2, λ > 0, α > 0, f ∈ C1(Ω) and u be a nondegenerate
critical point of Jα,f . Then u is isolated, the Morse index m = m(Jα,f , u) is finite and

Cq(Jα,f , u) ∼= δq,mK.
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So, in particular, if u is nondegenerate, then its multiplicity is 1.
Moreover, if u is nondegenerate, then u isolated. Hence, from this new definition, we
can infer something that Definition 2.7 needed to assume.

We remark that in 1969 Smale, as reported by Uhlenbeck in [18], conjectured
that mere injectivity could be enough for developing Morse theory in some Banach
settings. So the previous result proves that, as regards Jα,f , Smale’s conjecture is
true.

In order to give an interpretation of multiplicity for a solution to (Pλ), we need
a deep insight into this notion. We do it taking advantage of the following abstract
result, proved by Cingolani, Lazzo and Vannella in [9].

Theorem 3.3. Let A be an open subset of a Banach space Y . Let I be a C1

functional on A and z ∈ A be an isolated critical point of I. Assume that there exists
an open neighborhood U of z such that U ⊂ A, z is the only critical point of I in U
and I satisfies the Palais–Smale condition in U .
Then, there exists µ > 0 such that, for any J ∈ C1(A,R) such that

• ‖I − J‖C1(A) < µ,

• J satisfies the Palais–Smale condition in U ,
• J has a finite number {u1, u2, . . . , um} of critical points in U ,

we have
m∑

j=1

Pt(J, uj) = Pt(I, z) + (1 + t)Q(t),

where Q(t) is a formal series with coefficients in N ∪ {+∞}.
So, in particular,

m∑

j=1

multiplicity (J, uj) ≥ multiplicity (I, z).

In what follows, we say that ∂Ω satisfies the interior sphere condition if for each
x0 ∈ ∂Ω there exists a ball BR(x1) ⊂ Ω such that BR(x1) ∩ ∂Ω = {x0}.

Due to the previous abstract theorem, considering also that, if B is bounded in
W 1, p

0 (Ω), then

lim
α→ 0+

‖Jα,0 − Iλ‖C1(B) = 0 and lim
‖f‖

C1(Ω)
→ 0
‖Jα,f − Jα,0‖C1(B) = 0,

in [12] we proved the following result.

Theorem 3.4. Assume that ∂Ω satisfies the interior sphere condition and that
N ≥ p2, 2 < p ≤ q < p∗, p∗ = Np/(N − p). There exists λ∗ > 0 such that, for
any λ ∈ (0, λ∗), either (Pλ) has at least P1(Ω) distinct solutions or, if not, for any
sequence (αn), with αn > 0, αn → 0, there exists a sequence (fn) with fn ∈ C1(Ω),
‖fn‖C1 → 0 such that problem

(Pn)




−div

(
(|∇u|2 + αn)(p−2)/2∇u

)
= λuq−1 + up

∗−1 + fn in Ω
u > 0 in Ω
u = 0 on ∂Ω
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has at least P1(Ω) distinct solutions, for n large enough. Moreover, if p = 2, the
statement holds also if αn ≥ 0.

The previous theorem is a sharp interpretation of the multiplicity of a critical point
of (Pλ) in terms of approximating elliptic problems. We remark that this approach
is new also for the case p = 2. Indeed the perturbation results by Marino and Prodi
furnish an interpretation of the multiplicity in terms of C1 locally approximating
functionals, which can not be, in general, the Euler functionals of some semilinear
problems.

4. A new approach: II) case 1 < p < 2.

When we consider (Pλ) in the case p ∈ (1, 2), an additional difficulty arises, as Iλ is
just in C1(W 1, p

0 (Ω),R) and not in C2(W 1, p
0 (Ω),R). So it seems even not possible to

give a notion of Morse index, and, more in general, the approach used in [12], where
p ≥ 2, fails.

In order to face this further challenge, we used suitable approximations of (Pλ),
suggested by recent results given in [7] and [8]. In these papers we considered a class
of functionals including

Jα,f (u) =
1

p

∫

Ω

((
α2 + |∇u|2

) p
2

)
dx− λ

q

∫

Ω

(
α+ (u+)s

) q
s dx

− 1

p∗

∫

Ω

(
α+ (u+)s

) p∗
s dx−

∫
f(x)u(x)dx,

where α > 0, s > 2 and f ∈ C1(Ω). Functionals Jα,f are still just in C1(W 1, p
0 (Ω),R)

and not in C2(W 1, p
0 (Ω),R).

However, if u0 is a critical point of Jα,f , it can be proved that u0 ∈ C1( Ω ), so

we introduce a suitable quadratic form Qu0
defined on W 1,2

0 (Ω) (which is embedded
in W 1,p

0 (Ω), as p < 2) by

Qu0
(z) =

∫

Ω

(α+ |∇u0|2)
p−2

2 |∇z|2 + (p− 2)

∫

Ω

(α+ |∇u0|2)
p−4

2 (∇u0/∇z)2

− λ
∫

Ω

((
(s− 1)α(u+

0 )s−2 + (q − 1)(u+
0 )2s−2

) (
α+ (u+

0 )s
) q−2s

s

)
z2

−
∫

Ω

((
(s− 1)α(u+

0 )s−2 + (p∗ − 1)(u+
0 )2s−2

) (
α+ (u+

0 )s
) p∗−2s

s

)
z2.

Through this quadratic form, we give the following generalized definition of Morse
indices.

Definition 4.1. We denote by m(Jα,f , u0), the (generalized) Morse index of Jα,f
at u0, defined as the supremum of the dimensions of the linear subspaces of W 1,2

0 (Ω)
where Qu0 is negative definite.

In a similar way, we denote by m∗(Jα,f , u0) the (generalized) large Morse index
of Jα,f at u0, defined as the supremum of the dimensions of the linear subspaces of

W 1,2
0 (Ω) where Qu0

is negative semidefinite.
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We remark that

m(Jα,f , u0) ≤ m∗(Jα,f , u0) < +∞.

Moreover these generalized Morse indices coincide with the usual ones when p ≥ 2.

In [8] we proved that even in this case a critical group estimate result holds.

Theorem 4.2. Let p ∈ (1, 2), q ∈ [p, p∗), λ > 0, f ∈ C1(Ω) and α > 0. If u0 is
a critical point of Jα,f and

m(Jα,f , u0) = m∗(Jα,f , u0) = m

then u0 is an isolated critical point of Jα,f and

Cq(Jα,f , u0) ∼= δq,mK

In particular, if m(Jα,f , u0) = m∗(Jα,f , u0), then multiplicity of u0 is 1.

Exploiting in a suitable way Theorem 3.3, in [13] we prove the following result.

Theorem 4.3.
Assume that ∂Ω satisfies the interior sphere condition and that N ≥ p2, p ∈ (1, 2),

p ≤ q < p∗, p∗ = Np/(N − p). There exists λ∗ > 0 such that, for any λ ∈ (0, λ∗),
either (Pλ) has at least P1(Ω) distinct solutions or, if not, there exists s > 2 such
that, for any sequence (αn), with αn > 0, αn → 0, there exists a sequence (fn) with
fn ∈ C1(Ω), ‖fn‖C1 → 0, such that problem

(Pn)





−div
(
(|∇u|2 + αn)(p−2)/2∇u

)

= λus−1(αn + us)
q−s
s + us−1(αn + us)

p∗−s
s + fn in Ω

u > 0 in Ω
u = 0 on ∂Ω

has at least P1(Ω) distinct solutions, for n large enough.
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PROPAGATION OF ERRORS IN DYNAMIC ITERATIVE SCHEMES

BARBARA ZUBIK-KOWAL∗

Abstract. We consider iterative schemes applied to systems of linear ordinary differential
equations and investigate their convergence in terms of magnitudes of the coefficients given in the
systems. We address the question of whether the reordering of equations in a given system improves
the convergence of an iterative scheme.

Key words. Dynamic iterations, waveform relaxation, Gauss-Seidel schemes, convergence, error
bounds

AMS subject classifications. 65L04, 65L20, 65L70

1. Introduction. We investigate convergence of dynamic iteration schemes, see
e.g. [2], [4], whose successive iterates are vector functions of the time variable t
rather than just a collection of scalars (as in static iterations). The schemes are
also called waveform relaxation techniques and their advantages are described e.g. in
[3]. The references [3], [2], [4] provide a broad overview on the dynamic iteration
schemes (designed for time-dependent initial value problems) versus static iteration
schemes (designed for linear algebraic systems). Convergence analyses for dynamic
iteration schemes are provided in [3], [2], [4] and the references therein. However,
the comparison of different choices of dynamic iteration schemes obtained through a
change in the order of the differential equations in a given system is not considered
in these references.

In this paper, we show that the choice of the components to be computed using
previous iterates and the components to be computed using present iterates affects
the efficiency of resulting iterative schemes. To illustrate this, we consider dynamic
iterative schemes for the following system





d

dt
x1(t) = a11x1(t) + a12x2(t) + g1(t),

d

dt
x2(t) = a21x1(t) + a22x2(t) + g2(t), t > 0.

(1.1)

supplemented by the initial conditions

x1(0) = x1,0, x2(0) = x2,0, (1.2)

where a11 ≤ 0, a22 ≤ 0, a12, a21, x1,0, x2,0 are given real numbers and gi(t) are given
real valued functions.

For (1.1)–(1.2), we consider the following alternative iterative schemes





d

dt
xk+1
1 (t) = a11x

k+1
1 (t) + a12x

k
2(t) + g1(t),

d

dt
xk+1
2 (t) = a21x

k+1
1 (t) + a22x

k+1
2 (t) + g2(t), t > 0.

(1.3)

∗Department of Mathematics, Boise State University, 1910 University Drive, Boise, Idaho 83725,
USA, (zubik@math.boisestate.edu).

97



98 B. ZUBIK-KOWAL

and




d

dt
yk+1
2 (t) = a22y

k+1
2 (t) + a21y

k
1 (t) + g2(t),

d

dt
yk+1
1 (t) = a12y

k+1
2 (t) + a11y

k+1
1 (t) + g1(t), t > 0.

(1.4)

supplemented by the initial conditions

xk1(0) = yk1 (0) = x1,0, xk2(0) = yk2 (0) = x2,0. (1.5)

Scheme (1.3) is initiated from an arbitrary function x02(t) and (1.4) is initiated from
another arbitrary function y01(t). Schemes (1.3) and (1.4) are called Gauss-Seidel
waveform relaxation schemes see, e.g., [2], [4].

Note that (1.4) is obtained from (1.1) by switching the equations in (1.1). More-
over, schemes (1.3) and (1.4) differ through the fact that scheme (1.3) is slowed down
by the previous iterate xk2(t) that is multiplied by the coefficient a12 while scheme
(1.4) is slowed down by the previous iterate yk1 (t) multiplied by a21.

Suppose that both kth iterates xk2(t) and yk1 (t) give rise to the same error

Ek(t) = xk2(t)− x2(t) = yk1 (t)− y1(t).

Then, in scheme (1.3), the error Ek(t) is multiplied by the coefficient a12 while, in
scheme (1.4), Ek(t) is multiplied by a21. Let us additionally suppose that a12 is much
greater than a21, for example, a12 = 106 and a21 = 10−6. Then, in scheme (1.3), the
error Ek(t) is multiplied by 106 (that is, it is significantly enlarged) while, in scheme
(1.4), the error Ek(t) is multiplied by 10−6 (so, it is significantly reduced). Therefore,
a natural question arises. Which of the schemes (1.3) or (1.4) is faster? In other
words, which of the sequences

{(
xk1(t), xk2(t)

)}∞
k=0

,
{(
yk1 (t), yk2 (t)

)}∞
k=0

(1.6)

converges to
(
x1(t), x2(t)

)
faster?

This brings about further questions. Is it better to reorder the differential equa-
tions in system (1.1) before the Gauss-Seidel waveform relaxation scheme is applied
to get faster convergence of the resulting successive iterates? The goal of the paper
is to address the above questions.

2. Convergence analysis involving the spectral radius of a linear inte-
gral operator. In this section, we follow [3] and define the linear integral operator

Kx(t) =

∫ t

0

exp
(
(t− s)A

)
Bx(s)ds,

where A and B are complex square matrices of the same size. Then system (1.3) is
written in the form

xk+1(t) = Kxk(t) +

∫ t

0

exp
(
(t− s)A

)
g(s)ds+ exp

(
(t− s)A

)
x0

with

A =

[
a11 0
a21 a22

]
, B =

[
0 a12
0 0

]
, g(t) =

[
g1(t)
g2(t)

]
, x0 =

[
x1,0
x2,0

]
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and the spectral radius of K is written in the form

ρ(K) =
∣∣∣a12a21
a11a22

∣∣∣,

see [3]. If

Ã =

[
a22 0
a12 a11

]
, B̃ =

[
0 a21
0 0

]
, g̃(t) =

[
g2(t)
g1(t)

]
, x̃0 =

[
x2,0
x1,0

]

then (1.4) is written in the form

yk+1(t) = K̃yk(t) +

∫ t

0

exp
(
(t− s)Ã

)
g̃(s)ds+ exp

(
(t− s)Ã

)
x̃0,

where

K̃x(t) =

∫ t

0

exp
(
(t− s)Ã

)
B̃x(s)ds,

and

ρ(K̃) =
∣∣∣a12a21
a11a22

∣∣∣.

Note that the spectral radius for (1.4) is the same as for (1.3). Therefore, the spectral
radius does not give rise to any answer to the question of which of the schemes (1.3) or
(1.4) converge faster, though numerical experiments presented in Section 5 illustrate
that both schemes converge at different rates, showing that one is more efficient than
the other.

3. Explicit formulas for errors and conclusions for improving conver-
gence of iterative schemes. The roles of the parameters in the propagation of
errors can be traced more precisely from exact formulas of the errors than from error
bounds. In this section, we investigate the roles of the parameters a11, a12, a21, a22
in the propagation of errors arising during computations of the sequences of vector
functions (1.6) from the alternative numerical schemes (1.3) or (1.4) and address the
question of which of the schemes converges faster.

To realize this goal, we investigate exact formulas for the errors

eki (t) = xi(t)− xki (t), i = 1, 2, k = 0, 1, . . . (3.1)

and

Eki (t) = xi(t)− yki (t), i = 1, 2, k = 0, 1, . . . , (3.2)

which are provided through the following theorem.

Theorem 3.1. Let

w(ξ) =

∞∑

k=1

ξk

k!

k−1∑

i=0

ak−1−i11 ai22. (3.3)
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Then the errors (3.1) are given by the formulas

ek1(tk+1) = ak12a
k−1
21

∫ tk+1

0

∫ tk

0

. . .

∫ t2

0

ea11(tk+1−tk)
k−1∏

j=1

w(tj+1 − tj) (3.4)

e02(t1)dt1dt2 . . . dtk,

ek2(tk+1) = ak12a
k
21

∫ tk+1

0

∫ tk

0

. . .

∫ t2

0

k∏

j=1

w(tj+1 − tj) (3.5)

e02(t1)dt1dt2 . . . dtk,

where 0 < t1 < t2 < · · · < tk+1 and k = 1, 2, . . .
Proof. From (1.1)–(3.1), we have





d

dt
ek+1
1 (t) = a11e

k+1
1 (t) + a12e

k
2(t),

d

dt
ek+1
2 (t) = a21e

k+1
1 (t) + a22e

k+1
2 (t),

(3.6)

and

ek1(0) = ek2(0) = 0.

Therefore, the error ek(t) = (ek1(t), ek2(t))T is given recursively by

ek+1(t) =

∫ t

0

exp

(
(t− s)

[
a11 0

a21 a22

])[
0 a12

0 0

]
ek(s)ds, (3.7)

for k = 0, 1, 2 . . . . It can be proved by induction that

[
a11 0

a21 a22

]k
=




ak11 0

a21

k−1∑

j=0

ak−1−j11 aj22 ak22


 ,

for k = 1, 2, . . . This leads to

exp

(
(t− s)

[
a11 0

a21 a22

])
=

[
1 0

0 1

]
+

(t− s)1
1!

[
a11 0

a21 a22

]
+ · · ·+

(t− s)i
i!




ai11 0

a21

i−1∑

j=0

ai−1−j11 aj22 ai22


+ . . .

=




∞∑

i=0

ai11(t− s)i
i!

0

a21

∞∑

i=1

(t− s)i
i!

i−1∑

j=0

ai−1−j11 aj22

∞∑

i=0

ai22(t− s)i
i!




=



ea11(t−s) 0

a21w(t− s) ea22(t−s)


 ,
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which gives

exp

(
(t− s)

[
a11 0

a21 a22

])[
0 a12

0 0

]
=

[
0 a12e

a11(t−s)

0 a12a21w(t− s)

]
.

From this and from (3.7) we have

ek+1
1 (t) = a12

∫ t

0

exp
(
a11(t− s)

)
ek2(s)ds, (3.8)

ek+1
2 (t) = a12a21

∫ t

0

w(t− s)ek2(s)ds, (3.9)

for k = 0, 1, . . . . We now use (3.9) to prove (3.5). It is easy to check that (3.9) for
k = 0 implies (3.5) for k = 1, (here, t2 = t and t1 = s). Assuming (3.5) holds for
some k, we will prove it for k + 1. From (3.9) we have

ek+1
2 (tk+2) = a12a21

∫ tk+2

0

w(tk+2 − tk+1)ek2(tk+1)dtk+1

= ak+1
12 ak+1

21

∫ tk+2

0

w(tk+2 − tk+1)

∫ tk+1

0

∫ tk

0

. . .

∫ t2

0

k∏

j=1

w(tj+1 − tj)×

e02(t1)dt1dt2 . . . dtkdtk+1

= ak+1
12 ak+1

21

∫ tk+2

0

∫ tk+1

0

∫ tk

0

. . .

∫ t2

0

k+1∏

j=1

w(tj+1 − tj)e02(t1)dt1dt2 . . . dtkdtk+1,

which proves (3.5). We now use (3.5) and (3.8) to prove (3.4). From (3.5) and (3.8)
we have

ek+1
1 (tk+2) = a12

∫ tk+2

0

exp
(
a11(tk+2 − tk+1)

)
ek2(tk+1)dtk+1

= ak+1
12 ak21

∫ tk+2

0

exp
(
a11(tk+2 − tk+1)

)∫ tk+1

0

∫ tk

0

. . .

∫ t2

0

k∏

j=1

w(tj+1 − tj)×

e02(t1)dt1dt2 . . . dtkdtk+1,

which finishes the proof of the theorem.

We now apply Theorem 3.1 to (1.4) and compare the errors arising in both
schemes, (1.3) and (1.4). Since

k−1∑

i=0

ak−1−i11 ai22 =
k−1∑

i=0

ak−1−i22 ai11,
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from (3.4) and (3.5), we have

Ek2 (tk+1) = ak21a
k−1
12

∫ tk+1

0

∫ tk

0

. . .

∫ t2

0

ea22(tk+1−tk) ×
(3.10)

k−1∏

j=1

w(tj+1 − tj)E0
1(t1)dt1dt2 . . . dtk,

Ek1 (tk+1) = ak21a
k
12

∫ tk+1

0

∫ tk

0

. . .

∫ t2

0

k∏

j=1

w(tj+1 − tj)×

(3.11)
E0

1(t1)dt1dt2 . . . dtk,

for k = 1, 2, . . . and tk+1 > 0.
Remark. Note that the starting function x01(t) has no influence on the conver-

gence of the scheme (1.3) and the starting function y02(t) has no influence on the
convergence of the scheme (1.4).

The formulas (3.4)–(3.5), for the scheme (1.3), and the formulas (3.10)–(3.11),

for the scheme (1.4), show how the starting error e
(0)
2 = x2 − x(0)2 propagates in (1.3)

and how the starting error e
(0)
1 = x1 − y(0)1 propagates in (1.4).

To choose the faster scheme, we compare (3.4)–(3.5) with (3.10)–(3.11) in the
following Corollary.

Corollary 3.2. If

e02 ≡ E0
1 . (3.12)

and

a11 < a22 and |a12| < |a21|, (3.13)

then scheme (1.3) converges faster than scheme (1.4). If (3.12) holds and the inequal-
ities in (3.13) are reversed then scheme (1.4) converges faster than scheme (1.3).

Corollary 3.2 shows that if (3.13) holds, then even though (1.3) and (1.4) are
initiated with the same error, it propagates differently in both schemes.

Results for higher-dimensional systems are developed in [5].

4. Using parameters in the derivation of error bounds. Applying the
variation of constants formula it is easy to obtain the following classical error bound

‖ek(t)‖ ≤ 1

k!

(
exp(t‖L+D‖)‖U‖

)k
max{‖e0(s)‖ : 0 ≤ s ≤ t},

see [2]. However, sharper error estimation can be obtained by using the exact formulas
(3.4) and (3.5).

Theorem 4.1. Let

Sk =
1

k!

( |a12a21|
|a11|+ |a22|

)k ∫ t

0

sk exp
(
s(|a11|+ |a22|)

)
ds max

s∈[0,t]
|e02(s)|, (4.1)

for k = 0, 1, . . . . Then

|ek1(t)| < |a12|Sk−1, (4.2)

|ek2(t)| < |a12a21|
|a11|+ |a22|

Sk−1, (4.3)
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for k = 1, 2, . . . . Moreover

lim
k→∞

Sk = 0. (4.4)

Proof. Let w be defined as in Theorem 3.1 and α = |a11|+ |a22|. Since

0 < t1 < t2 < · · · < tk < tk+1

in (3.4) and (3.5), then from the definition (3.3) we have

∣∣∣w(tj+1 − tj)
∣∣∣ ≤

∞∑

k=1

(tj+1 − tj)k
k!

k−1∑

i=0

|a11|k−1−i|a22|i

≤
∞∑

k=1

(tj+1 − tj)k
k!

k−1∑

i=0

(
k − 1

i

)
|a11|k−1−i|a22|i

=

∞∑

k=1

(tj+1 − tj)k
k!

αk−1 <
1

α
exp

(
α(tj+1 − tj)

)
,

and

∣∣∣
k−1∏

j=1

w(tj+1 − tj)
∣∣∣ =

k−1∏

j=1

∣∣∣w(tj+1 − tj)
∣∣∣ <

k−1∏

j=1

1

α
exp

(
α(tj+1 − tj)

)
=

1

αk−1
exp

(
α(tk − t1)

)
.

This, together with (3.4), implies that

|ek1(tk+1)| ≤ |a12|k|a21|k−1
∫ tk+1

0

∫ tk

0

. . .

∫ t2

0

exp
(
a11(tk+1 − tk)

)

1

αk−1
exp

(
α(tk − t1)

)
|e02(t1)|dt1dt2 . . . dtk

≤ |a12|k|a21|k−1α1−k max
0≤τ≤tk+1

|e02(τ)|
∫ tk+1

0

∫ tk

0

. . .

∫ t2

0

exp
(
α(tk+1 − t1)

)
dt1dt2 . . . dtk.

We now show that
∫ tk+1

0

∫ tk

0

. . .

∫ t2

0

exp
(
α(tk+1−t1)

)
dt1dt2 . . . dtk =

1

(k − 1)!

∫ tk+1

0

sk−1eαsds. (4.5)

Since

1

k − 1

∫ t

0

sk−1eαsds =

∫ t

0

eα(t−z)
∫ z

0

sk−2eαsdsdz,

the right-hand side of (4.5) is

1

(k − 1)!

∫ tk+1

0

tk−1k eαtkdtk =
1

(k − 2)!

∫ tk+1

0

eα(tk+1−tk)
∫ tk

0

tk−2k−1e
αtk−1dtk−1dtk =

1

(k − 3)!

∫ tk+1

0

eα(tk+1−tk)
∫ tk

0

eα(tk−tk−1)

∫ tk−1

0

tk−3k−2e
αtk−2dtk−2dtk−1dtk = . . .

1

1!

∫ tk+1

0

eα(tk+1−tk)
∫ tk

0

eα(tk−tk−1)

∫ tk−1

0

eα(tk−1−tk−2) . . .

∫ t3

0

t2e
αt2dt2 . . . dtk−2dtk−1dtk =

∫ tk+1

0

∫ tk

0

∫ tk−1

0

. . .

∫ t3

0

t2e
α(tk+1−t3+t2)dt2 . . . dtk−2dtk−1dtk =

∫ tk+1

0

∫ tk

0

∫ tk−1

0

. . .

∫ t3

0

(t3 − t2)eα(tk+1−t2)dt2 . . . dtk−2dtk−1dtk.
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This, together with

∫ t3

0

(t3 − t2)eα(tk+1−t2)dt2 =

∫ t3

0

(t3 − t2)
( d

dt2

∫ t2

0

eα(tk+1−t1)dt1
)
dt2 =

[
(t3 − t2)

∫ t2

0

eα(tk+1−t1)dt1
]t2=t3
t2=0

+

∫ t3

0

∫ t2

0

eα(tk+1−t1)dt1dt2,

implies (4.5) and the proof of (4.2) is finished. The proof of (4.3) is similar. We now
show (4.4). Since

0 ≤ Sk
Sk−1

≤ t

k

|a12a21|
|a11|+ |a22|

,

it follows that

lim
k→∞

Sk
Sk−1

= 0,

which proves (4.4) and finishes the proof of the theorem.

5. Numerical experiments. In this section, we present results of numerical
experiments for (1.1). We apply the alternative schemes (1.3) and (1.4) to (1.1) and
compare their corresponding errors. To integrate (1.3) and (1.4) in time, we apply
BDF3 with the step size h = 10−3. Time integration gives rise to the numerical
approximations

xk1,n ≈ x1(tn), xk2,n ≈ x2(tn),

for (1.3) and

yk1,n ≈ x1(tn), yk2,n ≈ x2(tn),

for (1.4), at the grid-points tn = nh, n = 0, 1, . . . . We measure the errors

max
i=1,2

{
|xi(tn)− xki,n|

}
, (5.1)

max
i=1,2

{
|xi(tn)− yki,n|

}
, (5.2)

and observe the convergence of the schemes (1.3) and (1.4) by plotting (5.1) and (5.2)
as functions of k = 0, 1, . . . for a fixed n.

The errors (5.1) and (5.2) resulting from the different schemes ((5.1) corresponds
to (1.3) and (5.2) corresponds to (1.4)) are plotted in Figures 5.1 and 5.2 for n = 1000.
In both figures, the dotted line presents the error (5.1) and the solid line presents the
error (5.2).

Figure 5.1 presents the errors for problem (1.1)–(1.2) with g1 ≡ g2 ≡ 0 and
the initial values x1,0 = 0 and x2,0 = 0. Figure 5.2 presents the errors for problem
(1.1)–(1.2) with the initial values x1,0 = 1 and x2,0 = 0 and the inhomogeneous
functions g1(t) and g2(t) defined in such a way that the exact solution to this problem
is x1(t) = cos t, x2(t) = sin t, cp. [1, Sec. 203].

Figures 5.1 and 5.2 illustrate that scheme (1.3) converges faster than scheme (1.4).
Note that condition (3.13) is satisfied by the scheme whose error is presented by the
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Fig. 5.1. Numerical errors (5.1) using (1.3) (dotted) and numerical errors (5.2) using (1.4)
(solid) for (1.1)–(1.2) in the homogeneous case with g1 ≡ g2 ≡ 0.

dotted line and is not satisfied by the scheme whose error is presented by the solid
line. This illustrates the conclusion derived in Corollary 3.2 in both homogeneous and
non-homogeneous cases.

The errors presented in Figures 5.1 and 5.2 were obtained by running numerical
experiments with different coefficients, which we list above each subfigure in the order
a11, a12, a21, a22. Note that all these lists of coefficients satisfy condition (3.13) and,
therefore, Corollary 3.2 implies that for all these problems (each problem with a
different list of aij) scheme (1.3) convergerges faster than scheme (1.4).

Note that the error (5.1) (presented by the dotted lines), that is,
(
xi(tn)− xki (tn)

)
+
(
xki (tn)− xki,n

)
,

is composed of two components: the error xi(tn) − xki (tn) of the iteration and the
error xki (tn)− xki,n of the ODE solver. Since integration in t is exact for the problem

considered in Figure 5.1, the only non-zero component of (5.1) is the error eki (tn) of
the iteration presented in Figure 5.1. The same conclusion can be derived for the
error (1.4) presented by the solid lines.

In Figure 5.2, the error (5.1) (dotted lines) has two non-zero components: the
iteration error eki (tn), which tends to zero as k → ∞, and the time integration error
xki (tn)− xki,n which is illustrated by the persistent horizontal lines in Figure 5.2. The
same conclusion can be derived for the error (1.4) (solid lines).
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Fig. 5.2. Numerical errors (5.1) using (1.3) (dotted) and numerical errors (5.2) using (1.4)
(solid) for (1.1)–(1.2) in the non-homogeneous case with non-zero source functions g1(t) and g2(t).

6. Concluding remarks and future work. In this paper, we addressed the
question of whether the convergence of dynamic iterations depends on the magnitudes
of the coefficients multiplied by present and previous iterates. From Sections 3, 4, and
5, we conclude that the order of the differential equations given in a larger dimensional
system may slow down or speed up the convergence of the dynamic iterations applied
to it. Therefore, we conclude that the order of the equations should be thoughtfully
optimized before dynamic iterations are used. The conclusions derived from Sections
3, 4, and 5 give suggestions for choices of present and previous iterates in larger
dimensional systems. Our future work [5] addresses the questions raised in this paper
in the case of higher-dimensional systems.
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ON LYAPUNOV STABILITY IN HYPOPLASTICITY∗
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AND ANNA V. ZUBKOVA‖

Abstract. We investigate the Lyapunov stability implying asymptotic behavior of a nonlinear
ODE system describing stress paths for a particular hypoplastic constitutive model of the Kolymbas
type under proportional, arbitrarily large monotonic coaxial deformations. The attractive stress path
is found analytically, and the asymptotic convergence to the attractor depending on the direction of
proportional strain paths and material parameters of the model is proved rigorously with the help
of a Lyapunov function.

Key words. Nonlinear ODE, rate-independent problem, asymptotic behavior, attractor, Lya-
punov function, proportional loading, hypoplasticity, granular media
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1. Introduction. A rate-independent nonlinear ODE system describing the con-
stitutive stress–strain relation for hypoplastic granular materials like cohesionless soil
or broken rock is investigated here. The hypoplastic constitutive equation is of the
rate type, incrementally non-linear and based on the hypoplastic concept proposed by
Kolymbas [8]. Various physical aspects of hypoplastic models are discussed in engi-
neering literature, e. g., [3, 5, 6, 11, 12, 13]. For mathematical approaches to granular
and multiphase media within the variational theory, we refer to [1, 7, 9]. An impor-
tant feature of the hypoplastic concept is the asymptotic behavior under monotonic
proportional loading paths accompanied with a sweeping out of the memory on the
initial state. This is a general property also observed in experiments with granular
materials. Although for particular monotonic strain paths some numerical simulations
and analytical investigations indicate the existence of asymptotic states pointed out,
e. g., in [10, Chapter 3.4], a rigorous mathematical proof is missing so far. The main
difficulty of developing proper mathematical tools suitable for hypoplastic models is
a strongly nonlinear behavior of the corresponding ODE.

For a particular simplified version of a hypoplastic model by Bauer [2] we identify
the domain of physical parameters of the model which guarantee that proportional
strain paths are stable in the sense of Lyapunov. Our proof of asymptotic stability
for unrestricted monotonic deformations is inspired by the rate-independent technique
developed in [4].
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2. Problem of Lyapunov stability. Consider the general form of a hypoplastic
constitutive equation of the Kolymbas type [8] in which the objective stress rate can
be stated as follows:

◦
σ = L(σ) : ε̇+ N(σ)‖ε̇‖, (2.1)

where L(σ) is a fourth order tensor and N(σ) is a second order tensor depending
on the stress σ. The current Cauchy stress tensor σ and the strain rate tensor ε̇
are assumed to be symmetric and of second order. The right-hand side of (2.1) is
positively homogeneous of degree one in ε̇. With respect to the Frobenius norm
‖ε̇‖ =

√
ε̇ : ε̇ the constitutive equation is incrementally nonlinear.

Here we consider the particular version of (2.1) by Bauer [2] in a simplified man-
ner:

◦
σ = c

{
a2tr(σ)ε̇+

1

tr(σ)
(σ : ε̇)σ + a(2σ − 1

3
tr(σ)I)‖ε̇‖

}
, (2.2)

with the constitutive constants c < 0 and a > 0. We emphasize that the second term
in the right-hand side of (2.2) is nonlinear in σ.

For the following investigations we consider cartesian coordinates and we assume
coaxial deformations such that σ12 = σ13 = σ23 = 0 and ε̇12 = ε̇13 = ε̇23 = 0. Then

the objective stress rate
◦
σ equals to the material time derivative, i.e. the rate σ̇. For

the constitutive equation (2.2) only negative principal stresses are relevant. In this
case, using the Voigt notation of the time-dependent 3-vector-valued functions

t 7→ σ : R+ 7→ R3
−, t 7→ ε̇ : R+ 7→ R3,

the stress components σi and strain rate components ε̇i can be combined in

σ = (σ1, σ2, σ3)> := (σ11, σ22, σ33)>,

ε̇ = (ε̇1, ε̇2, ε̇3)> := (ε̇11, ε̇22, ε̇33)>.

Here > swaps between rows and columns. We use respective vector notation for the
inner product and the associated Euclidean norm:

σ · ε̇ :=

3∑

i=1

σiε̇i, ‖ε̇‖ :=
√
ε̇ · ε̇, tr(σ) := σ1 + σ2 + σ3.

In this case, tr(σ) = tr(σ) and σ : ε̇ = σ · ε̇, hence from (2.2) we derive the
corresponding matrix equation

σ̇ = c
(
L(σ)ε̇+N(σ)‖ε̇‖

)
, (2.3a)

with the corresponding 3-by-3 symmetric matrix L depending on σ:

L(σ) = a2tr(σ)I +
1

tr(σ)




σ2
1 σ1σ2 σ1σ3
σ1σ2 σ2

2 σ2σ3
σ1σ3 σ2σ3 σ2

3


 , I :=




1 0 0
0 1 0
0 0 1


 (2.3b)

and the 3-vector

N(σ) = 2aσ − a

3
tr(σ)1, 1 := (1, 1, 1)>, (2.3c)
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where we have employed the usual matrix product rule, e.g.:

{L(σ)ε̇}3i=1 =
{ 3∑

j=1

L(σ)ij ε̇j

}3

i=1
.

We consider here strain paths pointing in one fixed direction. Since the dynamical
system (2.3) is rate-independent, without loss of generality we can assume that the
loading speed is constant and consider the strain in the form

ε(t) = tU, ‖U‖ = 1, t ≥ 0, (2.4a)

along a prescribed unit vector U = (U1, U2, U3)> ∈ R3. Here t is to be interpreted
as a dimensionless monotonically increasing time-like loading parameter. Physically,
tr(U) < 0 corresponds to proportional compression and tr(U) > 0 to extension. After
inserting (2.4a) in (2.3a), due to d ε/dt = U we get the equivalent system

d

dt
σ = c{L(σ)U +N(σ)}. (2.4b)

The ODE (2.4b) for the unknown vector σ(t) is considered for t > 0, with a prescribed
initial condition

σ(0) = σ0, (2.4c)

where σ0 = (σ0
1 , σ

0
2 , σ

0
3)> ∈ R3

− is a fixed vector. In the next sections we study the
asymptotic behavior as t↗∞ of solutions to the Cauchy problem (2.4).

3. Isotropic proportional loading. The strain path (2.4a) is said to be iso-
tropic if its direction is parallel to the vector 1. In the following we consider two
proportional strain paths, i.e. isotropic compression and isotropic extension.

3.1. Isotropic compression. According to (2.4a), the case of the monotonic
isotropic compression ε̇1 = ε̇2 = ε̇3 < 0 implies that

ε(t) = tU, U = − 1√
3
1. (3.1a)

In this particular case, due to σ · ε̇ = σ · U = − 1√
3

tr(σ), we have

L(σ)ε̇ = − 1√
3

(
a2tr(σ)1 + σ

)
,

and the system (2.4b) turns out to be linear

d

dt
σ = Aσ, t > 0, (3.1b)

with the 3-by-3 system matrix

A = b1 + dI, b = −c
( a2√

3
+
a

3

)
, d = c

(
2a− 1√

3

)
, (3.1c)

where 1 stands for the 3-by-3 matrix of ones: 1 :=




1 1 1
1 1 1
1 1 1


.
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The characteristic equation for (3.1) is calculated as

det(A− λI) = (d− λ)2(d+ 3b− λ) = 0, (3.2a)

it has one double and one single roots:

λ1 = λ2 = d, λ3 = d+ 3b = −c
(√

3a2 − a+
1√
3

)
= −c

3a3 + 1√
3√

3a+ 1
. (3.2b)

Recalling that c < 0, we have

λ3 > 0, λ1 = λ2 < 0 for a >
1

2
√

3
. (3.2c)

From a physical point of view, the lower bound for the constitutive parameter a in
(3.2c) implies a restriction of the granular friction angle as discussed in Section 5. For
the isotropic case, this condition is necessary and sufficient for the Lyapunov stability
as stated in Theorem 3.1.

Let vectors V 1, V 2, V 3 ∈ R3 form an orthonormal eigenbasis for the eigenvalues
from (3.2b) such that (A− λiI)V i = 0, i.e.

(
b1 + (d− λi)I

)
V i = 0, i = 1, 2, 3. (3.2d)

We note that V 1 and V 2 with the corresponding negative eigenvalues λ1 and λ2 lie
in the deviatoric stress plane due to tr(V i)1 = 1V i = 0 for i = 1, 2 in (3.2d), thus

V 1 =
(p, q,−p− q)>√
2(p2 + q2 + pq)

, V 2 =
(2p+ q,−p− 2q,−p+ q)>√

6(p2 + q2 + pq)
, p, q ∈ R,

for example, V 1 =
1√
6

(1, 1,−2)> and V 2 =
1√
2

(1,−1, 0)>. For the positive eigen-

value λ3, we normalize the eigenvector perpendicular to the deviatoric stress plan as
follows

V 3 = − 1√
3
1, (3.2e)

which coincides with U in the isotropic case.
The following exponential stability theorem is a straightforward consequence of

the formulas (3.2).
Theorem 3.1. (Isotropic compression)
The solution of the linear problem (3.1) with initial condition (2.4c) for given

σ0 ∈ R3
− is expressed by the explicit formula

σ(t) =
3∑

i=1

(σ0 · V i)V ieλit (3.3a)

in terms of the orthonormal eigenbasis (V 1, V 2, V 3) corresponding to the eigenvalues
λ1 = λ2 and λ3 from (3.2).

If a > a? =
1

2
√

3
and c < 0, then the dynamic system (3.1) is exponentially stable

as t↗∞ in the sense of Lyapunov:

σ(t)− σV 3(t) =
(
σ(0)− σV 3(0)

)
e
2c
(
a−

1

2
√

3

)
t

(3.3b)
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with respect to the attractive trajectory along the V 3-axis:

σV 3(t) = (σ0 · V 3)V 3eλ3t. (3.3c)

Conversely, if a < a?, then σ(t)− σV 3(t) diverges according to (3.3b).

A typical configuration is illustrated in Figure 3.1. In the left plot (a), the strain

Fig. 3.1. (a) strain space ; (b) stress space

path in the direction of -U is depicted in the first octant of the (−ε1,−ε2,−ε3)-
coordinates. In the right plot (b), in the first octant of the (−σ1,−σ2,−σ3)-coordinate
system there are presented the stress path attracting the axis along −V 3 vector, and
the eigenbasis vectors −V 1 and −V 2 lying in the deviatoric stress plane.

If the initial stress in (2.4c) is isotropic such that σ0 = sV 3 with some s ∈ R+,
then σ(t) = sV 3eλ3t uniquely solves the system (3.1) under the initial condition
(2.4c). This case is the direct consequence of the formula of the solution (3.3a) given
in Theorem 3.1. Such σ(t) remains isotropic and propagates along the V 3-axis as
t↗∞. In the general case when σ0 6= sV 3, an asymptotic stress path attracting the
V 3-axis is illustrated in plot (b) of Figure 3.1.

3.2. Isotropic extension. In the case of monotonic isotropic extension, we have

U =
1√
3
1 in (3.1a). It follows that b = c(

a2√
3
− a

3
) and d = c(2a +

1√
3

) in (3.1c).

Calculated from (3.2b), the corresponding eigenvalues λ1 = λ2 = c(2a +
1√
3

) and

λ3 = c(
√

3a2 +a+
1√
3

) are negative since c < 0. Therefore, due to the representation

formula (3.3a), starting at arbitrary initial stress σ0 ∈ R3
−, the stress σ(t) decays

exponentially to zero as t↗∞ under isotropic extension.

In the next section we investigate the stress path under a non-isotropic loading.

4. Non-isotropic proportional strain paths. For the case of non-isotropic
proportional loading, the strain is expressed by formula (2.4a) with an arbitrary unit
vector U ∈ R3. As mentioned above, this can describe both loading, i.e. compression,
and unloading, i.e. extension, tests according to the sign of the trace of U .

The constitutive equation (2.4b) with L and N from (2.3b) and (2.3c) takes the
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specific form depending on U as a parameter:

d

dt
σ = c

{
a
(
aU − 1

3
1
)
tr(σ) +

(
2a+

σ · U
tr(σ)

)
σ
}
. (4.1a)

The right-hand side of (4.1a) is a nonlinear vector function of σ and represents the
principal difficulty in the analysis.

We start with the following two consequences of formula (4.1a) which will be used
in the sequel. First, after scalar multiplication of (4.1a) with 1 using the fact that
σ · 1 = tr(σ), it follows that

d

dt
tr(σ) = c

{
a(atr(U) + 1)tr(σ) + (σ · U)

}
. (4.1b)

Second, multiplying (4.1a) with −U we get

d

dt
(−σ · U) = c

{
a
(
−a+

1

3
tr(U)

)
tr(σ)−

(
2a+

σ · U
tr(σ)

)
(σ · U)

}
. (4.1c)

Analogously with (3.3c) we look for a linear attractive trajectory of (4.1a) such

that
d

dt
σ = λ3σ which can be expressed in the form

σ(t) = (σ0 · V 3)V 3eλ3t (4.2a)

with unknown parameters λ3 ∈ R and nonzero V 3 ∈ R3 such that tr(V 3) 6= 0. When
σ0 · V 3 = 0, this special case describes the attractive point 0.

Inserting (4.2a) in (4.1b), since
d

dt
tr(σ) = λ3tr(σ) and

σ · U
tr(σ)

=
V 3 · U
tr(V 3)

we get

λ3 = c
(
a2tr(U) + a+

V 3 · U
tr(V 3)

)
.

Substituting this expression together with (4.2a) in (4.1a) such that

(a2tr(U)− a)V 3 = (a2U − 1

3
a1)tr(V 3),

we find a vector V 3 = a2U − 1

3
a1 with the trace tr(V 3) = a2tr(U) − a satisfying

this equality, then
V 3 · U
tr(V 3)

=
−a+

1

3
tr(U)

−a tr(U) + 1
, and, consequently, after normalization we

arrive at

λ3 = c
tr(U)

(
−a3tr(U) +

1

3

)

−a tr(U) + 1
, V 3 =

aU − 1

3
1

√
a2 − 2

3
a tr(U) +

1

3

. (4.2b)

The above formula is meaningless if U =
1

3a
1, that is, a =

1√
3

and U =
1√
3
1.

According to (4.1a), this corresponds to the special case of fully isotropic extension
along every stress direction. As well the case a tr(U) − 1 = 0 implying tr(V 3) = 0
should be excluded from the consideration.
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If λ3 > 0 in (4.2b), then σ(t) from (4.2a) propagates as t↗∞ exponentially along
the V 3-direction. This behavior corresponds to the sketch in Figure 3.1. Otherwise,
if λ3 < 0, then σ(t)↘ 0 which implies unloading.

We note that −V 3 in (4.2b) will be directed strictly inside the first octant R3
+,

if a and the direction U of loading in (2.4a) are such that −aU +
1

3
1 > 0, hence

−a tr(U) + 1 > 0. In this case, for σ(t) ∈ R3
− it holds σ0 · V 3 > 0.

In particular, for the isotropic compression with U = − 1√
3
1, from (4.2b) it follows

formulas (3.2b) of λ3 and (3.2e) of V 3.
Next we look for the orthogonal projection of any solution σ of (4.1a) on the

V 3-axis, that is

σV 3(t) := (σ(t) · V 3)V 3. (4.3a)

The equivalent form of (4.1a) reads

d

dt
σ = c

{
a

√
(a2 − 2

3
a tr(U) +

1

3
) V 3tr(σ) +

(
2a+

σ · U
tr(σ)

)
σ
}
, (4.3b)

after multiplication (4.3b) with V 3 we derive the following equation

d

dt
(σV 3) = c

{
a

√
(a2 − 2

3
a tr(U) +

1

3
) V 3tr(σ) +

(
2a+

σ · U
tr(σ)

)
σV 3

}
(4.3c)

for σV 3 from (4.3a). The subtraction of (4.3c) from (4.3b) provides formula for the
difference

d

dt
(σ − σV 3) = c

(
2a+

σ · U
tr(σ)

)
(σ − σV 3). (4.3d)

Now we introduce the Lyapunov function Λ : R+ 7→ R+ by

Λ(t) :=
1

2
‖σ(t)− σV 3(t)‖2, (4.4a)

which expresses the distance between the trajectories σ(t) and σV 3(t). Differentiating
(4.4a) with respect to time and using (4.3d) we get the differential equation for Λ:

d

dt
Λ(t) = 2c

(
2a+

σ(t) · U
tr(σ(t))

)
Λ(t), t > 0. (4.4b)

Either negative or positive sign of the factor 2c
(
2a +

σ(t) · U
tr(σ(t))

)
in (4.4b) provides,

respectively, either Lyapunov stability or instability of the system. This is the key
issue of the following theorem.

Theorem 4.1. (Non-isotropic proportional loading) Let δ > 0 be arbitrary fixed,

and let U ∈ R3 and a > 0 be such that U 6= 1

3a
1 and the following inequalities hold

−a tr(U) + 1 > 0,
(
−2a2 +

1

3

)
tr(U) + a > 0. (4.5a)



114 V. A. KOVTUNENKO et al.

For c < 0 and arbitrary initial data σ0 ∈ Cδ lying in the cone

Cδ :=
{
σ ∈ R3

− : (−σ) ·
(
U + (2a+

δ

2c
)1
)
> 0
}
, (4.5b)

any solution σ(t) of the nonlinear problem (4.1a) endowed with the initial condition
(2.4c) satisfies the inequality

−2a− σ(t) · U
tr(σ(t))

<
δ

2c
, t ≥ 0. (4.5c)

Moreover, if σ(t) ∈ R3
−, then σ(t) ∈ Cδ for all t ≥ 0.

In particular, by virtue of (4.5c), the dynamical system (4.1a) is exponentially
stable as t↗∞ in the sense of Lyapunov:

‖σ(t)− σV 3(t)‖ ≤ ‖σ(0)− σV 3(0)‖e
−

1

2
δt

(4.5d)

with respect to the orthogonal projection σV 3(t) = (σ(t) ·V 3)V 3 on the V 3-axis, where
V 3 is determined in formula (4.2b).

Proof. The main challenge is to prove the uniform bound in (4.5c). To do so,

we subtract the equation (4.1b), multiplied with − σ · U
tr2(σ)

, from the equation (4.1c),

divided by tr(σ), to calculate that

d

dt

(
−σ · U

tr(σ)

)
= c
{
a
(
−a+

1

3
tr(U)

)
− a(−atr(U) + 1)

σ · U
tr(σ)

}
.

By adding and subtracting the term 2a2(−atr(U) + 1) here, this yields

d

dt

(
−2a− σ · U

tr(σ)

)
= c
{
a
[(
−2a2 +

1

3

)
tr(U) + a

]
+ a(−atr(U) + 1)

(
−2a− σ · U

tr(σ)

)}

< ca(−atr(U) + 1)
(
−2a− σ · U

tr(σ)

)
,

where we have used the second inequality in (4.5a) and c < 0 for the estimation. The
integration of this inequality with respect to t and employing the initial condition
(2.4c) results in the following upper bounds

−2a− σ(t) · U
tr(σ(t))

<
(
−2a− σ0 · U

tr(σ0)

)
eca(−atr(U)+1)t ≤ −2a− σ0 · U

tr(σ0)
,

when the first inequality in (4.5a) holds. This proves the inequality (4.5c) for the
initial data σ0 chosen such that

−2a− σ0 · U
tr(σ0)

<
δ

2c
.

Since −σ0 is chosen in the first octant, multiplying the latter inequality with tr(σ0) <
0 we obtain the equivalent inequality

−σ0 · U − tr(σ0)
(
2a+

δ

2c

)
= (−σ0) ·

(
U + (2a+

δ

2c
)1
)
> 0,

which determines the cone in (4.5b).
If (4.5c) holds, then the integration of (4.4) leads immediately to the inequality

(4.5d) and completes the proof.
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4.1. Analytic expression of the normalized stress. As a corollary, we con-
sider the normalized stress σ̂ defined as

σ̂ =
σ

tr(σ)
. (4.6a)

Similarly to (4.1) we derive the linear equation

d

dt
σ̂ =

1

tr(σ)

d

dt
σ − σ̂

tr(σ)

d

dt
(tr(σ)) = ca

{
(−a tr(U) + 1)σ̂ + aU − 1

3
1
}
, (4.6b)

which can be solved analytically:

σ̂(t) =
−aU +

1

3
1

−a tr(U) + 1
+
(
σ̂(0)−

−aU +
1

3
1

−a tr(U) + 1

)
eca(−a tr(U)+1)t. (4.6c)

This analytical formula entails directly the next result.
Theorem 4.2. (Normalized stress) If U ∈ R3 is such that −a tr(U) + 1 > 0, then

σ̂(t)→
−aU +

1

3
1

−a tr(U) + 1
exponentially as t→∞ according to (4.6).

From Theorem 4.2 we also conclude that no restriction is imposed on a for pro-
portional loading with tr(U) < 0.

5. Discussion. Let us make a few comments on Theorem 4.1.

Remark 1. According to (4.5d) we can establish that the maximal cone Cδ is
not less than C0 when passing δ ↘ 0+.

Remark 2. Conditions (4.5a) are sufficient for the Lyapunov stability.

Remark 3. If tr(U) ≤ 0, in particular, when U ∈ R3
− and the vector −U lies in

the first octant, then the first inequality in (4.5a) always holds.

Remark 4. If tr(U) ≤ 0 and a >
1

2
√

3
, then we calculate

(
−2a2 +

1

3

)
tr(U) + a >

1

6

(
tr(U) +

√
3
)
≥ 0

since |tr(U)| ≤
√

3‖U‖ =
√

3 in (2.4a). This suffices the second inequality in (4.5a).

Remark 5. In particular, for U = − 1√
3
1 under isotropic compression, the sec-

ond inequality in (4.5a) implies that 2
√

3(a +
1√
3

)(a − 1

2
√

3
) > 0 which holds for

a >
1

2
√

3
. The inequality

1√
3
− 2a <

δ

2c
in (4.5c) determines the cone Cδ for σ such

that −σ > 0 and −tr(σ)(2a − 1√
3

+
δ

2c
) > 0 in (4.5b). In this particular case, the

maximal cone C0 implies σ < 0 component-wisely and −tr(σ)(2a − 1√
3

) > 0, that is

the first octant when a >
1

2
√

3
. This fact is in accordance with Theorem 3.1.



116 V. A. KOVTUNENKO et al.

Remark 6. For the granular friction angle φ such that a =
2
√

2 sinφ√
3(3− sinφ)

, from

a > a? =
1

2
√

3
≈ 0.2887, we have φ > φ? and calculate the critical value sinφ? =

3

1 + 4
√

2
and φ? ≈ 26.78◦.

The analytical result for the minimum value of parameter a to achieve asymptotic
behavior under isotropic straining can also be confirmed with numerical simulation,
i.e. by numerical integration of the constitutive equation we could get the same
results. For smaller values of a the stress path diverges.
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EXPONENTIAL CONVERGENCE TO THE STATIONARY
MEASURE AND HYPERBOLICITY OF THE MINIMISERS FOR

RANDOM LAGRANGIAN SYSTEMS. ∗

ALEXANDRE BORITCHEV †

Abstract. We consider a class of 1d Lagrangian systems with random forcing in the space-
periodic setting:

φt + φ2x/2 = Fω , x ∈ S1 = R/Z.

These systems have been studied since the 1990s by Khanin, Sinai and their collaborators [7, 9,
11, 12, 15]. Here we give an overview of their results and then we expose our recent proof of the
exponential convergence to the stationary measure [6]. This is the first such result in a classical
setting, i.e. in the dual-Lipschitz metric with respect to the Lebesgue space Lp for finite p, partially
answering the conjecture formulated in [11]. In the multidimensional setting, a more technically
involved proof has been recently given by Iturriaga, Khanin and Zhang [13].

Key words. Lagrangian dynamics, Random dynamical systems, Invariant measure, Hyperbol-
icity

AMS subject classifications. 35Q53, 35R60, 35Q35, 37H10, 76M35.

1. Introduction and setting. We are concerned with 1d random Lagrangian
systems of the mechanical type, i.e. of the form:

Lω(x, v, t) = v2/2 + Fω(x, t), x ∈ S1 = R/Z,

where Fω(x, t) is a smooth function in x and a stationary random process in t (of the
kick or white force type: see Section 1.1). The Legendre-Fenchel transform gives us
the corresponding Hamiltonian Hω(x, p, t) = p2/2−Fω(x, t), and the Hamilton-Jacobi
equation:

φt + φ2
x/2 = Fω. (1.1)

Here, we consider only 1-periodic solutions φ. In this case the function u = φx satisfies
the randomly forced inviscid Burgers equation:

ut + uux = (Fω)x, x ∈ S1 = R/Z. (1.2)

Note that it is equivalent to consider a solution of (1.2) and a solution of (1.1) defined
up to an additive constant. Under the assumptions which are specified below, both
of these equations are well-posed and their solutions define Markov processes. The
existence and uniqueness of a corresponding stationary measure has been proved by
E, Khanin, Mazel and Sinai in the white force case in the seminal work [9]. For more
general (multi-d) results, see papers by Khanin and his collaborators [7, 11, 12, 15].
Note that in these papers, there are no explicit estimates on the speed of convergence

∗This work was supported by the grants ANR WKBHJ and ANR ISDEEC.
† University of Lyon, CNRS UMR 5208, University Claude Bernard Lyon 1, Institut

Camille Jordan, 43 Blvd. du 11 novembre 1918 69622 VILLEURBANNE CEDEX FRANCE
(boritchev@math.univ-lyon1.fr).
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to the stationary measure; nevertheless, an exponential bound locally in space away
from the shocks has been obtained by Bec, Frisch and Khanin in [1]. All these papers
use Lagrangian techniques; except in [11] the authors do not consider the equation
(1.2) with an additional viscous term νuxx. Note that for ν > 0 there is exponential
convergence to the stationary measure, but the speed of convergence is not a priori
uniform in ν [16].

In [6], we prove an exponential bound for the speed of convergence to the station-
ary measure for solutions of (1.2) for ν = 0 in the natural dual-Lipschitz metric with
respect to Lp, p ∈ [1,∞). This gives a partial answer in the 1d case to the conjecture
stated in [11, Section 4]. This bound is the natural SPDE analogue to the results on
the exponential convergence of the minimising action curves [7, 9]. The part of the
conjecture in [11] which remains open is proving that if we add a positive viscosity
coefficient ν, this exponential bound still holds, uniformly in ν.

It is very likely that the estimate we obtain is sharp since it coincides with the op-
timal one obtained in the generic nonrandom case by Iturriaga and Sanchez-Morgado
[14]. Note that the metrics are also optimal since it is impossible to obtain such an
estimate in the Lipschitz-dual space corresponding to L∞. Indeed, solutions of (1.2)
are discontinuous with a positive probability.

Finally, we would like to emphasize that our work is part of a series of papers
giving a stochastic version of the weak KAM theory developed by Fathi and Mather
[10]. In particular, there is a striking correspondence between the scheme of our proof
and the one in [14], which follows a general rule: the results which hold in the random
case under fairly weak assumptions are similar to the results which hold in the non-
random case under more stringent genericity assumptions. For more on this subject
and the link with the Aubry-Mather theory, see [12].

Remark 1.1. Our results extend to the case where φ, instead of being periodic
in space, satisfies φ(x + 1) = φ(x) + b, x ∈ R. Indeed, we use the results of [7,
9], which hold for all values of b. Moreover, our results extend to a class of non-
mechanical convex in p Hamiltonians of the type H(p) + Fω(t, x) with Fω as above,
under assumptions of the Tonelli type [10].

Remark 1.2. After the manuscript [6] has been submitted, Iturriaga, Khanin
and Zhang published a preprint containing more general results including also the
multidimensional case [13]. Their methods are more technically involved.

1.1. Random setting. We consider the mechanical Hamilton-Jacobi equation
with two different types of additive forcing in the right-hand side and a continuous
initial condition φ0. We begin by formulating the assumptions on potentials, which
are (except 1.1 (i) where we add an additional assumption for moments of the random
variable) the same as in the paper [7]:

Assumption 1.1. In the kicked case, we assume that:

(i) The kicks at integer times j are of the form Fω(j)(x) =
∑K
k=1 c

ω
k (j)F k(x),

where F k are C∞-smooth potentials on S1 = R/Z. The vectors (cωk (j))1≤k≤K are in-
dependent identically distributed RK-valued random variables defined on a probability
space (Ω,F ,P). Their distribution on RK , denoted by λ, is assumed to be absolutely
continuous with respect to the Lebesgue measure, and all of its moments are assumed
to be finite.

(ii) The potential 0 belongs to the support of λ.
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(iii) The mapping from S1 to RK defined by x 7→ (F 1(x), ..., FK(x)) is an embedding.

Assumption 1.2. In the case of the white force potential, we assume that:

(i) The forcing has the form Fω(x, t) =
∑K
k=1 (Wω

k )t(t)F
k(x), where F k are C∞-

smooth potentials on S1, and (Wω
k )t are independent white noises defined on a proba-

bility space (Ω,F ,P), i.e. time derivatives of independent Wiener processes Wω
k (t).

(ii) The mapping from S1 to RK defined by x 7→ (F 1(x), ..., FK(x)) is an embedding.

Remark 1.3. For both types of forcing, our results extend to the case of infinite-
dimensional noise, as long as it remains smooth in space (for example independent
white noises on each Fourier mode with the amplitude of the noise decreasing expo-
nentially with the wavenumber).

1.2. Functional spaces and Sobolev norms. Consider an integrable function
v on S1. For p ∈ [1,∞], we denote its Lp norm by |v|p. The L2 norm is denoted
by |v|, and 〈·, ·〉 stands for the L2 scalar product. Subindices t and x, which can be
repeated, denote partial differentiation with respect to the corresponding variables.
We denote by v(m) the m-th derivative of v in the variable x. For brevity, the function
v(t, ·) is denoted by v(t).

For a nonnegative integer m and p ∈ [1,∞], Wm,p stands for the Sobolev space
of zero mean value functions v on S1 with finite homogeneous norm |v|m,p =

∣∣v(m)
∣∣
p
.

In particular, W 0,p = Lp for p ∈ [1,∞]. We will never use Sobolev norms with m ≥ 1
for non-zero mean functions: in particular, for solutions of (1.1) we will only consider
the Lebesgue norms. On the other hand, C0 (resp. C∞) will denote the space of
C0-smooth (resp. C∞-smooth) (not necessarily zero mean value!) functions on S1.

Since the length of S1 is 1, we have:

|v|1 ≤ |v|∞ ≤ |v|1,1 ≤ |v|1,∞ ≤ · · · ≤ |v|m,1 ≤ |v|m,∞ ≤ . . .

We denote by L∞/R the space of functions in L∞ defined modulo an additive
constant endowed with the norm:

|u|L∞/R = inf
c∈R
|u− c|∞

The quantities denoted by K, M or M ′ are positive constants which only depend
on the general features of the system (i.e. the statistical distribution of the forcing):
they are nonrandom and do not depend on the initial condition. Moreover the con-
stants K(p) depend on the Lebesgue exponent p ∈ [1,∞).

There are two quantities, denoted respectively by C̃ and C̃p, which are time-
independent random variables with all moments finite, which do not depend on the
initial condition, but only ”pathwise” on the forcing; moreover the quantity C̃p de-
pends on the parameter p.

Quantities denoted by C are time-dependent random variables, which also have
finite moments and do not depend on the initial condition, but only ”pathwise” on the
forcing ω. Moreover, these random variables are stationary in the sense that C(s, ω)
coincides with C(s+ t, θtω) for every t, where θt denotes the time shift [9].

We will always denote by φ(t, x) a solution of (1.1) and by u(t, x) its derivative,
which solves (1.2), respectively for initial conditions φ0 and u0 = φ0

x. We will denote
accordingly the solutions for two initial conditions φ0, φ0.
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2. Dynamical objects and stationary measure. Here we introduce the La-
grangian dynamical objects. Note that the results in Sections 2.2 hold under much
more general assumptions; nevertheless these hypotheses will be extremely important
for the results which will be given in Section 2.3. For more details see [11, 12].

2.1. Lagrangian formulation and minimisers. Definition 2.1. For a time
interval [s, t] and x, y ∈ S1, we say that a curve γy,xs,t (τ) is a minimiser if it minimises
the action

A(γ) =
1

2

t∫

s

γt(τ)2dτ +
∑

n∈(s,t]

(
F (n)(γ(n))

)

in the ”kicked” case and the action

A(γ) =
1

2

t∫

s

γt(τ)2dτ +

t∫

s

(
γt(τ)

(∂G
∂x

(γ(τ), s)− ∂G

∂x
(γ(τ), τ)

))
dτ

+
(
G(γ(t), t)−G(γ(t), s)

)

in the white force case, respectively, over all absolutely continuous curves γ such that
γ(t) = x and γ(s) = y. Here G denotes a primitive in space of F . Note that in the
kicked case, minimising curves are linear on intervals [n, n+ 1] for integer values of
n.

Definition 2.2. For a time interval [s, t], x ∈ S1 and a continuous function
φ : S1 → R, we say that a curve γxs,t,φ(τ) : [s, t] → S1 is a φ-minimiser if it
minimises A(γ) + φ(γ(s)) over all absolutely continuous curves on [s, t] such that
γ(t) = x. In particular, all φ-minimisers are minimisers.

Now we can define the (pathwise) solution to (1.1) for a given ω ∈ Ω and a given
continuous initial condition.

Definition 2.3. For a time interval [s, t] and a continuous initial condition
φ(s) : S1 → R, for every ω by definition the (pathwise) solution φ : [s, t]×S1 → R of
(1.1) is defined using the ω-dependent action A by the Hopf-Lax formula:

φ(τ, x) = A(γ) + φ(s, γ(s)), τ ∈ [s, t],

where γ = γxs,τ,φ(s) is an ω-dependent φ(s)-minimiser defined on [s, τ ] satisfying

γ(τ) = x.

Remark 2.4. It is easy to check that the solution φ verifies the semigroup prop-
erty: in other words, one can define a solution operator

Σt2t1 : φ(t1) 7→ φ(t2), s ≤ t1 ≤ t2 ≤ t,

such that for t1 ≤ t2 ≤ t3, Σt3t2 ◦ Σt2t1 = Σt3t1 . In particular, for any τ ∈ (s, t),
the restriction of any φ(s)-minimiser defined on [s, t] to the time interval [τ, t] is a
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Στsφ(s)-minimiser.

Remark 2.5. Note that the solution φ is the limit in C0 of the strong solutions
to the equation obtained if we add a viscous term νφxx to (1.1) and then make ν tend
to 0 (see [11]).

Definition 2.6. For a time t and a point x ∈ S1, we say that a curve γx,+t (τ) :
[t,+∞) 7→ S1 is a forward one-sided minimiser if it minimises A(γ) over all absolutely
continuous curves such that γ(t) = x for compact in time perturbations.

Namely, we require that if for a curve γ̃ such that γ̃(t) = x there exists T such
that γ̃(s) ≡ γ(s) for s ≥ T , then A(γ)−A(γ̃) ≤ 0 (this difference is well-defined since
it is equal to the difference of the actions on the finite interval [t, T ]).

2.2. Stationary measure and related issues. Here we give a few results
which hold under weak assumptions and are sufficient to ensure that the stationary
measure corresponding to (1.2) exists and is unique. Up to some natural modifications
due to the fact that the forcing is now discrete in time, the convergence estimates can
be generalised to the kick force case in 1d [2] and to the multidimensional setting [5].

The flow corresponding to (1.2) induces a Markov process, and then we can define
the corresponding semigroup denoted by S∗t , acting on Borel measures on any Lp, 1 ≤
p <∞. A stationary measure for (1.2) is a Borel probability measure defined on Lp,
invariant with respect to S∗t for every t. A stationary solution of (1.2) is a random
process v defined for (t, ω) ∈ [0,+∞)×Ω, satisfying (1.2) and taking values in Lp, such
that the distribution of v(t) does not depend on t. This distribution is automatically
a stationary measure. Existence of a stationary measure for (1.2) is obtained using
uniform bounds for solutions in BV , which is compactly injected into Lp, p ∈ [1,∞),
and the Bogolyubov-Krylov argument. It is more difficult to obtain uniqueness of
a stationary measure, which implies uniqueness for the distribution of a stationary
solution.

Remark 2.7. The most natural space for our model would be the space L∞/R (for
the solutions to the equation (1.1)). Moreover, this is the space in which exponential
convergence to the unique stationary solution is proved in the deterministic generic
setting in [14]. However, this space is not separable, which makes dealing with the
stationary measure a delicate issue.

Definition 2.8. Fix p ∈ [1,∞). For a continuous function g : Lp → R, we
define its Lipschitz norm as

|g|L(p) := |g|Lip + sup
Lp

|g|,

where |g|Lip is the Lipschitz constant of g. The set of continuous functions with finite
Lipschitz norm will be denoted by L(p).

Definition 2.9. For two Borel probability measures µ1, µ2 on Lp, we denote by
‖µ1 − µ2‖∗L(p) the Lipschitz-dual distance:

‖µ1 − µ2‖∗L(p) := sup
g∈L(p), |g|L(p)≤1

∣∣∣
∫

S1

gdµ1 −
∫

S1

gdµ2

∣∣∣.



122 A. BORITCHEV

The following result proved in [2, 3, 5] is, as far as we are aware, the first explicit
estimate for the speed of convergence to the stationary measure of the equation (1.2)
with an additional viscous term νuxx which is uniform with respect to the viscosity
coefficient ν and is formulated in terms of Lebesgue spaces only.

Theorem 2.10. There exists δ > 0 such that for every p ∈ [1,∞), we have:

‖S∗t µ1 − S∗t µ2‖∗L(p) ≤ K(p)t−δ/p, t ≥ 1,

for any probability measures µ1, µ2 on Lp.

2.3. Main results and scheme of the proof. Now we are ready to state the
main result of the paper.

Theorem 2.11. For every p ∈ [1,∞), we have:

‖S∗t µ1 − S∗t µ2‖∗L(p) ≤ K(p)exp(−M ′t/p), t ≥ 0, (2.1)

for any probability measures µ1, µ2 on Lp.

The proof is, in the spirit, similar to the proof of [14, Theorem 1]. In that paper
the authors use the objects of the weak KAM theory which do not have any directly
available counterparts in our setting. However, there is a straightforward dynamical
interpretation of their method.

Namely, consider a mechanical Lagrangian v2/2−V (x) such that the determinis-
tic potential V is smooth and generic (i.e. it has a unique nongenerate maximum at a
unique point y0). An action-minimising curve on [0, T ] remains in a small neighbour-
hood of y0 on [C, T−C]. We obtain by linearising the Euler-Lagrange equation that at
the time T/2, all minimisers (independently of the initial condition) are C exp(−CT )-
close to y0, and then we conclude that for any initial conditions φ0, φ0, the solutions
of (1.1) at time T are C exp(−CT )-close up to an additive constant.

There are two main ingredients in the proof. On one hand for a given initial
condition φ0, the φ0-minimisers corresponding to different final points concentrate
exponentially. On the other hand, one-sided minimisers, which are the limits of φ0

T -
minimisers on [0, T ] as T → +∞ for any set of initial conditions

{
φ0
T

}
, also concen-

trate exponentially.
Now we introduce some definitions.

The diameter of a closed set Z can be thought of as the minimal length of a closed
interval on S1 containing Z.

Definition 2.12. Consider a closed subset Z of S1. Let a(Z) denote the maximal
length of a connected component of S1 − Z. We define the diameter of Z as d(Z) =
1− a(Z).

Definition 2.13. For −∞ < r < s ≤ t < +∞ and for a fixed function φ0 :
S1 → R, let Ωr,s,t,φ0 be the set of points reached, at the time s, by φ0-minimisers on
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[r, t]:

Ωr,s,t,φ0 = {γxr,t,φ0(s), x ∈ S1}.

Now we give two key estimates. The first one is - up to notation - [7, Corollary
2.1]. The second one is a forward-in-time version of [9, Lemma 5.6 (a)].

Lemma 2.14. We have the inequality:

sup
φ0∈C0

d(Ω0,s,s+s′,φ0) ≤ C(s′) exp(−Ks′).

Lemma 2.15. We have:

sup
γ̃1,γ̃2∈Γ

|γ̃1(t)− γ̃2(t)| ≤ C̃ exp(−Kt), t ≥ 0. (2.1)

where Γ is the set of all forward one-sided minimisers defined on the time interval
[0,+∞).

Corollary 2.16. Consider an initial condition φ0 and a time t > 0. Then for
any φ0-minimiser γ : [0, 2t]→ S1 and any forward one-sided minimiser δ : [0,+∞)→
S1 we have:

|γ(t)− δ(t)| ≤ C(t) exp(−Kt). (2.2)

Proof of Corollary 2.16: Extracting a subsequence of minimisers (for example
φ0-minimisers) on [0, s] and taking the limit while letting s go to +∞ (which is possible
because of the bounds on the velocity of the minimisers: see Lemma 3.1), one gets
a forward one-sided minimiser. In particular, for every ε there exists s(ε) ≥ 2t, a
φ0-minimiser γ̃ defined on [0, s] and a forward one-sided minimiser δ̃ on [0,+∞) such
that:

|γ̃(t)− δ̃(t)| ≤ ε.

By Lemma 2.15 we have:

|δ(t)− δ̃(t)| ≤ C̃ exp(−Kt),

and by Lemma 2.14, since the restriction γ̃|[0,2t] is a φ0-minimiser, we have:

|γ(t)− γ̃(t)| ≤ C exp(−Kt).

Combining these three inequalities and then letting ε go to 0, we get (2.2).

3. Proof of Theorem 2.11. First we state some useful estimates. For the proof
of the first lemma, see [12, Lemma 6].

Lemma 3.1. For t ≥ 1, we have:

sup
φ0∈C0

|φx(t)|1,1 ≤ C(t); sup
s∈[t,t+1],γ∈Γ

|γt(s)| ≤ C(t),
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where Γ is the set of minimisers defined on [0, t+ 1].

Lemma 3.2. Consider two minimisers γ1, γ2, both defined on [t, T ], T ≥ t + 1,
and satisfying γ1(T ) = γ2(T ). If for ε > 0 we have |γ1(t) − γ2(t)| ≤ ε, then we have
the following inequality for the actions of the minimisers:

|A(γ1)−A(γ2)| ≤ C(t)(ε+ ε2).

Proof: By symmetry, it suffices to prove that:

A(γ2) ≤ A(γ1) + C(ε+ ε2). (3.1)

We consider the curve γ̃1 : [t, T ]→ S1 defined by:

γ̃1(s) = γ1(s) + (t+ 1− s)(γ2(t)− γ1(t)), s ∈ [t, t+ 1].

γ̃1(s) = γ1(s), s ∈ [t+ 1, T ].

Using Definition 2.1 and Lemma 3.1, we get:

A(γ̃1) ≤ A(γ1) + C(ε+ ε2).

On the other hand, since γ̃1 has the same endpoints as the minimiser γ2, we get
A(γ2) ≤ A(γ̃1). Combining these two inequalities yields (3.1).

The proof of the following lemma follows the lines of [14].

Lemma 3.3. Consider two solutions φ and φ of (1.1) defined on the time interval
[0,+∞). Then we have:

|φ(t)− φ(t)|L∞/R ≤ C(t) exp(−Mt), t ≥ 0.

Proof of Lemma 3.3: Consider two solutions φ and φ to (1.1) corresponding
to the same forcing and different initial conditions at time 0. Using Definition 2.3, we
get for any t ≥ 1 and x ∈ S1:

φ(2t, x)− φ(2t, x) = φ(t, γ1(t)) +A(γ1|[t,2t])− φ(t, γ2(t))−A(γ2|[t,2t]), (3.2)

where γ1 and γ2 are respectively a φ0- and a φ0-minimiser on [0, 2t] ending at x. By
Corollary 2.16, we have:

|γi(t)− y| ≤ C exp(−Kt), i = 1, 2, (3.3)

where we fix any point y such that y = δ(t) for a one-sided minimiser δ defined on
[0,∞). By Lemma 3.1, this inequality yields that:

|φ(t, γ1(t))− φ(t, γ2(t))−R| ≤ (|φx(t)|∞|γ1(t)− y|+ |φx(t)|∞|γ2(t)− y|)
≤ 2C exp(−Kt),

where R = φ(t, y) − φ(t, y). On the other hand, using (3.3), by Lemma 3.2 we get
that:

|A(γ1|[t,2t])−A(γ2|[t,2t])| ≤ C exp(−Kt).
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Therefore, by (3.2), we get:

|φ(2t)− φ(2t)|L∞/R ≤ sup
x∈S1

|φ(2t, x)− φ(2t, x)−R| ≤ C exp(−Kt).

This proves the lemma’s statement.

Corollary 3.4. Consider two solutions u and u of (1.2) defined on the time
interval [0,+∞). Then for any p > 0 we have:

|u(t)− u(t)|p ≤ C̃p exp(−Mt/2p), t ≥ 0.

Proof: This result follows from Lemma 3.3 using the Gagliardo-Nirenberg in-
equality [8] and Lemma 3.1.

Proof of Theorem 2.11: By the Fubini theorem, it suffices to prove this result
in the case when the measures µ1 and µ2 are two Dirac measures concentrated at the
initial conditions u0, u0 ∈ Lp.

It follows from Corollary 3.4 that if we denote by B the event

B = {ω ∈ Ω | |u(t)− u(t)|L(p) ≥ exp(−Mt/4p)},

then we have:

P(B) ≤ exp(−Mt/4p) E C̃p, t ≥ 0.

Now consider a function g defined on Lp which satisfies |g|L ≤ 1. We have for t ≥ 0:

E (|g(u(t))− g(u(t))|p)
≤ P(B) E (|g(u(t))− g(u(t))|p | B) + P(Ω−B) E (|g(u(t))− g(u(t))|p | Ω−B)

≤ 2P(B) + P(Ω−B) exp(−Mt/4p) ≤ (2E C̃p + 1) exp(−Mt/4p).

Remark 3.5. The estimate in Lemma 3.3 is uniform with respect to the initial
conditions: in other words, we have

E sup
φ0,φ0∈C0

|φ(t)− φ(t)|L∞/R ≤ K exp(−Mt), t ≥ 0.

A similar statement holds for the estimate in Corollary 3.4.

Acknowledgments. I would like to thank P. Bernard, A. Davini, R. Iturriaga,
K. Khanin and K. Zhang for helpful discussions.
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ANALYSIS OF THE FEM AND DGM FOR AN ELLIPTIC PROBLEM
WITH A NONLINEAR NEWTON BOUNDARY CONDITION ∗
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ANNA-MARGARETE SÄNDIG‡

Abstract. The paper is concerned with the numerical analysis of an elliptic equation in a polygon
with a nonlinear Newton boundary condition, discretized by the finite element or discontinuous
Galerkin methods. Using the monotone operator theory, it is possible to prove the existence and
uniqueness of the exact weak solution and the approximate solution. The main attention is paid to
the study of error estimates. To this end, the regularity of the weak solution is investigated and it
is shown that due to the boundary corner points, the solution looses regularity in a vicinity of these
points. It comes out that the error estimation depends essentially on the opening angle of the corner
points and on the parameter defining the nonlinear behaviour of the Newton boundary condition.
Theoretical results are compared with numerical experiments confirming a nonstandard behaviour
of error estimates.

Key words. elliptic equation, nonlinear Newton boundary condition, monotone operator
method, finite element method, discontinuous Galerkin method, regularity and singular behaviour
of the solution, error estimation

AMS subject classifications. 65N15, 65N30

1. Introduction. Let Ω ⊂ R2 be a bounded polygonal domain with boundary
∂Ω. We consider a boundary value problem with a non-linear Newton boundary
condition: find u : Ω→ R such that

−∆u = f in Ω, (1.1)

∂u

∂n
+ κ|u|αu = ϕ on ∂Ω, (1.2)

with given functions f : Ω→ R, ϕ : ∂Ω→ R and constants κ > 0, α ≥ 0.

Such boundary value problems have applications in science and engineering. We
can mention modelling of electrolysis of aluminium with the aid of the stream function
([11]), radiation heat transfer problem ([9], [10]) or nonlinear elasticity ([6], [7]). For
example, by [2] our problem describes deformation of a flat plate with a nonlinear
elastic support on the boundary.

In this paper we are concerned with the application of the finite element method
(FEM) and the discontinuous Galerkin method (DGM) applied to the numerical so-
lution of problem (1.1)-(1.2). Main attention is paid to a survey of error estimation.
Detailed results are contained in the thesis [3] and the forthcoming paper [5].

2. Weak solution. In what follows we use the standard notation Lp(ω), W k,p(ω),
Hk(ω) for the Lebesgue and Sobolev spaces over a set ω. See, e.g., [12].
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Suppose that f ∈ L2(Ω), ϕ ∈ L2(∂Ω). We introduce the following forms for
u, v ∈ H1(Ω):

b(u, v) =

∫

Ω

∇u · ∇v dx, d(u, v) = κ

∫

∂Ω

|u|αuv dS, LΩ(v) =

∫

Ω

fv dx,

L∂Ω(v) =

∫

∂Ω

ϕv dS, L(v) = LΩ(v) + L∂Ω(v), A(u, v) = b(u, v) + d(u, v).

(2.1)

Definition 2.1. We say that a function u : Ω→ R is a weak solution of problem
(1.1)-(1.2), if

u ∈ H1(Ω), A(u, v) = L(v) ∀v ∈ H1(Ω). (2.2)

Let us note that for u, v ∈ H1(Ω)

A(u, u− v)−A(v, u− v) =

∫

Ω

|∇u−∇v|2dx+ κ

∫

∂Ω

(|u|αu− |v|αv)(u− v) dS. (2.3)

The next section will be devoted to to the analysis of the numerical solution of
problem (2.2) by the finite element method and the discontinuous Galerkin method. In
the analysis of error estimation, the regularity of the weak solution plays an important
role. In [5], the following result is proven.

Theorem 2.2. Let u ∈ H1(Ω) be a weak solution of (2.2) in a polygonal domain
Ω. By ω0 we denote the largest interior angle at corners on the boundary. Let f ∈
Lq(Ω), ϕ ∈W 1−1/q,q(∂Ω), where

q = 1 +
π

2ω0 − π
− ε < 2 for ω0 > π,

q = 1 +
π

2ω0 − π
− ε > 2 for

π

2
< ω0 < π,

q ≥ 1 is arbitrary for ω0 ≤
π

2
,

(2.4)

and ε > 0 is arbitrarily small. Then u ∈W 2,q(Ω).
It is obvious that 4/3 < q <∞.

3. Discretization. In what follows we are concerned with the discretization of
problem (2.2) by the finite element method and the discontinuous Galerkin method.
To this end, in Ω we construct a system of triangulations Th, h ∈ (0, h), with h > 0,
consisting of a finite number of closed triangles T with standard properties, see [4].
If T ∈ Th, then by hT and ρT we denote the diameter of T and the radius of the
largest circle inscribed into T . We assume that this system of triangulations Th is
shape regular:

hT
ρT
≤ CR ∀T ∈ Th ∀h ∈ (0, h). (3.1)

The approximate solution is sought in the space

Hr
h = {vh ∈ C(Ω); vh|T ∈ Pr(T ), T ∈ Th}, (3.2)

in the case of the FEM discretization and in

Srh = {vh ∈ L2(Ω); vh|T ∈ Pr(T ), T ∈ Th}, (3.3)
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in the case of the DGM. Here r ≥ 1 is an integer and Pr(T ) denotes the space of
piecewise polynomial functions on T of degree ≤ r.

Because of the DGM discretization we denote the set of all faces of all elements
T ∈ Th by Fh and we further distinguish between the set of all boundary faces
FBh = {Γ ∈ Fh; Γ ⊂ ∂Ω}, and the set of all inner faces FIh = Fh \FBh . For an integer
k ≥ 1, a number q ≥ 1 and a triangulation Th we define the broken Sobolev space

W k,q(Ω, Th) = {v ∈ L2(Ω); v|T ∈W k,q(T ), T ∈ Th} (3.4)

and put Hk(Ω, Th) = W k,2(Ω, Th). For functions v ∈ W k,p(Ω, Th) and inner faces
Γ ∈ FIh , we introduce the notation

v|(L)
Γ = trace of v|

T
(L)
Γ

on Γ, v|(R)
Γ = trace of v|

T
(R)
Γ

on Γ,

〈v〉Γ =
1

2
(v|(L)

Γ + v|(R)
Γ ), [v]Γ = v|(L)

Γ − v|(R)
Γ .

(3.5)

Here T
(L)
Γ and T

(R)
Γ are elements adjacent to Γ. By nΓ we denote the outer unit

normal vector to T
(L)
Γ on Γ.

In the FEM we use the forms defined by (2.1). In the case of the DGM for
u, v ∈ H2(Ω, Th) we introduce their analogies. Namely, we set

bh(u, v) =
∑

T∈Th

∫

T

∇u · ∇v dx−
∑

Γ∈FIh

∫

Γ

(nΓ · 〈∇u〉[v] + θnΓ · 〈∇v〉[u]) dS. (3.6)

The parameter θ can be chosen as 1, 0,−1, which leads to symmetric, incomplete
and non-symmetric versions of the diffusion forms denoted by SIPG, IIPG, NIPG,
respectively. Further, we introduce the interior penalty form

Jh(u, v) =
∑

Γ∈FIh

CW
hΓ

∫

Γ

[u][v] dS (3.7)

with a paramenter CW . The form d is again defined by (2.1). Finally, we set

ah(u, v) = bh(u, v) + Jh(u, v), (3.8)

Ah(u, v) = ah(u, v) + d(u, v). (3.9)

Definition 3.1. We say that a function uh is a FEM approximate solution of
problem (2.2), if

uh ∈ Hr
h, A(uh, vh) = L(vh) ∀vh ∈ Hr

h. (3.10)

The function Uh is a DGM approximate solution, if

Uh ∈ Srh, Ah(Uh, vh) = L(vh) ∀vh ∈ Srh. (3.11)

The error of the FEM will be estimated in the standard norm ‖ · ‖1,2,Ω and
seminorm | · |1,2,Ω of the Sobolev space H1(Ω). For the analysis of the DGM we
introduce the seminorm

|v|h =

(∑

T∈Th

∫

T

|∇v|2 dx+ Jh(v, v)

) 1
2

, (3.12)
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and the norm

|||v||| =
(
|v|2h + ‖v‖20,2,Ω

) 1
2

. (3.13)

By ‖ · ‖0,2,Ω we denote the norm in L2(Ω).

4. Properties of the forms A and Ah. In what follows, by the symbols
C0, C1, C2, . . . , we denote constants independent of the exact and approximate so-
lutions and of h. Proofs of the following results are rather technical. We refer to
[5].

Lemma 4.1. There exists a constant C0 > 0 independent of u, v ∈ H1(Ω),
uh, vh ∈ Srh and h ∈ (0, h) such that

A(u, u− v)−A(v, u− v) ≥ |u− v|21,2,Ω + C0‖u− v‖α+2
0,α+2,∂Ω ∀u, v ∈ H1(Ω). (4.1)

Moreover, if the constant CW from the definition of the penalty form Jh satisfies the
conditions

CW > 0, for θ = −1 (NIPG), (4.2)

CW > 4CM (1 + CI), for θ = 1 (SIPG), (4.3)

CW > CM (1 + CI), for θ = 0 (IIPG), (4.4)

then ∀uh, vh ∈ Srh,∀h ∈ (0, h)

Ah(uh, uh − vh)−Ah(vh, uh − vh) ≥ 1

2
|uh − vh|2h + C0‖u− v‖α+2

0,α+2,∂Ω. (4.5)

Similarly as in [5] we can prove the monotonicity and continuity of the forms A
and Ah.

Theorem 4.2. The following results hold:
a) The forms A and Ah are uniformly monotone. Namely, we have

A(u, u− v)−A(v, u− v) ≥ %(‖u− v‖1,2,Ω) ∀u, v ∈ H1(Ω), (4.6)

where

%(t) =

{
C1t

α+2 for 0 ≤ t ≤ 1,
C1t

2 for t ≥ 1,
(4.7)

with the constant C1 depending on C0, κ and α. If CW satisfies (4.2)-(4.4),
then

Ah(uh, uh−vh)−Ah(vh, uh−vh) ≥ %(|||uh−vh|||) ∀uh, vh ∈ Srh ∀h ∈ (0, h),
(4.8)

where the function % is again defined by (4.7).
b) The forms A and Ah are continuous: There exists a constant C2 > 0 such

that ∀u, v, w ∈ H1(Ω)

|A(u, v)−A(w, v)| ≤ C2

(
1 + ‖u‖α1,2,Ω + ‖w‖α1,2,Ω

)
‖u−w‖1,2,Ω‖v‖1,2,Ω. (4.9)

Further, if CW satisfies (4.2)-(4.4), then

|Ah(u,w)−Ah(v, w)| ≤ C2

{
|||u− v|||+Rh (u− v, q)

+Gh(u− v)
(
‖u‖α1,2,Ω + |||v|||α

)}
|||w|||,

(4.10)
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holds for all u ∈W 2,q(Ω), v, w ∈ Srh, h ∈ (0, h), where

Rh(φ, q) =

(
CM

∑

T∈Th
hT |φ|1,q′,T |φ|2,q,T

)1/2

, (4.11)

for φ ∈W 2,q(Ω, Th), q ∈
(

4
3 , 2
)
, 1
q + 1

q′ = 1 and

Rh(φ, q) =

(
CM

∑

T∈Th
hT |φ|1,2,T |φ|2,2,T

)1/2

, (4.12)

for φ ∈ W 2,q(Ω, Th), q ≥ 2. If s ≥ 3, q > 1 and u ∈ W s,q(Ω), then Rh is
defined by (4.12). Moreover,

Gh(φ) =

(
CM

∑

T∈Th

(
‖φ‖20,2,T h−1

T + |φ|1,2,T ‖φ‖0,2,T
))1/2

. (4.13)

5. Error estimates. The basis for the error estimation is an abstract error
estimate. Using the results formulated in Theorem 4.2, using approach from [3] and
[5], it is possible to prove the following result:

Theorem 5.1. Let u ∈ H1(Ω) be a weak solution of (2.2). There exists a
constant C3 > 0 such that if uh ∈ Hr

h is the FEM approximate solution defined by
(3.10), then

‖u− uh‖1,2,Ω ≤ %−1
1 (C3‖u− vh‖1,2,Ω) ∀vh ∈ Hr

h ∀h ∈ (0, h), (5.1)

where

%1(t) = %(t)/t, (5.2)

and %−1
1 is its inverse. In the case of the DGM we have

|||u− Uh|||≤ ρ−1
1

(
C3

(
|||u− vh|||+Rh(u− vh; q) +Gh(u− vh)

(
‖u‖α1,2,Ω + |||vh|||α

)))

+|||u− vh|||, ∀ vh ∈ Srh, ∀h ∈ (0, h), (5.3)

where Uh is the approximate solution satisfying (3.11). The function %1(t) is again
defined by (5.2).

Now we can derive error estimates in terms of the size h of triangulations Th.
To this end, it is necessary to introduce suitable Hr

h- and Srh-interpolations. Here we
apply the Lagrangian intepolation denoted by πh defined elementwise (cf. e.g. [4]).
From the interpolation theory in [4] we get the following result:

Lemma 5.2. Let us assume that s,m ≥ 0 be integers and p, q ≥ 1, the piecewise
Lagrange interpolation πh preserve polynomials of degree at most r, the triangulation
Th be shape regular according to (3.1) and the following embeddings hold:

Wµ,q(T ) ↪→ C(T ), Wµ,q(T ) ↪→Wm,p(T ),

where µ = min(r + 1, s). Then there exists a constant C4 = C4(π,CR) > 0 such that
for all T ∈ Th and h ∈ (0, h) we have

|u− πhu|m,p,T ≤ C4|u|µ,q,Th
µ−m+ 2

p− 2
q

T ∀u ∈W s,q(T ). (5.4)
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The application of Theorem 5.1 and Lemma 5.2 combined with Jensen’s inequality
(Theorem 3.3 in [13]) yields the sought error estimates.

Theorem 5.3. Let the solution of (2.2) be u ∈ W s,q(Ω), µ = min(r + 1, s) and
Wµ,q(Ω) ↪→ H1(Ω). Then for the FEM approximate solution uh defined by (3.10) the
error estimate

‖u− uh‖1,2,Ω ≤
{
%−1

1

(
C5|u|µ,q,Ωhµ−

2
q

)
, q ∈ [1, 2),

%−1
1

(
C5|u|µ,q,Ωhµ−1

)
, q ∈ [2,∞).

(5.5)

holds for all h ∈ (0, h).
In the case of the DGM we obtain the following results. (See [5].)
Theorem 5.4. Let u ∈ W s,q(Ω), where q > 4

3 for s = 2 and q > 1 for s ≥ 3 be
the weak solution given by (2.2), let Uh be the discontinuous Galerkin approximation
of degree r given by (3.11) and let CW satisfy (4.2)-(4.4). Let us set µ = min(r+1, s).
Then

|||u− Uh||| ≤ ρ−1
1

(
C6(‖u‖1,2,Ω)hµ−2/q|u|µ,q,Ω

)
+ C7 h

µ−2/q|u|µ,q,Ω, h ∈ (0, h), (5.6)

for q ∈ (1, 2). If q ≥ 2, then

|||u− Uh||| ≤ ρ−1
1

(
C6(‖u‖1,2,Ω)hµ−1|u|µ,q,Ω

)
+ C7 h

µ−1|u|µ,q,Ω, h ∈ (0, h). (5.7)

6. Numerical experiments. In order to verify the obtained theoretical results,
some numerical experiments are presented. They were realized with the aid of the
FEniCS software [1]. We explore the reduction of the order of convergence caused
by the nonlinearity and find out how it affects different norms. In both experiments
we discretize the problem by the FEM and by the SIPG variant of the DGM. We
use uniform triangular meshes with element diameters hl = h0

2l
, l = 0, 1, . . . , 5. The

amount of degrees of freedom (DOF) is therefore expected to increase about four times
with each refinement. Denoting the error of the discrete solution by eh = u− uh, we
compute the experimental order of convergence (EOC) by

EOC =
log
∥∥ehl−1

∥∥− log ‖ehl‖
log hl−1 − log hl

, l = 1, 2, . . . , 5. (6.1)

We evaluate the experimental order of convergence separately for theH1-seminorm
and L2-norm for the FEM, and |·|h-seminorm and L2-norm for the SIPG variant of
DG method. The discrete problems (3.10) and (3.11) represent nonlinear systems for
α > 0. They are solved by a dampened Newton method with tolerance on the residual
10−9.

6.1. Example 1 - solution is zero on the boundary. In the first experiment
we consider the problem (1.1)-(1.2) on the unit square domain Ω = (0, 1)2. The data
f and ϕ are chosen so that the exact solution has the form

u(x1, x2) = x1(1− x1)x2(1− x2)
(
x2

1 + x2
2

)1/4
. (6.2)

This function belongs to W 4,q(Ω), q ∈
(
1, 4

3

)
. As W 4,q(Ω) ↪→ H3(Ω) and 4 − 2/ 4

3 =
2.5, it follows from Theorems 5.3 and 5.4 that the EOC should be in the norms ‖·‖1,2,Ω
and ||| · ||| (at least) min(2.5,r)

α+1 .
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Table 6.1: Example 1 - number of DOF and Newton iterations, discretization errors
and convergence rates for r = 1, 2, 3, 4 and α = 0.5, 1.0, 1.5, 2.0 in FEM.

α = 1.5, r = 1

h DOF iter ||e||0,2,Ω EOC |e|1,2,Ω EOC ||e||1,2,Ω EOC

0.375 49 4 9.3448e-02 – 7.9119e-02 – 1.2244e-01 –
0.188 161 6 4.8018e-02 0.96 4.0634e-02 0.96 6.2904e-02 0.96
0.094 577 6 2.7109e-02 0.82 2.0042e-02 1.02 3.3713e-02 0.90
0.047 2177 6 1.5600e-02 0.80 9.8458e-03 1.03 1.8447e-02 0.87
0.023 8449 6 8.8992e-03 0.81 4.8780e-03 1.01 1.0148e-02 0.86
0.012 33281 6 5.0395e-03 0.82 2.4321e-03 1.00 5.5957e-03 0.86

α = 1.5, r = 2

h DOF iter ||e||0,2,Ω EOC |e|1,2,Ω EOC ||e||1,2,Ω EOC

0.375 161 3 2.6724e-02 – 8.6570e-03 – 2.8091e-02 –
0.188 577 6 1.2058e-02 1.15 2.2618e-03 1.94 1.2268e-02 1.20
0.094 2177 6 5.9243e-03 1.03 5.7373e-04 1.98 5.9520e-03 1.04
0.047 8449 6 2.9464e-03 1.01 1.4479e-04 1.99 2.9499e-03 1.01
0.023 33281 6 1.4700e-03 1.00 3.6421e-05 1.99 1.4704e-03 1.00
0.012 132097 6 7.3425e-04 1.00 9.1384e-06 1.99 7.3430e-04 1.00

α = 1.5, r = 3

h DOF iter ||e||0,2,Ω EOC |e|1,2,Ω EOC ||e||1,2,Ω EOC

0.375 337 3 1.2840e-02 – 8.3916e-04 – 1.2867e-02 –
0.188 1249 6 4.9724e-03 1.37 1.2809e-04 2.71 4.9741e-03 1.37
0.094 4801 5 3.3908e-03 0.55 1.5021e-05 3.09 3.3908e-03 0.55
0.047 18817 6 1.6746e-03 1.02 2.0634e-06 2.86 1.6746e-03 1.02
0.023 74497 6 8.3301e-04 1.01 2.9962e-07 2.78 8.3301e-04 1.01
0.012 296449 3 4.1014e-04 1.02 4.7016e-08 2.67 4.1014e-04 1.02

α = 1.5, r = 4

h DOF iter ||e||0,2,Ω EOC |e|1,2,Ω EOC ||e||1,2,Ω EOC

0.375 577 3 9.6870e-03 – 1.4266e-04 – 9.6880e-03 –
0.188 2177 6 5.0551e-03 0.94 1.4161e-05 3.33 5.0551e-03 0.94
0.094 8449 6 2.5318e-03 1.00 2.3612e-06 2.58 2.5318e-03 1.00
0.047 33281 6 1.2653e-03 1.00 4.3600e-07 2.44 1.2653e-03 1.00
0.023 132097 6 6.3245e-04 1.00 8.1398e-08 2.42 6.3245e-04 1.00
0.012 526337 4 2.9917e-04 1.08 1.5154e-08 2.43 2.9917e-04 1.08

α = 0.5, r = 2

h DOF iter ||e||0,2,Ω EOC |e|1,2,Ω EOC ||e||1,2,Ω EOC

0.375 161 4 2.3779e-03 – 8.6544e-03 – 8.9752e-03 –
0.188 577 5 6.3232e-04 1.91 2.2617e-03 1.94 2.3485e-03 1.93
0.094 2177 4 1.9356e-04 1.71 5.7372e-04 1.98 6.0550e-04 1.96
0.047 8449 3 6.0476e-05 1.68 1.4479e-04 1.99 1.5691e-04 1.95
0.023 33281 3 1.8977e-05 1.67 3.6421e-05 1.99 4.1069e-05 1.93
0.012 132097 3 6.0396e-06 1.65 9.1384e-06 1.99 1.0954e-05 1.91

α = 1.0, r = 2

h DOF iter ||e||0,2,Ω EOC |e|1,2,Ω EOC ||e||1,2,Ω EOC

0.375 161 4 1.0793e-02 – 8.6566e-03 – 1.3835e-02 –
0.188 577 6 3.9942e-03 1.43 2.2618e-03 1.94 4.5901e-03 1.59
0.094 2177 6 1.6433e-03 1.28 5.7373e-04 1.98 1.7406e-03 1.40
0.047 8449 5 6.8640e-04 1.26 1.4479e-04 1.99 7.0150e-04 1.31
0.023 33281 4 2.8784e-04 1.25 3.6421e-05 1.99 2.9014e-04 1.27
0.012 132097 3 1.1988e-04 1.26 9.1384e-06 1.99 1.2023e-04 1.27

α = 2.0, r = 2

h DOF iter ||e||0,2,Ω EOC |e|h EOC |||e||| EOC

0.375 161 3 4.8888e-02 – 8.6572e-03 – 4.9648e-02 –
0.188 577 6 2.5182e-02 0.96 2.2618e-03 1.94 2.5284e-02 0.97
0.094 2177 6 1.3928e-02 0.85 5.7373e-04 1.98 1.3940e-02 0.86
0.047 8449 6 7.7818e-03 0.84 1.4479e-04 1.99 7.7831e-03 0.84
0.023 33281 6 4.3594e-03 0.84 3.6421e-05 1.99 4.3595e-03 0.84
0.012 132097 6 2.4446e-03 0.83 9.1384e-06 1.99 2.4446e-03 0.83

We discretized the problem with FEM and SIPG variant of the DG method. For
polynomials of degree r = 2 we tested different values of the nonlinearity parameter
α = 0.5, 1.0, 1.5, 2.0, and for parameter α = 1.5 we tested FEM with polynomials
of degrees r = 1, 2, 3, 4. The results shown in Table 6.1 and Table 6.2 also include
the mesh element size h = maxT∈Th hT , the number of degrees of freedom and the
number of Newton iterations.

The EOC in H1-seminorm and |·|h-seminorm are min(2.5, r), i.e. the error seems
to be unaffected by the nonlinearity. The most significant part of the error measured
in H1-norm (or |||·|||-norm) was its L2-norm. Our estimates for the L2-norm give us an

order of convergence min(2.5,r)
α+1 , which would be 1

α+1 ,
2

α+1 ,
2.5
α+1 ,

2.5
α+1 for r = 1, 2, 3, 4,

respectively. The EOC, however, suggests 2
α+1 ,

2.5
α+1 ,

2.5
α+1 ,

2.5
α+1 for r = 1, 2, 3, 4, re-

spectively. The theoretical error estimate is therefore suboptimal for r = 1, 2.

6.2. Example 2 - solution not identically zero on the boundary. In the
second experiment, we again consider the problem (1.1)-(1.2) on the unit square
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Table 6.2: Example 1 - number of DOF and Newton iterations, discretization errors
and convergence rates for r = 2 and α = 0.5, 1.0, 1.5, 2.0 in SIPG variant of DG
method.

α = 0.5, r = 2

h DOF iter ||e||0,2,Ω EOC |e|h EOC |||e||| EOC

0.375 384 4 2.3711e-03 – 7.7517e-03 – 8.1062e-03 –
0.188 1536 5 6.3176e-04 1.91 2.0084e-03 1.95 2.1054e-03 1.94
0.094 6144 4 1.9354e-04 1.71 5.0545e-04 1.99 5.4124e-04 1.96
0.047 24576 3 6.0472e-05 1.68 1.2673e-04 2.00 1.4042e-04 1.95
0.023 98304 3 1.8994e-05 1.67 3.1764e-05 2.00 3.7009e-05 1.92
0.012 393216 3 5.9364e-06 1.68 7.9534e-06 2.00 9.9246e-06 1.90

α = 1.0, r = 2

h DOF iter ||e||0,2,Ω EOC |e|h EOC |||e||| EOC

0.375 384 4 1.0791e-02 – 7.7532e-03 – 1.3288e-02 –
0.188 1536 6 3.9941e-03 1.43 2.0084e-03 1.95 4.4706e-03 1.57
0.094 6144 6 1.6433e-03 1.28 5.0545e-04 1.99 1.7193e-03 1.38
0.047 24576 5 6.8640e-04 1.26 1.2673e-04 2.00 6.9800e-04 1.30
0.023 98304 4 2.8785e-04 1.25 3.1764e-05 2.00 2.8960e-04 1.27
0.012 393216 3 1.1989e-04 1.26 7.9534e-06 2.00 1.2015e-04 1.27

α = 1.5, r = 2

h DOF iter ||e||0,2,Ω EOC |e|h EOC |||e||| EOC

0.375 384 4 2.6723e-02 – 7.7536e-03 – 2.7825e-02 –
0.188 1536 6 1.2058e-02 1.15 2.0084e-03 1.95 1.2224e-02 1.19
0.094 6144 6 5.9243e-03 1.03 5.0545e-04 1.99 5.9459e-03 1.04
0.047 24576 6 2.9464e-03 1.01 1.2673e-04 2.00 2.9491e-03 1.01
0.023 98304 6 1.4700e-03 1.00 3.1764e-05 2.00 1.4703e-03 1.00
0.012 393216 6 7.3425e-04 1.00 7.9534e-06 2.00 7.3429e-04 1.00

α = 2.0, r = 2

h DOF iter ||e||0,2,Ω EOC |e|h EOC |||e||| EOC

0.375 384 3 4.8888e-02 – 7.7537e-03 – 4.9499e-02 –
0.188 1536 6 2.5182e-02 0.96 2.0084e-03 1.95 2.5262e-02 0.97
0.094 6144 6 1.3928e-02 0.85 5.0545e-04 1.99 1.3937e-02 0.86
0.047 24576 6 7.7818e-03 0.84 1.2673e-04 2.00 7.7828e-03 0.84
0.023 98304 6 4.3594e-03 0.84 3.1764e-05 2.00 4.3595e-03 0.84
0.012 393216 6 2.4446e-03 0.83 7.9534e-06 2.00 2.4446e-03 0.83

domain Ω = (0, 1)2. We prescribe the data f and ϕ in such a way that the exact

solution is u(x1, x2) = 1
4 (1 + x1)

2
sin (2πx1x2). This function was used in [8]. It is

smooth, zero on boundary segments going through the points [0, 1], [0, 0], [1, 0] and
nonzero on segments going through the points [1, 0], [1, 1], [0, 1].

In this example we choose α = 1.5 and polynomial degrees r = 1, 2, 3 for both the
FEM and the SIPG variant of the DGM. For the FEM, we have also tried r = 4, and
α = 0.5. The EOC is not affected by the boundary nonlinearity parameter α. The
H1-seminorm and |·|h-seminorm converge with the order of convergence r, and the
L2-norm converges faster with order r + 1. The error estimates in Theorems 5.3 and
5.4 are again suboptimal, but in this case, the error is dominated by the H1-seminorm
or the |·|h-seminorm.

7. Additional estimates. On the basis of the numerical experiments we come
to the conclusion that the error estimates can be influenced by the behaviour of the
exact solution on the boundary ∂Ω, namely, if the exact solution u vanishes on the
whole boundary and, on the other hand, if it is nonzero on a sufficiently large subset
of the boundary. We present here some theoretical results derived for the FEM.

Theorem 7.1. Let the weak solution u ∈W s,q(Ω) given by (2.2) be zero on ∂Ω.
Let us set µ = min(r + 1, s), where r is the degree of used polynomials. Then

|u− uh|1,2,Ω ≤
{
C8|u|k+1,q,Ωh

µ− 2
q , q ∈ [1, 2),

C8|u|k+1,q,Ωh
µ−1, q ∈ [2,∞).

(7.1)

Proof. Neglecting the last term on the right-hand side of (4.1) gives us |u− uh|21,2,Ω ≤
A(u, u − uh) − A(uh, u − uh), using Galerkin orthogonality following from (2.2),
(3.10) and Hr

h ⊂ H1(Ω) for a piecewise Lagrange interpolation yields A(u, u− uh)−
A(uh, u − uh) = A(u, u − πhu) − A(uh, u − πhu). The fact that πhu is also zero
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Table 6.3: Example 2 - number of DOF and Newton iterations, discretization errors
and convergence rates for r = 1, 2, 3, 4 and α = 1.5, 0.5 in FEM.

α = 1.5, r = 1

h DOF iter ||e||0,2,Ω EOC |e|1,2,Ω EOC ||e||1,2,Ω EOC

0.375 49 6 2.5883e-01 – 9.5881e-01 – 9.9314e-01 –
0.188 161 5 6.1723e-02 2.07 5.3381e-01 0.84 5.3736e-01 0.89
0.094 577 4 1.5381e-02 2.00 2.8145e-01 0.92 2.8187e-01 0.93
0.047 2177 4 3.9289e-03 1.97 1.4421e-01 0.96 1.4426e-01 0.97
0.023 8449 3 9.9584e-04 1.98 7.2704e-02 0.99 7.2711e-02 0.99
0.012 33281 3 2.4986e-04 1.99 3.6390e-02 1.00 3.6391e-02 1.00

α = 1.5, r = 2

h DOF iter ||e||0,2,Ω EOC |e|1,2,Ω EOC ||e||1,2,Ω EOC

0.375 161 6 1.4730e-02 – 2.3514e-01 – 2.3560e-01 –
0.188 577 4 1.2493e-03 3.56 5.8813e-02 2.00 5.8826e-02 2.00
0.094 2177 3 1.3819e-04 3.18 1.5173e-02 1.95 1.5173e-02 1.95
0.047 8449 3 1.6986e-05 3.02 3.8676e-03 1.97 3.8676e-03 1.97
0.023 33281 2 2.1254e-06 3.00 9.7489e-04 1.99 9.7489e-04 1.99
0.012 132097 2 2.6587e-07 3.00 2.4425e-04 2.00 2.4425e-04 2.00

α = 1.5, r = 3

h DOF iter ||e||0,2,Ω EOC |e|1,2,Ω EOC ||e||1,2,Ω EOC

0.375 337 6 4.5914e-03 – 2.3116e-02 – 2.3568e-02 –
0.188 1249 3 2.4182e-04 4.25 3.4931e-03 2.73 3.5015e-03 2.75
0.094 4801 3 1.3800e-05 4.13 4.7873e-04 2.87 4.7893e-04 2.87
0.047 18817 2 8.5542e-07 4.01 6.2363e-05 2.94 6.2369e-05 2.94
0.023 74497 2 5.4140e-08 3.98 7.9229e-06 2.98 7.9231e-06 2.98
0.012 296449 2 3.4211e-09 3.98 9.9474e-07 2.99 9.9474e-07 2.99

α = 1.5, r = 4

h DOF iter ||e||0,2,Ω EOC |e|1,2,Ω EOC ||e||1,2,Ω EOC

0.375 577 6 8.4789e-05 – 4.2824e-03 – 4.2832e-03 –
0.188 2177 3 3.2227e-06 4.72 3.2812e-04 3.71 3.2813e-04 3.71
0.094 8449 2 1.0740e-07 4.91 2.2035e-05 3.90 2.2036e-05 3.90
0.047 33281 2 3.4969e-09 4.94 1.4299e-06 3.95 1.4299e-06 3.95
0.023 132097 2 1.1140e-10 4.97 9.0809e-08 3.98 9.0809e-08 3.98
0.012 526337 2 3.5005e-12 4.99 5.6988e-09 3.99 5.6988e-09 3.99

α = 0.5, r = 2

h DOF iter ||e||0,2,Ω EOC |e|1,2,Ω EOC ||e||1,2,Ω EOC

0.375 161 6 1.4072e-02 – 2.3527e-01 – 2.3569e-01 –
0.188 577 4 1.2379e-03 3.51 5.8815e-02 2.00 5.8828e-02 2.00
0.094 2177 4 1.3806e-04 3.16 1.5173e-02 1.95 1.5173e-02 1.95
0.047 8449 3 1.6989e-05 3.02 3.8676e-03 1.97 3.8676e-03 1.97
0.023 33281 3 2.1256e-06 3.00 9.7489e-04 1.99 9.7489e-04 1.99
0.012 132097 2 2.6588e-07 3.00 2.4425e-04 2.00 2.4425e-04 2.00

Table 6.4: Example 2 - number of DOF and Newton iterations, discretization errors
and convergence rates for α = 1.5 and r = 1, 2, 3 in SIPG variant of DG method.

α = 1.5, r = 1

h DOF iter ||e||0,2,Ω EOC |e|h EOC |||e||| EOC

0.375 192 6 2.5073e-01 – 8.7620e-01 – 9.1137e-01 –
0.188 768 5 6.1030e-02 2.04 4.7862e-01 0.87 4.8249e-01 0.92
0.094 3072 4 1.5377e-02 1.99 2.4855e-01 0.95 2.4902e-01 0.95
0.047 12288 4 3.9457e-03 1.96 1.2692e-01 0.97 1.2698e-01 0.97
0.023 49152 3 1.0016e-03 1.98 6.3982e-02 0.99 6.3990e-02 0.99
0.012 196608 3 2.5142e-04 1.99 3.2043e-02 1.00 3.2044e-02 1.00

α = 1.5, r = 2

h DOF iter ||e||0,2,Ω EOC |e|h EOC |||e||| EOC

0.375 384 6 1.3432e-02 – 2.2029e-01 – 2.2069e-01 –
0.188 1536 4 9.8475e-04 3.77 5.4667e-02 2.01 5.4676e-02 2.01
0.094 6144 3 9.5957e-05 3.36 1.3884e-02 1.98 1.3884e-02 1.98
0.047 24576 3 1.1194e-05 3.10 3.5122e-03 1.98 3.5122e-03 1.98
0.023 98304 2 1.3773e-06 3.02 8.8228e-04 1.99 8.8229e-04 1.99
0.012 393216 2 1.7139e-07 3.01 2.2075e-04 2.00 2.2075e-04 2.00

α = 1.5, r = 3

h DOF iter ||e||0,2,Ω EOC |e|h EOC |||e||| EOC

0.375 640 6 4.5720e-03 – 2.7526e-02 – 2.7903e-02 –
0.188 2560 3 2.4012e-04 4.25 4.2359e-03 2.70 4.2427e-03 2.72
0.094 10240 3 1.3676e-05 4.13 5.7642e-04 2.88 5.7658e-04 2.88
0.047 40960 2 8.4847e-07 4.01 8.1035e-05 2.83 8.1039e-05 2.83
0.023 163840 2 5.3738e-08 3.98 1.0459e-05 2.95 1.0460e-05 2.95
0.012 655360 2 3.3983e-09 3.98 1.3431e-06 2.96 1.3431e-06 2.96

on ∂Ω and the Hölder inequality implies that A(u, u − πhu) − A(uh, u − πhu) =∫
Ω
∇(u − uh) · ∇(u − πhu)dx ≤ |u− uh|1,2,Ω |u− πhu|1,2,Ω Dividing by |u− uh|1,2,Ω

leads to the estimate |u− uh|1,2,Ω ≤ |u− πhu|1,2,Ω. Now Theorem 5.2 for H1(T )-
seminorm gives us the sought estimate.

Further, we can improve estimates in Theorem 5.3 in such a way that ρ1(t) = C8t
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for all t ≥ 0 in the case that the exact solution satisfies the following condition:

G ⊂ ∂Ω, |G| > 0, |u| ≥ ε > 0 on G. (7.2)

Then the improved error estimate is a consequence of the strong monotonicity of the
form A:

Theorem 7.2. Let u ∈ H1(Ω) and let the conditions (7.2) hold. Then there
exists a constant C9 = C9(Ω, G, ε) > 0 such that

A(u, u− v)−A(v, u− v) ≥ C9‖u− v‖21,2,Ω ∀v ∈ H1(Ω). (7.3)

Proof. Since |u|α − |v|α and u2 − v2 have the same sign, it follows that (|u|α −
|v|α)(u2 − v2) ≥ 0, or equivalently |u|αu2 + |v|αv2 ≥ |u|αv2 + |v|αu2. Thus, we can
write

2(|u|αu− |v|αv)(u− v) = |u|α(2u2 − 2uv) + |v|α(2v2 − 2uv)

≥ |u|α(u2 − 2uv + v2) + |v|α(v2 − 2uv + u2) = (|u|α + |v|α)(u− v)2.
(7.4)

Now (7.4) and (2.3) imply that A(u, u − v) − A(v, u − v) ≥ |u − v|21,2,Ω + 1
2κε

α‖u −
v‖20,2,G. The existence of a constant C9 from the statement of this theorem follows
from Poincaré’s inequality ‖u‖1,2,Ω ≤ cP (|u|1,2,Ω + ‖u‖0,2,G).

For the DGM we get analogical results with the norm ||| · ||| replacing ‖ · ‖1,2,Ω and
the seminorm | · |h replacing | · |1,2,Ω. An interesting problem is the analysis of the
FEM or DGM combined with the use of numerical integration.
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NUMERICAL HOMOGENIZATION FOR INDEFINITE
H(CURL)-PROBLEMS

BARBARA VERFÜRTH∗

Abstract. In this paper, we present a numerical homogenization scheme for indefinite, time-
harmonic Maxwell’s equations involving potentially rough (rapidly oscillating) coefficients. The
method involves an H(curl)-stable, quasi-local operator, which allows for a correction of coarse finite
element functions such that order optimal (w.r.t. the mesh size) error estimates are obtained. To that
end, we extend the procedure of [D. Gallistl, P. Henning, B. Verfürth, Numerical homogenization
for H(curl)-problems, arXiv:1706.02966, 2017] to the case of indefinite problems. In particular, this
requires a careful analysis of the well-posedness of the corrector problems as well as the numerical
homogenization scheme.

Key words. multiscale method, wave propagation, Maxwell’s equations, finite element method

AMS subject classifications. 65N30, 65N15, 65N12, 35Q61, 78M10

1. Introduction. Time-harmonic Maxwell’s equations, which model electro-
magnetic wave propagation, play an essential role in many physical applications. If
the coefficients are rapidly oscillating on a fine scale as in the context of photonic
crystals or metamaterials, standard discretizations suffer from bad convergence rates
and a large pre-asymptotic range due to the multiscale nature, the low regularity, and
the indefiniteness of the problem.

In this paper, we consider a numerical homogenization scheme to cope with the
multiscale nature and the resolution condition, which couples the maximal mesh size
to the frequency and is typical for indefinite wave propagation problems, see [2]. An-
alytical homogenization for locally periodic H(curl)-problems shows that the solution
can be decomposed into a macroscopic contribution (without rapid oscillations) and
a fine-scale corrector, see [3, 9, 10, 17]. In [5], this was extended beyond the periodic
case and without assuming scale separation. Using a suitable interpolation operator,
the exact solution is decomposed into a coarse part, which is a good approximation
in H(div)′, and a corrector contribution, which then gives a good approximation in
H(curl). Furthermore, the corrector can be quasi-localized, allowing for an efficient
computation. Analytical homogenization and other multiscale methods can also be
applied to indefinite problems [3, 9] so that it is natural to examine this extension
also for the numerical homogenization of [5].

The technique of numerical homogenization presented there is known as Localized
Orthogonal Decomposition (LOD) and was originally proposed in [12]. Among many
applications, we point to elliptic boundary value problems [8], the wave equation [1],
mixed elements [7], and in particular Helmholtz problems [6, 16, 15]. The works on
the Helmholtz equation reveal that the LOD can also reduce the so-called pollution
effect. Only a natural and reasonable resolution condition of a few degrees of freedom
per wavelength is needed in the LOD and the local corrector problems have to be
solved on patches which grow logarithmically with the wave number. The crucial
observation is that the bilinear form is coercive on the kernel space of a suitable

∗Institut für Analysis und Numerik, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62,
D-48149 Münster (barbara.verfuerth@uni-muenster.de).
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interpolation operator. For Maxwell’s equations this is not possible due to the large
kernel of the curl-operator. However, a wave number independent inf-sup-stability of
the bilinear form over the kernel of the interpolation operator is proved using a regular
decomposition. This inf-sup-stability forces us to localize the corrector problem in a
non-conforming manner, which leads to additional terms in the analysis and may be
of independent interest. Still, we are able to define a well-posed localized numerical
homogenization scheme which allow for order optimal (w.r.t. the mesh size) a priori
estimates.

The paper is organized as follows. Section 2 introduces the model problem and the
necessary notation for meshes and the interpolation operator. We introduce an ideal
numerical homogenization scheme in Section 3. We localize the corrector operator,
present the resulting main scheme and its a priori analysis in Section 4.

The notation a . b denotes a ≤ Cb with a constant C independent of the mesh
size H, the oversampling parameter m and the frequency ω. Bold face letters will in-
dicate vector-valued quantities and all functions are complex-valued, unless explicitly
mentioned. We study the high-frequency case, i.e. ω & 1 is assumed.

2. Problem setting.

2.1. Model problem. Let Ω ⊂ R3 be an open, bounded, contractible domain
with polyhedral Lipschitz boundary with outer unit normal n. For any bounded
subdomain G ⊂ Ω, the spaces H(curl, G), H0(curl, G) and H(div, G) denote the
usual curl- and div-conforming spaces; see [14] for details. We will omit the domain
G if it is equal to the full domain Ω. In addition to the standard inner product, we
equip H(curl, G) with the following ω-dependent inner product

(v,w)curl,ω,G := (curlv, curlw)L2(G) + ω2(v,w)L2(G).

Let f ∈ H(div,Ω) and let µ−1 ∈ L∞(Ω,R3×3) and ε ∈ L∞(Ω,R3×3) be uniformly
elliptic. For any open subset G ⊂ Ω, we define the bilinear form BG : H(curl, G) ×
H(curl, G)→ C as

BG(v,ψ) := (µ−1 curlv, curlψ)L2(G) − ω2(εv,ψ)L2(G), (2.1)

and set B := BΩ. The form BG is obviously continuous and the continuity constant
is independent of ω if we use the norm ‖ · ‖curl,ω.

We now look for u ∈ H0(curl,Ω) such that

B(u,ψ) = (f ,ψ)L2(Ω) for all ψ ∈ H0(curl,Ω). (2.2)

We implicitly assume that the above problem is a multiscale problem, i.e. the coeffi-
cients µ−1 and ε are rapidly varying on a very fine sale. Fredholm theory guarantees
the existence of a unique solution u to (2.2) provided that ω is not an eigenvalue of
curl-curl-operator, which we will assume from now on. This in particular implies that
there is γ(ω) > 0 such that B is inf-sup stable with constant γ(ω), i.e.

inf
v∈H0(curl)\{0}

sup
ψ∈H0(curl)\{0}

|B(v,ψ)|
‖v‖curl,ω‖ψ‖curl,ω

≥ γ(ω). (2.3)

2.2. Mesh and interpolation operator. Let TH be a regular partition of Ω
into tetrahedra, such that ∪TH = Ω and any two distinct T, T ′ ∈ TH are either
disjoint or share a common vertex, edge or face. We assume the partition TH to
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be shape-regular and quasi-uniform. The global mesh size H is defined as H :=
max{diam(T )|T ∈ TH}. TH is a coarse mesh in the sense that it does not resolve the
fine-scale oscillations of the parameters.

Given any subdomain G ⊂ Ω define the patches via

N1(G) := N(G) := int(∪{T ∈ TH |T ∩G 6= ∅}) and Nm(G) := N(Nm−1(G)).

We refer to [15], for instance, for a visualization of the patches. The shape regularity
implies that there is a uniform bound Col,m on the number of elements in the m-

th order patch, i.e. maxT∈TH card{K ∈ TH |K ⊂ Nm(T )} ≤ Col,m, and the quasi-
uniformity implies that Col,m depends polynomially on m. We abbreviate Col := Col,1.
We denote the lowest order Nédélec finite element, cf. [14, Section 5.5], by

N̊ (TH) := {v ∈ H0(curl)|∀T ∈ TH : v|T (x) = aT × x + bT with aT ,bT ∈ C3}.

We require an H(curl)-stable interpolation operator (with some additional prop-
erties) for the numerical homogenization. The only suitable candidate is the Falk-
Winter interpolation operator, see [4]. Some important properties are summarized
below, see [5] for details and proofs.

Proposition 2.1. There exists a projection πEH : H0(curl) → N̊ (TH) with the
following local stability properties: For all v ∈ H0(curl) and all T ∈ TH it holds that

‖πEH(v)‖L2(T ) .
(
‖v‖L2(N(T )) +H‖ curlv‖L2(N(T ))

)
, (2.4)

‖ curlπEH(v)‖L2(T ) . ‖ curlv‖L2(N(T )). (2.5)

Moreover, for any v ∈ H0(curl,Ω), there are z ∈ H1
0(Ω) and θ ∈ H1

0 (Ω) such that
v − πEH(v) = z +∇θ with the local bounds for every T ∈ TH

H−1‖z‖L2(T ) + ‖∇z‖L2(T ) . ‖ curlv‖L2(N3(T )),

H−1‖θ‖L2(T ) + ‖∇θ‖L2(T ) .
(
‖v‖L2(N3(T )) +H‖ curlv‖L2(N3(T ))

)
,

(2.6)

where ∇z stands for the Jacobi matrix of z.
The stability estimates in particular imply that πEH is stable with respect to the

‖ · ‖curl,ω-norm if the condition ωH . 1 is fulfilled:

‖πEHv‖curl,ω . ‖v‖curl,ω if ωH . 1.

3. Ideal numerical homogenization. In this section we introduce an ideal
numerical homogenization scheme which approximates the exact solution in H0(curl)
by a coarse part (which itself is a good approximation in H−1(Ω)) and a corrector
contribution. The idea is based on the direct sum splitting H0(curl) = N̊ (TH) ⊕W
with W := ker(πEH) the kernel of the Falk-Winther interpolation operator introduced
in the previous section. The regular decomposition estimates (2.6) directly imply for
any w ∈W

‖w‖H(div)′ . H‖w‖H(curl). (3.1)

¿From now on, we assume the resolution condition

ωH . 1. (3.2)

It reflects that a few degrees of freedom per wavelength are always required to repre-
sent a wave. The constant only depends on interpolation constants and the bounds
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on the material coefficients. Under resolution condition (3.2), B is stable on W, as
details the next lemma.

Lemma 3.1 (Properties of W). Let w ∈W be decomposed as w = z +∇θ and
(3.2) be satisfied. Then

• we have a (ω-independent) norm equivalence between ‖ · ‖curl,ω and ‖|w|‖2 :=
‖ curl z‖2 + ω2‖∇θ‖2

• there is α > 0 independent of ω such that

inf
w∈W\{0}

sup
φ∈W\{0}

|B(w,φ)|
‖w‖curl,ω‖φ‖curl,ω

≥ α.

Proof. For the norm equivalence we obtain using (2.6) and curlw = curl z

‖|w|‖2 = ‖ curl z‖2+ω2‖∇θ‖2 . ‖ curlw‖2 + ω2‖w‖2 + ω2H2‖ curlw‖2 . ‖w‖2curl,ω,

‖w‖2curl,ω ≤ ‖z‖2curl,ω + ‖∇θ‖2curl,ω . ‖ curl z‖2+ω2H2‖ curl z‖2 + ω2‖∇θ‖2 . ‖|w|‖2.

For the inf-sup-constant, define the sign-flip isomorphism A(w) := z −∇θ. Observe
that curlπEHz = curlπEHw = 0 because of the commuting property of πEH . Then

<{B(w, (id−πEH)A(w))} & ‖ curl z‖2 + ω2‖∇θ‖2 − ω2‖z‖2 − 2ω2|(εz,∇θ)|
− 2ω2|(εz, πEHz)| − 2ω2|(ε∇θ, πEHz)|,

where we used πEH∇θ = −πEHz because of πEHw = 0. Applying Young’s inequality, the
stability of πEH (2.4)–(2.5), estimate (2.6) and using the resolution condition (3.2), we
arrive at

<{B(w, (id−πEH)A(w))} & ‖ curl z‖2 + ω2‖∇θ‖2 & ‖w‖2curl,ω

because of the norm equivalence. The estimate ‖(id−πEH)A(w)‖curl,ω . ‖w‖curl,ω

finally gives the claim.
In contrast to coercive problems, unique solvability is not guaranteed when B

is restricted to subspaces. Therefore, the inf-sup-stability of B on W is the crucial
ingredient to introduce a well-defined Corrector Green’s Operator.

Definition 3.2. For F ∈ H0(curl)′, we define the Corrector Green’s Operator

G : H0(curl)′ →W by B(G(F),w) = F(w) for all w ∈W. (3.3)

Let L : H0(curl)→ H0(curl)′ denote the differential operator associated with B
and set K := −G◦L. Inspired by the procedure in [5], an ideal numerical homogeniza-
tion scheme consists in solving the variational problem over the “multiscale” space
(id +K)N̊ (TH). The well-posedness of this scheme is proved in the next lemma.

Lemma 3.3. Under the resolution condition, we have with γ(ω) from (2.3) that

inf
vH∈N̊ (TH)\{0}

sup
ψH∈N̊ (TH)\{0}

|B((id +K)vH , (id +K)ψH)|
‖vH‖curl,ω‖ψH‖curl,ω

& γ(ω). (3.4)

Proof. Fix vH ∈ N̊ (TH). From (2.3), there exists ψ ∈ H0(curl) with ‖ψ‖curl,ω = 1
such that

|B((id +K)vH ,ψ)| ≥ γ(ω)‖(id +K)vH‖curl,ω.
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By the definition of K, it holds that (id +K)πEHψ = (id +K)ψ and B((id +K)vH ,w) =
0 for all w ∈W. Thus, we obtain

|B((id +K)vH , (id +K)πEHψ)| = |B((id +K)vH , (id +K)ψ)| = |B((id +K)vH ,ψ)|
≥ γ(ω)‖(id +K)vH‖curl,ω.

The claim follows now by the norm equivalence

‖vH‖curl,ω = ‖πEH(id +K)vH‖curl,ω . ‖(id +K)vH‖curl,ω,

which is a result of the stability of πEH .
Before we introduce the ideal numerical homogenization scheme, we summarize

the approximation and stability properties of the Corrector Green’s Operator, cf. [5].
Lemma 3.4 (Ideal corrector estimates). Any F ∈ H0(curl)′ and any f ∈ H(div)

satisfy

H‖G(F)‖curl,ω + ‖G(F)‖H(div)′ . Hα−1‖F‖H0(curl)′ (3.5)

H‖G(f)‖curl,ω + ‖G(f)‖H(div)′ . H2α−1‖f‖H(div). (3.6)

Collecting the results of the previous lemmas, we have the following result on
our ideal numerical homogenization scheme.

Theorem 3.5. Let u denote the exact solution to (2.2) and uH = πEHu. Then
• it holds that u = uH +K(uH) + G(f)
• assuming (3.2), uH is characterized as the unique solution to

B((id +K)uH , (id +K)ψH) = (f , (id +K)ψH) for all ψH ∈ N̊ (TH) (3.7)

• assuming (3.2), it holds that

‖u− (id +K)uH‖curl,ω + ‖u− uH‖H(div)′ . H‖f‖H(div). (3.8)

Proof. The proof of the first two items carries over verbatim from the elliptic case
[5]. The a priori error estimate (3.8) follows from the first item and Lemma 3.4.

The theorem shows that (id +K)uH approximates the analytical solution with
linear rate without assumptions on the regularity of the problem. What is more, only
the reasonable resolution condition ωH . 1 is required, overcoming the pollution
effect. However, the determination of K requires the solution of global problems,
which limits the practical usability of the scheme.

4. Quasi-local numerical homogenization.

4.1. Exponential decay and localized corrector. The property that K can
be approximated by local correctors is directly linked to the decay properties of G
defined in (3.3). The following result states – loosely speaking – in which distance
(measured in unit of the coarse mesh size H) from the support of the source term
F the weighted H(curl)-norm of G(F) becomes negligibly small. For that, recall the
definition of element patches Nm(T ) from Section 2.2.

Proposition 4.1. Let T ∈ TH , m ∈ N and FT ∈ H0(curl)′ be a local source
functional, i.e. FT (v) = 0 for all v ∈ H0(curl) with supp(v) ⊂ Ω \ T . If (3.2) holds,
there exists 0 < β̃ < 1 such that

‖G(FT )‖curl,ω,Ω\Nm(T ) . βm‖FT ‖H0(curl)′ . (4.1)
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Proof. The proof can be easily adapted from the elliptic case in [5] using the
inf-sup-stability of B over W from Lemma 3.1.

The result can be used to approximate K, which has a non-local argument, via

K(vH) = −
∑

T∈TH
G(LT (vH)),

where the localized differential operator LT : H(curl, T ) → H(curl,Ω)′ is associated
with BT , the restriction of B to the element T . Proposition 4.1 now suggests to
truncate the computation of G(FT ) to the patches Nm(T ) and then collect the results
from all elements T . Typically, m is referred to as oversampling parameter.

Definition 4.2 (Localized Corrector Approximation). For any element T ∈ TH
we define its patch ΩT := Nm(T ). Let F ∈ H0(curl)′ be the sum of local functionals,
i.e. F =

∑
T∈TH FT with FT as in Proposition 4.1. Denote by πEH,ΩT : H0(curl,Ω)→

N̊ (TH(ΩT )) the Falk-Winther interpolation operator which enforces essential boundary
conditions (i.e. zero tangential traces) on ∂ΩT . We then define

W(ΩT ) := {w ∈ H0(curl)|w = 0 outside ΩT , π
E
H,ΩTw = 0} * W. (4.2)

We call GT,m(FT ) ∈W(ΩT ) the localized corrector if it solves

B(GT,m(FT ),w) = FT (w) for all w ∈W(ΩT ). (4.3)

The global corrector approximation is then given by

Gm(F) =
∑

T∈TH
GT,m(FT ).

Observe that problem (4.3) is only formulated on the patch ΩT . Its well-posedness
can be proved as in Lemma 3.1: For w ∈W(ΩT ), use (id−πEH,ΩT )A(w) ∈W(ΩT ) as
test function (with the sign-flip isomorphism A). We emphasize that the definition of
W(ΩT ) via πEH,ΩT is needed to make this test function a member of W(ΩT ), otherwise
the support would be enlarged. This is a non-conforming definition of the localized
corrector (i.e. πEHGm(·) 6= 0), so that additional terms appear in the error analysis.
However, the non-conformity error only plays a role near the boundary of ∂ΩT and
can therefore be controlled very well.

Theorem 4.3. Let G(F) be the ideal Green’s corrector and Gm(F) the localized
corrector from Definition 4.2. Under (3.2), there exists 0 < β < 1 such that

‖G(F)− Gm(F)‖curl,ω .
√
Col,m β

m
( ∑

T∈TH
‖FT ‖2H0(curl)′

)1/2

, (4.4)

‖πEHGm(F)‖curl,ω .
√
Col,m β

m
( ∑

T∈TH
‖FT ‖2H0(curl)′

)1/2

. (4.5)

The proof is postponed to Subsection 4.3.

4.2. The quasi-local numerical homogenization scheme. Following the
above motivation, we define a quasi-local numerical homogenization scheme by re-
placing K in the ideal scheme (3.7) with Km.
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Definition 4.4. Let Km be defined as described in the previous subsection. The
quasi-local numerical homogenization scheme seeks uH,m ∈ N̊ (TH) such that

B((id +Km)uH,m, (id +Km)vH) = (f , (id +Km)vH) for all vH ∈ N̊ (TH). (4.6)

We observe that Km can be computed by solving local decoupled problems, see
[5] for details. Note that the spaces W(ΩT ) are still infinite dimensional so that in
practice, we require an additional fine-scale discretization of the corrector problems.
We omit this step here and refer the reader to [5] for the elliptic case and [16] for the
Helmholtz equation.

We now prove the well-posedness and the a priori error estimate for the quasi-local
numerical homogenization scheme.

Theorem 4.5 (Well-posedness of (4.6)). If the resolution condition (3.2) and
the oversampling condition

m & | log
(
γ(ω)/

√
Col,m

)
|/| log(β)| (4.7)

are fulfilled, B is inf-sup-stable over (id +Km)N̊ (TH), i.e.

inf
vH∈N̊ (TH)\{0}

sup
ψH∈N̊ (TH)\{0}

|B((id +Km)vH , (id +Km)ψH)|
‖vH‖curl,ω‖ψ‖curl,ω

≥ γLOD(ω) ≈ γ(ω).

Theorem 4.6 (A priori estimate). Let u denote the analytical solution to (2.2)
and uH,m the solution to (4.6). If the resolution condition (3.2) and the oversampling
condition

m & | log
(
γLOD(ω)/

√
Col,m

)
|/| log(β)| (4.8)

are fulfilled, then

‖u− (id +Km)uH,m‖curl,ω . (H + βmγ−1(ω))‖f‖H(div). (4.9)

Note that the oversampling condition (4.8) is – up to constants independent of H
and ω – the same as condition (4.7). Since Col,m grows polynomially in m for quasi-
uniform meshes, it is satisfiable and depends on the behavior of γ(ω). If γ(ω) . ωq,
we derive m ≈ log(ω), which is a better resolution condition than for a standard
discretization. Note that in (4.9), we can replace γ−1(ω) with Cstab(ω), the stability
constant of the original problem (2.2). This is exactly the same a priori estimate as
for Helmholtz problems in [16]. To sum up, an oversampling parameter m ≈ | log(ω)|
is sufficient for the stability of the LOD. Requiring additionally m ≈ | log(H)|, we
obtain a linear convergence rate for the error.

4.3. Main proofs. Theorem 4.3 results from the exponential decay of G in
Proposition 4.1.

Proof. [Proof of Theorem 4.3] We start by proving the following local estimate

‖G(FT )− GT,m(FT )‖curl,ω . β̃m‖FT ‖H0(curl)′ . (4.10)

By Strang’s second Lemma we obtain

‖G(FT )− GT,m(FT )‖curl,ω . inf
wT,m∈W(ΩT )

‖G(FT )−wT,m‖curl,ω

+ sup
φT,m∈W(ΩT )

‖φT,m‖curl,ω=1

|B(G(FT ),φT,m)− FT (φT,m)|.
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The first term can be estimated as in [5]. For the second term, we have due to (3.3)
that it is equal to

sup
φT,m∈W(ΩT ),‖φT,m‖curl,ω=1

|B(G(FT ),φT,m − φ)− FT (φT,m − φ)|

for any φ ∈ W. Fixing φT,m = zT,m + ∇θT,m, we choose φ = (id−πEH)(ηzT,m +

∇(ηθT,m)) with a cut-off function such that φT,m − φ = 0 in Nm−2(T ). Then

FT (φT,m − φ) = 0 and we get with the stability of πEH and (2.6)

|B(G(FT ),φT,m − φ)| . ‖G(FT )‖curl,ω,Ω\Nm−2(T )‖φT,m − φ‖curl,ω

. ‖G(FT )‖curl,ω,Ω\Nm−2(T ).

Combination with Proposition 4.1 gives (4.10).
For (4.4), we split the error as

‖G(F)− Gm(F)‖curl,ω ≤ ‖(id−πEH)(G(F)− Gm(F))‖curl,ω + ‖πEHGm(F)‖curl,ω.

The first term can be estimated with the procedure from [5]. The second term is
the left-hand side of (4.5) and thus, it suffices to prove (4.5). We observe that
πEHGT,m(FT ) 6= 0 only on a small ring R ⊂ Nm+1(T ) because πEH and πEH,ΩT only
differ near the boundary of ΩT . Hence, we get

‖πEHGm(F)‖2curl,ω ≤
∑

T∈TH
|(πEHGm(F), πEHGT,m(FT ))curl,ω|

.
∑

T

‖πEHGm(F)‖curl,ω,Nm+1(T )‖πEH(G(FT )− GT,m(FT ))‖curl,ω

.
√
Col,m‖πEHGm(F)‖curl,ω

(∑

T

‖G(FT )− GT,m(FT )‖curl,ω

)1/2

.

Application of (4.10) gives the claim.
The well-posedness of the quasi-local numerical scheme comes from the well-

posedness of the ideal scheme (Theorem 3.5) and the fact that the localized corrector
is exponentially close to the ideal corrector.

Proof. [Proof of Theorem 4.5] Fix vH ∈ N̊ (TH) and set ṽH = πEH(id +Km)(vH).

According to Theorem 3.5, there exists ψH ∈ N̊ (TH) with ‖ψH‖curl,ω = 1 such that

|B((id +K)ṽH , (id +K)ψH)| ≥ γ(ω)‖ṽH‖curl,ω.

As B(w, (id +K)ψH) = 0 for all w ∈W, we derive

B((id +Km)vH , (id +K)ψH) = B((id+Km)vH−(id−πEH)((id +Km)vH), (id +K)ψH)

= B(ṽH , (id +K)ψH) = B((id +K)ṽH , (id +K)ψH).

This yields together with Theorem 4.3

|B((id +Km)vH , (id +Km)ψH)|
= |B((id +Km)vH , (Km −K)ψH) + B((id +K)vH , (id +K)ψH)|
= |B((id +Km)vH , (Km −K)ψH) + B((id +K)ṽH , (id +K)ψH)|
≥ γ(ω)‖ṽH‖curl,ω − C

√
Col,m β

m‖(id +Km)vH‖curl,ω.
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Moreover, we have

‖(id +Km)vH‖curl,ω . (1 + βm)‖vH‖curl,ω . ‖vH‖curl,ω,

since β < 1, and

‖vH‖curl,ω = ‖πEH(id +K)vH‖curl,ω = ‖πEH(id +Km)vH + πEH(K −Km)vH‖curl,ω

. ‖ṽH‖curl,ω + C
√
Col,m β

m‖vH‖curl,ω.

If m is large enough (indirectly implied by the oversampling condition), the second
term can be hidden on the left-hand side. Thus, we finally obtain

|B((id +Km)vH , (id +Km)ψH)| & (γ(ω)− C
√
Col,m β

m)‖vH‖curl,ω.

Application of the oversampling condition (4.7) gives the assertion.
The proof of the a priori error estimate is inspired by the procedure for the

Helmholtz equation [16] and uses duality arguments.
Proof. [Proof of Theorem 4.6] Denote by e the error u − (id +Km)uH,m and set

eH,m := (id +Km)πEH(e). Let zH ∈ N̊ (TH) be the solution to the dual problem

B((id +Km)vH , (id +Km)zH) = (eH,m, (id +Km)vH)curl,ω for all vH ∈ N̊ (TH).

Using the fact that B(w, (id +K)zH) = 0 for all w ∈W and employing the Galerkin
orthogonality B(e, (id +Km)zH) = 0, we obtain that

‖eH,m‖2curl,ω = B(eH,m, (id +Km)zH)

= B(eH,m, (Km −K)zH) + B(eH,m, (id +K)zH)

= B(e− eH,m, (K −Km)zH)− B(πEH(e− eH,m), (id +K)zH).

Observe that πEH(e− eH,m) = πEHKmπEH(e). Theorem 4.3 and 4.5 yield

‖eH,m‖2curl,ω .
√
Col,m β

m‖e− eH,m‖curl,ω‖zH‖curl,ω+
√
Col,m β

m‖e‖curl,ω‖zH‖curl,ω

.
√
Col,m β

m γ−1
LOD(ω) (‖e− eH,m‖curl,ω + ‖e‖curl,ω)‖eH,m‖curl,ω.

The triangle inequality gives

‖e‖curl,ω ≤ ‖(id−πEH)(e− eH,m)‖curl,ω + ‖πEH(e− eH,m)‖curl,ω + ‖eH,m‖curl,ω.

The above computations and (4.5) imply with the resolution condition (4.8)

‖e‖curl,ω . ‖(id−πEH)(e− eH,m)‖curl,ω.

Observe that e − eH,m = u − (id +Km)πEH(u) − (id +Km)πEHKmuH,m. Since
(id−πEH)(e− eH,m) ∈W, Lemma 3.1 gives w ∈W with ‖w‖curl,ω = 1 such that

‖(id−πEH)(e− eH,m)‖curl,ω

. |B((id−πEH)(e− eH,m),w)|
= |B(u,w)−B((id+Km)πEHu,w)−B((id+Km)πEHKmuH,m,w)−B(πEHKmπEHe,w)|
= |(f ,w)−B((Km −K)πEHu,w)−B((Km −K)πEHKmuH,m,w)−B(πEHKmπEHe,w)|.

Theorems 4.3 and 4.5 now give together with the stability of πEH and (3.1)

‖(id−πEH)(e− eH,m)‖curl,ω

.
(
H +

√
Col,m β

mγ−1(ω) + Col,m β
2mγ−1

LOD(ω)
)
‖f‖H(div) +

√
Col,m β

m‖e‖curl,ω.

The last term can be hidden on the left-hand side and the third term can be absorbed
in the second term.
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Conclusion. In this paper, we presented and analyzed a numerical homogeniza-
tion scheme for indefinite H(curl)-problems, inspired by [5]. We showed that the
indefinite bilinear form is inf-sup-stable for ωH . 1 over the kernel of the Falk-
Winther interpolation operator, which is crucial for the analysis. Under this reason-
able resolution condition and the additional oversampling condition m ≈ | log(γ(ω))|,
the numerical homogenization method is stable and yields linear convergence (w.r.t.
the mesh size) of the error in the H(curl)-norm. These conditions are similar for
the Helmholtz equation, suggesting that they are optimal. Incorporating impedance
boundary conditions as well as numerical experiments are subject of future research.
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SINGULARLY PERTURBED SET OF PERIODIC
FUNCTIONAL-DIFFERENTIAL EQUATIONS ARISING IN

OPTIMAL CONTROL THEORY

VALERY Y. GLIZER∗

Abstract. We consider the singularly perturbed set of periodic functional-differential matrix
Riccati equations, associated with a periodic linear-quadratic optimal control problem for a singularly
perturbed delay system. The delay is small of order of a small positive multiplier for a part of
the derivatives in the system. A zero-order asymptotic solution to this set of Riccati equations is
constructed and justified.

Key words. periodic linear-quadratic optimal control problem, singularly perturbed delay
system, small delay, periodic functional-differential matrix Riccati equations, asymptotic solution

AMS subject classifications. 34H05, 34K13, 34K26, 35F50

1. Introduction. One of the fundamental results in control theory is the solu-
tion of the finite horizon linear-quadratic optimal control problem with fixed initial
and free terminal states. Due to this result, the solution of the control problem is
reduced to a terminal-value problem either for a matrix differential Riccati-type equa-
tion (finite dimensional case, [16]) or for an operator differential Riccati-type equation
(infinite dimensional case, [2, 4, 6, 7, 8, 20, 23]). This result was extended to the finite
horizon periodic linear-quadratic optimal control problem. Solution of this problem
is reduced to a differential periodic matrix/operator Riccati-type equation (see e.g.
[1, 3]).

If the controlled equation is a differential equation with a delay in the state, the
operator Riccati-type equation is reduced to a set of matrix functional-differential
equations with ordinary and partial derivatives (see e.g. [2, 6, 8, 18, 19, 23]).

If the controlled equation is singularly perturbed, the corresponding differential
Riccati equation also is singularly perturbed. Singularly perturbed non-periodic ma-
trix/operator Riccati equations were well studied in many works (see e.g. [11, 12,
14, 15, 17, 21, 24]). Singularly perturbed periodic matrix Riccati equations also were
studied in the literature (see [9, 22]). However, to the best of our knowledge, singu-
larly perturbed periodic operator Riccati equations have not yet been considered in
the literature.

In this paper, we consider a finite horizon periodic linear-quadratic optimal control
problem for a singularly perturbed system with small delays in the state. We construct
an asymptotic solution to the set of periodic functional-differential matrix equations
of Riccati type, associated with this problem by the control optimality conditions.

2. Problem statement.

2.1. Original optimal control problem. Consider the following linear system
with delays in state variables

dx(t)/dt = A1(t)x(t) +A2(t)y(t) +H1(t)x(t− εh) +H2(t)y(t− εh)

∗Department of Applied Mathematics, ORT Braude College of Engineering, P.O.B. 78, Karmiel
2161002, Israel (valery48@braude.ac.il, valgl120@gmail.com).
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+

∫ 0

−h

[
G1(t, η)x(t+ εη) +G2(t, η)y(t+ εη)

]
dη +B1(t)u(t) + f1(t),(2.1)

εdy(t)/dt = A3(t)x(t) +A4(t)y(t) +H3(t)x(t− εh) +H4(t)y(t− εh)

+

∫ 0

−h

[
G3(t, η)x(t+ εη) +G4(t, η)y(t+ εη)

]
dη +B2(t)u(t) + f2(t),(2.2)

where x(t) ∈ En, y(t) ∈ Em, u(t) ∈ Er (u is a control); ε > 0 is a small parameter
(ε << 1), h > 0 is some constant independent of ε; the matrix-valued functions
Ai(t), Hi(t), Bj(t), (i = 1, ..., 4; j = 1, 2) and the vector-valued functions fj(t),
(j = 1, 2) are continuously differentiable in the interval [0, T ]; the matrix-valued
functions Gi(t, η), (i = 1, ..., 4), are piece-wise continuous in η ∈ [−h, 0] for any
t ∈ [0, T ], and these functions are continuously differentiable in t ∈ [0, T ] uniformly
with respect to η ∈ [−h, 0]; Ek is k-dimensional real Euclidean space.

In what follows, we assume that:

Ai(0) = Ai(T ), Hi(0) = Hi(T ), Gi(0, η) = Gi(T, η), η ∈ [−h, 0], i = 1, ..., 4,

Bj(0) = Bj(T ), fj(0) = fj(T ), j = 1, 2.(2.3)

The conditions (2.3) are called the T -periodicity conditions or, simply, the periodicity
conditions of the corresponding functions.

The cost functional, evaluating the controlled process (2.1)-(2.2), is

J =

∫ T

0

[
x

′
(t)D1(t)x(t) + 2x

′
(t)D2(t)y(t) + y

′
(t)D3(t)y(t) + u

′
(t)M(t)u(t)

]
dt(2.4)

where the prime denotes the transposition; the matrix-valued functions Dk(t), (k =
1, 2, 3) and M(t) are continuously differentiable for t ∈ [0, T ] and satisfy the condi-
tions:

D
′
1(t) = D1(t), D

′
3(t) = D3(t), D(t)

4
=

(
D1(t) D2(t)

D
′
2(t) D3(t)

)
> 0, t ∈ [0, T ],

Dk(0) = Dk(T ), k = 1, 2, 3,(2.5)

M
′
(t) = M(t), M(t) > 0, t ∈ [0, T ], M(0) = M(T ).(2.6)

The optimal control problem is to choose a control u(t) ∈ L2[0, T ;Er], satisfying
the periodicity condition u(0) = u(T ) and minimizing the cost functional (2.4) along
trajectories of the system (2.1)-(2.2) subject to the periodicity condition x(τ) = x(T+
τ), y(τ) = y(T + τ), τ ∈ [−εh, 0]. We call this problem the Original Optimal Control
Problem (OOCP).

2.2. Control optimality conditions in the OOCP. Consider the following
block-form matrices and vector

A(t, ε) =

(
A1(t) A2(t)

ε−1A3(t) ε−1A4(t)

)
, H(t, ε) =

(
H1(t) H2(t)

ε−1H3(t) ε−1H4(t)

)
,(2.7)

G(t, η, ε) =

(
G1(η, t) G2(t, η)

ε−1G3(t, η) ε−1G4(t, η)

)
, B(t, ε) =

(
B1(t)

ε−1B2(t)

)
,(2.8)
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S(t, ε) = B(t, ε)M−1(t)B
′
(t, ε) =

(
S1(t) ε−1S2(t)

ε−1S
′
2(t) ε−2S3(t)

)
, f(t, ε) =

(
f1(t)

ε−1f2(t)

)
,

(2.9)
S1(t) = B1(t)M−1(t)B

′
1(t), S2(t) = B1(t)M−1(t)B

′
2(t), S3(t) = B2(t)M−1(t)B

′
2(t).

Also, let us consider the following set of functional-differential equations (ordinary
and partial) with respect to the matrix-valued functions P (t), Q(t, τ), R(t, τ, ρ) in the
domain Ωε =

{
(t, τ, ρ) : t ∈ [0, T ], τ ∈ [−εh, 0], ρ ∈ [−εh, 0]

}
:

dP (t)/dt = −P (t)A(t, ε)−A′
(t, ε)P (t) + P (t)S(t, ε)P (t)

−Q(t, 0)−Q′
(t, 0)−D(t),(2.10)

(∂/∂t− ∂/∂τ)Q(t, τ) = −
[
A(t, ε)− S(t, ε)P (t)

]′
Q(t, τ)

−ε−1P (t)G(t, τ/ε, ε)−R(t, 0, τ),(2.11)

(∂/∂t− ∂/∂τ − ∂/∂ρ)R(t, τ, ρ) = −ε−1G′
(t, τ/ε, ε)Q(t, ρ)

−ε−1Q′
(t, τ)G(t, ρ/ε, ε) +Q

′
(t, τ)S(t, ε)Q(t, ρ).(2.12)

The set (2.10)-(2.12) is subject to the boundary conditions

Q(t,−εh) = P (t)H(t, ε),(2.13)

R(t,−εh, τ) = H
′
(t, ε)Q(t, τ), R(t, τ,−εh) = Q

′
(t, τ)H(t, ε).(2.14)

Based on the results of the works [3, 5, 8, 23], we have the lemma.

Lemma 2.1. Let for a given ε > 0, any t ∈ [0, T ] and any complex λ with
Re(λ) ≥ 0, the following equality is valid:

rank

[
A(t, ε) +H(t, ε) exp(−λεh) +

∫ 0

−h
G(t, η, ε) exp(λεη)dη − λIn+m, B(t, ε)

]

= n+m.(2.15)

Then, the optimal state-feedback control in the OOCP has the form

u∗[t, zεh(t)] = −M−1(t)B
′
(t, ε)

[
P (t, ε)z(t) +

∫ 0

−εhQ(t, τ, ε)z(t+ τ)dτ + ϕ(t, ε)
]
,

z = col(x, y), zεh(t) = {z(t+ τ), τ ∈ [−εh, 0]},

where P (t, ε) and Q(t, τ, ε) are the components of the unique solution
{
P (t, ε),

Q(t, τ, ε), R(t, τ, ρ, ε)
}

of the problem (2.10)-(2.14) satisfying the periodicity condition

P (0, ε) = P (T, ε), Q(0, τ, ε) = Q(T, τ, ε), R(0, τ, ρ, ε) = R(T, τ, ρ, ε),(2.16)

and such that for any t ∈ [0, T ] the matrix

(
P (t, ε) Q(t, ρ, ε)

Q
′
(t, τ, ε) R(t, τ, ρ, ε)

)
defines a linear

bounded self-adjoint positive operator mapping the space En+m × L2[−εh, 0;En+m]
into itself. Moreover, the (n+m)-vector-valued function ϕ(t, ε) is the unique periodic
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solution (ϕ(0, ε) = ϕ(T, ε)) of the equation

dϕ(t, ε)/dt = −
[
A(t, ε)− S(t, ε)P (t, ε)

]′
ϕ(t, ε)

−
{
H

′
(t+ εh, ε)ϕ(t+ εh, ε), t+ εh ≤ T

0, otherwise

}

−
∫ 0

−h

{
G̃(t, η, ε)ϕ(t− εη, ε), t− εη ≤ T
0, otherwise

}
dη

−P (t, ε)f(t, ε)−
{ ∫ 0

t−T Q(t− τ, τ, ε)f(t− τ, ε)dτ, t ∈ (T − εh, T ]∫ 0

−εhQ(t− τ, τ, ε)f(t− τ, ε)dτ, t ∈ [0, T − εh]

}
,

where G̃(t, η, ε) =
[
G(t− εη, η, ε)− εS(t− εη, ε)Q(t− εη, εη, ε)

]′
.

The objective of the present paper is to solve the set (2.10)-(2.12) subject to
the conditions (2.13)-(2.14) and (2.16). The solution of this problem, mentioned
in Lemma 2.1, satisfies the symmetry conditions P

′
(t, ε) = P (t, ε), R

′
(t, τ, ρ, ε) =

R(t, ρ, τ, ε), (t, τ, ρ) ∈ Ωε. The system (2.10)-(2.12) consists of the three functional-
differential Riccati-type matrix equations singularly depending on ε. One of these
equations is ordinary, while the others are partial. The equations are with deviating
arguments. All these features make the solving this set to be an extremely difficult
task. An asymptotic approach turns out to be very helpful in solution of this set. This
approach allows us to partition the original set of Riccati-type equations into several
much simpler and ε-free subsets. Due to the latter circumstance, an approximate
(asymptotic) solution to the original set of equations is derived once, while being
valid for all sufficiently small values of ε.

3. Asymptotic solution of the problem (2.10)-(2.14),(2.16).

3.1. Equivalent transformation of (2.10)-(2.14),(2.16). To remove the sin-
gularities at ε = 0 from the right-hand sides of (2.10)-(2.12), we represent the solution
{P (t, ε), Q(t, τ, ε), R(t, τ, ρ, ε)} to (2.10)-(2.14),(2.16) in the block form

P (t, ε) =

(
P1(t, ε) εP2(t, ε)

εP
′
2(t, ε) εP3(t, ε)

)
, Q(t, τ, ε) =

(
Q1(t, τ, ε) Q2(t, τ, ε)
Q3(t, τ, ε) Q4(t, τ, ε)

)
,

R(t, τ, ρ, ε) = (1/ε)

(
R1(t, τ, ρ, ε) R2(t, τ, ρ, ε)

R
′
2(t, ρ, τ, ε) R3(t, τ, ρ, ε)

)
,(3.1)

where Pk(t, ε) and Rk(t, τ, ρ, ε), (k = 1, 2, 3), are matrices of dimensions n × n, n ×
m,m×m, respectively; Qi(t, τ, ε), (i = 1, ..., 4), are matrices of dimensions n×n, n×
m,m × n,m × m, respectively. Substitution of the block representations for the
matrices D(t), A(t, ε), H(t, ε), G(t, η, ε), S(t, ε), P (t, ε), Q(t, τ, ε), R(t, τ, ρ, ε) (see
(2.5),(2.7),(2.8),(2.9),(3.1)) into the problem (2.10)-(2.14),(2.16) yields after some re-
arrangement the following equivalent problem (in this problem, for simplicity, we omit
the designation of the dependence of the unknown matrices on ε):

dP1(t)/dt = −P1(t)A1(t)−A′
1(t)P1(t)− P2(t)A3(t)−A′

3(t)P
′
2(t)

+P1(t)S1(t)P1(t) + P1(t)S2(t)P
′
2(t) + P2(t)S

′
2(t)P1(t)

+P2(t)S3(t)P
′
2(t)−Q1(t, 0)−Q′

1(t, 0)−D1(t),(3.2)

εdP2(t)/dt = −P1(t)A2(t)− P2(t)A4(t)− εA′
1(t)P2(t)−A′

3(t)P3(t)

+εP1(t)S1(t)P2(t) + P1(t)S2(t)P3(t) + εP2(t)S
′
2(t)P2(t)

+P2(t)S3(t)P3(t)−Q2(t, 0)−Q′
3(t, 0)−D2(t),(3.3)
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εdP3(t)/dt = −εP ′
2(t)A2(t)− εA′

2(t)P2(t)− P3(t)A4(t)−A′
4(t)P3(t)

+ε2P
′
2(t)S1(t)P2(t) + εP

′
2(t)S2(t)P3(t) + εP3(t)S

′
2(t)P2(t)

+P3(t)S3(t)P3(t)−Q4(t, 0)−Q′
4(t, 0)−D3(t),(3.4)

ε(∂/∂t− ∂/∂τ)Q1(t, τ) = −ε
[
A

′
1(t)− P1(t)S1(t)− P2(t)S

′
2(t)

]
Q1(t, τ)

−
[
A

′
3(t)− P1(t)S2(t)− P2(t)S3(t)

]
Q3(t, τ)− P1(t)G1(t, τ/ε)

−P2(t)G3(t, τ/ε)−R1(t, 0, τ),(3.5)

ε(∂/∂t− ∂/∂τ)Q2(t, τ) = −ε
[
A

′
1(t)− P1(t)S1(t)− P2(t)S

′
2(t)

]
Q2(t, τ)

−
[
A

′
3(t)− P1(t)S2(t)− P2(t)S3(t)

]
Q4(t, τ)− P1(t)G2(t, τ/ε)

−P2(t)G4(t, τ/ε)−R2(t, 0, τ),(3.6)

ε(∂/∂t− ∂/∂τ)Q3(t, τ) = −ε
[
A

′
2(t)− εP ′

2(t)S1(t)− P3(t)S
′
2(t)

]
Q1(t, τ)

−
[
A

′
4(t)− εP ′

2(t)S2(t)− P3(t)S3(t)
]
Q3(t, τ)− εP ′

2(t)G1(t, τ/ε)

−P3(t)G3(t, τ/ε)−R′
2(t, τ, 0),(3.7)

ε(∂/∂t− ∂/∂τ)Q4(t, τ) = −ε
[
A

′
2(t)− εP ′

2(t)S1(t)− P3(t)S
′
2(t)

]
Q2(t, τ)

−
[
A

′
4(t)− εP ′

2(t)S2(t)− P3(t)S3(t)
]
Q4(t, τ)− εP ′

2(t)G2(t, τ/ε)

−P3(t)G4(t, τ/ε)−R3(t, 0, τ),(3.8)

ε(∂/∂t− ∂/∂τ − ∂/∂ρ)R1(t, τ, ρ) = −εG′
1(t, τ/ε)Q1(t, ρ)− εQ′

1(t, τ)G1(t, ρ/ε)

−G′
3(t, τ/ε)Q3(t, ρ)−Q′

3(t, τ)G3(t, ρ/ε) + ε2Q
′
1(t, τ)S1(t)Q1(t, ρ)

+εQ
′
3(t, τ)S

′
2(t)Q1(t, ρ) + εQ

′
1(t, τ)S2(t)Q3(t, ρ) +Q

′
3(t, τ)S3(t)Q3(t, ρ),(3.9)

ε(∂/∂t− ∂/∂τ − ∂/∂ρ)R2(t, τ, ρ) = −εG′
1(t, τ/ε)Q2(t, ρ)− εQ′

1(t, τ)G2(t, ρ/ε)

−G′
3(t, τ/ε)Q4(t, ρ)−Q′

3(t, τ)G4(t, ρ/ε) + ε2Q
′
1(t, τ)S1(t)Q2(t, ρ)

+εQ
′
3(t, τ)S

′
2(t)Q2(t, ρ) + εQ

′
1(t, τ)S2(t)Q4(t, ρ) +Q

′
3(t, τ)S3(t)Q4(t, ρ),(3.10)

ε(∂/∂t− ∂/∂τ − ∂/∂ρ)R3(t, τ, ρ) = −εG′
2(t, τ/ε)Q2(t, ρ)− εQ′

2(t, τ)G2(t, ρ/ε)

−G′
4(t, τ/ε)Q4(t, ρ)−Q′

4(t, τ)G4(t, ρ/ε) + ε2Q
′
2(t, τ)S1(t)Q2(t, ρ)

+εQ
′
4(t, τ)S

′
2(t)Q2(t, ρ) + εQ

′
2(t, τ)S2(t)Q4(t, ρ) +Q

′
4(t, τ)S3(t)Q4(t, ρ),(3.11)

Qj(t,−εh) = P1(t)Hj(t) + P2(t)Hj+2(t), j = 1, 2,

Ql(t,−εh) = εP
′
2(t)Hl−2(t) + P3(t)Hl(t), l = 3, 4,(3.12)
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R1(t,−εh, τ) = εH
′
1Q1(t, τ) +H

′
3Q3(t, τ),

R1(t, τ,−εh) = εQ
′
1(t, τ)H1 +Q

′
3(t, τ)H3,

R2(t,−εh, τ) = εH
′
1Q2(t, τ) +H

′
3Q4(t, τ)

R2(t, τ,−εh) = εQ
′
1(t, τ)H2 +Q

′
3(t, τ)H4,

R3(t,−εh, τ) = εH
′
2Q2(t, τ) +H

′
4Q4(t, τ),

R3(t, τ,−εh) = εQ
′
2(t, τ)H2 +Q

′
4(t, τ)H4.(3.13)

Pk(0) = Pk(T ), Qi(0, τ) = Qi(T, τ), Rk(0, τ, ρ) = Rk(T, τ, ρ),(3.14)

where k = 1, 2, 3; i = 1, ..., 4. In the set (3.2)-(3.11), the equations (3.3)-(3.11) are with
the small multiplier ε for the derivatives. Hence, (3.2)-(3.11) is singularly perturbed.

3.2. Formal construction of the zero-order asymptotic solution to the
problem (3.2)-(3.14). In the sequel we assume:

(A1) rank
[
A4(t) +H4(t) exp(−hλ) +

∫ 0

−hG4(t, η) exp(ηλ)dη − λIm, B2(t)
]

= m for

any t ∈ [0, T ] and any complex number λ with Reλ ≥ 0.
We seek the zero-order asymptotic solution {Pk0(t, ε), Qi0(t, τ, ε), Rk0(t, τ, ρ, ε),

(k = 1, 2, 3; i = 1, ..., 4)} of (3.2)-(3.14) in the form

Pk0(t, ε) = P̄k0(t), Qi0(t, τ, ε) = Qτi0(t, η), Rk0(t, τ, ρ, ε) = Rτ,ρk0 (t, η, χ),

η = τ/ε, χ = ρ/ε k = 1, 2, 3, i = 1, ..., 4.(3.15)

Equations and conditions for (3.15) are obtained by its substitution into (3.2)-(3.14)
instead of Pk(t), Qi(t, τ), Rk(t, τ, ρ), (k = 1, 2, 3; i = 1, ..., 4), and equating coefficients
for ε0 on both sides of the resulting equations. Thus, for the terms of the asymptotic
solution, we obtain the set of 10 equations (8 differential and 2 algebraic ones) in
the domain Ω̄ =

{
(t, η, χ) : t ∈ [0, T ], η ∈ [−h, 0], χ ∈ [−h, 0]

}
, and 11 boundary

conditions. It is remarkable that this set of the equations and the conditions can be
partitioned into four simpler problems solved successively. Since the problem (3.2)-
(3.14) is t-periodic, its asymptotic solution consists only of the outer solution.

3.2.1. The first problem. This problem has the form

P̄30(t)A4(t) +A
′
4(t)P̄30(t)− P̄30(t)S3(t)P̄30(t) +Qτ40(t, 0) + [Qτ40(t, 0)]

′
+D3(t) = 0,

∂Qτ40(t, η)/∂η =
[
A

′
4(t)− P̄30(t)S3(t)]Qτ40(t, η) + P̄30(t)G4(t, η) +Rτ,ρ30 (t, 0, η),

(∂/∂η + ∂/∂χ)Rτ,ρ30 (t, η, χ) = G
′
4(t, η)Qτ40(t, χ) + [Qτ40(t, η)]

′
G4(t, χ)

−[Qτ40(t, η)]
′
S3(t)Qτ40(t, χ),

Qτ40(t,−h) = P̄30(t)H4(t),

Rτ,ρ30 (t,−h, η) = H
′
4(t)Qτ40(t, η), Rτ,ρ30 (t, η,−h) = [Qτ40(t, η)]

′
H4(t).(3.16)

Remark 1. In the problem (3.16), η ∈ [h, 0], χ ∈ [h, 0] are independent variables,
while t ∈ [0, T ] is a parameter. Since the coefficients of this problem are T -periodic,
then its solution (if it exists and is unique) also is T -periodic with respect to t.

Based on the results of [7, 23] and using Remark 1, we have the lemma.
Lemma 3.1. Let the assumption A1 be satisfied. Then for any t ∈ [0, T ]:

(i) the First Problem has a solution {P̄30(t), Qτ40(t, η), Rτ,ρ30 (t, η, χ), (η, χ) ∈ [−h, 0]×
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[−h, 0]} such that P̄30(t) ≥ 0 and the matrix

(
P̄30(t) Qτ40(t, χ)(

Qτ40(t, η)
)′

Rτ,ρ30 (t, η, χ)

)
defines

a linear bounded self-adjoint positive operator mapping the space Em×L2[−h, 0;Em]
into itself;
(ii) such a solution of the First Problem is unique;

(iii) all roots λ of the equation det
[
A4(t)− S3(t)P̄30(t) +H4(t) exp(−λh)

+
∫ 0

−h

(
G4(t, η)− S3(t)Qτ40(t, η)

)
exp(λη)dη − λIm

]
= 0 lie inside the left-hand half-

plane;
(vi) P̄30(0) = P̄30(T ), Qτ40(0, η) = Qτ40(T, η), Rτ,ρ30 (0, η, χ) = Rτ,ρ30 (T, η, χ), (η, χ) ∈
[−h, 0]× [−h, 0].

By virtue of the results of [13], we have the corollary.
Corollary 3.2. Let the assumption (A1) be satisfied. Then, the derivatives

dP̄30(t)/dt, ∂Qτ40(t, η)/∂t, ∂Rτ,ρ30 (t, η, χ)/∂t exist and are continuous functions of t ∈
[0, T ] uniformly in (η, χ) ∈ [h, 0]× [h, 0].

3.2.2. The second problem. This problem has the form

∂Qτ30(t, η)/∂η =
[
A

′
4(t)− P̄30(t)S3(t)

]
Qτ30(t, η) + P̄30(t)G3(t, η) + [Rτ,ρ20 (t, η, 0)]

′
,

(∂/∂η + ∂/∂χ)Rτ,ρ20 (t, η, χ) = G
′
3(t, η)Qτ40(t, χ) + [Qτ30(t, η)]

′
G4(t, χ)

−[Qτ30(t, η)]
′
S3(t)Qτ40(t, χ),

Qτ30(t,−h) = P̄30(t)H3(t),

Rτ,ρ20 (t,−h, η) = H
′
3(t)Qτ40(t, η), Rτ,ρ20 (t, η,−h) = [Qτ30(t, η)]

′
H4(t).(3.17)

Remark 2. Like in the First Problem (3.16), in the Second problem (3.17)
t ∈ [0, T ] is a parameter. Moreover, similarly to the First Problem, the solution of the
Second Problem (if it exists and is unique) is T -periodic with respect to t.

Based on Lemma 3.1, Corollary 3.2 and the results of [11], we obtain the lemma.
Lemma 3.3. Under the assumption A1, for any t ∈ [0, T ], the Second Problem has

the unique solution {Qτ30(t, η), Rτ,ρ20 (t, η, χ), (η, χ) ∈ [−h, 0]× [−h, 0]}, where Qτ30(t, η)
is the unique solution of the initial-value problem for the integral-differential equation

∂Qτ30(t, η)/∂η =
[
A

′
4(t)− P̄30(t)S3(t)

]
Qτ30(t, η)

+

∫ η

−h

[
G4(t, s− η)− S3(t)Qτ40(t, s− η)

]′
Qτ30(t, s)ds+ [Qτ40(t,−η − h)]

′
H3(t)

+

∫ η

−h
[Qτ40(t, s− η)]

′
G3(t, s)ds, Qτ30(t,−h) = P̄30(t)H3(t).(3.18)

The matrix-valued function Rτ,ρ20 (t, η, χ) has the explicit form

Rτ,ρ20 (t, η, χ) = Φ20(t, η, χ) +

∫ η

max(η−χ−h,−h)

[
G

′
3(t, s)Qτ40(t, s− η + χ)

+[Qτ30(t, s)]
′
G4(t, s− η + χ)− [Qτ30(t, s)]

′
S3(t)Qτ40(t, s− η + χ)

]
ds

Φ20(t, η, χ) =

{
H

′
3(t)Qτ40(t, χ− η − h), −h ≤ η − χ ≤ 0(

Qτ30(t, η − χ− h)
)′
H4(t), 0 < η − χ ≤ h.

(3.19)

Moreover, Qτ3(0, η) = Qτ3(T, η), Rτ,ρ20 (0, η, χ) = Rτ,ρ20 (T, η, χ), (η, χ) ∈ [−h, 0]× [−h, 0],
and the derivatives ∂Qτ3(t, η)/∂t, ∂Rτ,ρ20 (t, η, χ)/∂t exist and are continuous functions
of t ∈ [0, T ] uniformly in (η, χ) ∈ [−h, 0]× [−h, 0].
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3.2.3. The third problem. This problem has the form

(∂/∂η + ∂/∂χ)Rτ,ρ10 (t, η, χ) = G
′
3(t, η)Qτ30(t, χ) + [Qτ30(t, η)]

′
G3(t, χ)

−[Qτ30(t, η)]
′
S3(t)Qτ30(t, χ),

Rτ,ρ10 (−h, η) = H
′
3Q

τ
30(η), Rτ,ρ10 (η,−h) = [Q30(η)]

′
H3.(3.20)

Remark 3. Similarly to the First and Second Problems, the solution of the Third
Problem (3.20) (if it exists and is unique) is T -periodic in the parameter t.

Using Lemma 3.3 and the results of [11], we obtain the lemma.
Lemma 3.4. Under the assumption A1, for any t ∈ [0, T ], the Third Problem has

the unique solution Rτ,ρ10 (t, η, χ), (η, χ) ∈ [−h, 0]× [−h, 0]:

Rτ,ρ10 (t, η, χ) = Φ10(t, η, χ) +

∫ η

max(η−χ−h,−h)

[
G

′
3(t, s)Qτ30(t, s− η + χ)

+[Qτ30(t, s)]
′
G3(t, s− η + χ)− [Qτ30(t, s)]

′
S3(t)Qτ30(t, s− η + χ)

]
ds

Φ10(t, η, χ) =

{
H

′
3(t)Qτ30(t, χ− η − h), −h ≤ η − χ ≤ 0(

Qτ30(t, η − χ− h)
)′
H3(t), 0 < η − χ ≤ h.

(3.21)

Moreover, Rτ,ρ10 (0, η, χ) = Rτ,ρ10 (T, η, χ), (η, χ) ∈ [−h, 0] × [−h, 0], and the derivative
∂Rτ,ρ10 (t, η, χ)/∂t exists and is a continuous function of t ∈ [0, T ] uniformly in (η, χ) ∈
[−h, 0]× [−h, 0].

3.2.4. The fourth problem. This problem has the form

dP̄10(t)/dt = −P̄10(t)A1(t)−A′
1(t)P̄10(t)− P̄20(t)A3(t)−A′

3(t)P̄
′
20(t)

+P̄10(t)S1(t)P̄10(t) + P̄10(t)S2(t)P̄
′
20(t) + P̄20(t)S

′
2(t)P̄10(t)

+P̄20(t)S3(t)P̄
′
20(t)−Qτ10(t, 0)− [Qτ10(t, 0)]

′ −D1(t),

P̄10(t)A2(t) + P̄20(t)A4(t) +A
′
3(t)P̄30(t)− P̄10(t)S2(t)P̄30(t)

−P̄20(t)S3(t)P̄30(t) +Qτ20(t, 0) + [Qτ30(t, 0)]
′
+D2(t) = 0,

∂Qτ10(t, η)/∂η =
[
A

′
3(t)− P̄10(t)S2(t)− P̄20(t)S3(t)

]
Qτ30(t, η)

+P̄10(t)G1(t, η) + P̄20(t)G3(t, η) +Rτ,ρ10 (t, 0, η),

∂Qτ20(t, η)/∂η =
[
A

′
3(t)− P̄10(t)S2(t)− P̄20(t)S3(t)

]
Qτ40(t, η)

+P̄10(t)G2(t, η) + P̄20(t)G4(t, η) +Rτ,ρ20 (t, 0, η),

P̄10(0) = P̄10(T ), Qτj0(t,−h) = P̄10(t)Hj(t) + P̄20(t)Hj+2(t), j = 1, 2.(3.22)

Remark 4. In the differential equation with respect to P̄10(t), t ∈ [0, T ] is an
independent variable, while in the rest of the equations of the Fourth Problem (3.22)
t is a parameter.

Using the results of [11], we obtain the lemma.
Lemma 3.5. Under the assumption A1, the Fourth Problem is equivalent to the

following set of equations:

dP̄10(t)/dt = −P̄10(t)Ā(t)− Ā′
(t)P̄10(t) + P̄10(t)S̄(t)P̄10(t)− D̄(t), P̄10(0) = P̄10(T ),

P̄20(t) = −
(
P̄10(t)L1(t) + L2(t) +

∫ 0

−h
[Qτ30(t, η)]

′
dη

)
,
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Qτj0(t, η) = P̄10(t)Hj(t) + P̄20(t)Hj+2(t)

+[A
′
3(t)− P̄10(t)S2(t)− P̄20(t)S3(t)]

∫ η

−h
Qτj+2,0(t, σ)dσ

+P̄10(t)

∫ η

−h
Gj(t, σ)dσ + P̄20(t)

∫ η

−h
Gj+2(t, σ)dσ +

∫ η

−h
Rτ,ρj0 (t, 0, σ)dσ,(3.23)

where j = 1, 2, Ā(t) = Â1(t) − L1(t)Â3(t) + S2(t)L
′
2(t) − L1(t)S3(t)L

′
2(t), Âi(t) =

Ai(t) +Hi(t) +
∫ 0

−hGi(t, η)dη, (i = 1, ..., 4), S̄(t) = B̄(t)M−1(t)B̄
′
(t), B̄(t) = B1(t)−

L1(t)B2(t), D̄(t) = D1(t)−L2(t)Â3(t)−Â′
3(t)L

′
2(t)−L2(t)S3(t)L

′
2(t), L1(t) = (Â2(t)−

S2(t)N(t))K−1(t), L2(t) = (Â
′
3(t)N(t) + D2(t))K−1(t), K(t) = Â4(t) − S3(t)N(t),

N(t) = P̄30(t) +
∫ 0

−hQ
τ
40(t, η)dη.

In what follows, we assume:
(A2) rank

[
Ā(t)− λIn, B̄(t)] = n for any t ∈ [0, T ] and any complex λ with Reλ ≥ 0;

(A3) D̄(t) > 0 for any t ∈ [0, T ].
Corollary 3.6. Under the assumptions A1-A3, the Fourth Problem has the

unique solution
{
P̄10(t), P̄20(t), Qτ10(t, η), Qτ20(t, η), t ∈ [0, T ], η ∈ [−h, 0]

}
such that

P̄10(t) > 0, t ∈ [0, T ]. Moreover, P̄20(0) = P̄20(T ), Qτ10(0, η) = Qτ10(T, η), Qτ20(0, η) =
Qτ20(T, η), η ∈ [−h, 0], and the derivatives dP̄10(t)/dt, dP̄20(t)/dt, ∂Qτ10(t, η)/∂t,
∂Qτ20(t, η)/∂t exist and are continuous functions of t ∈ [0, T ] uniformly in η ∈ [−h, 0].

Thus, the formal construction of the zero-order asymptotic solution to the problem
(3.2)-(3.14) is completed.

3.3. Justification of the zero-order asymptotic solution to the problem
(3.2)-(3.14). Consider the matrix




P̄30(t) Qτ30(χ) Qτ40(χ)(
Qτ30(η)

)′
Rτ,ρ10 (η, χ) Rτ,ρ20 (η, χ)(

Qτ40(η)
)′ (

Rτ,ρ20 (χ, η)
)′

Rτ,ρ30 (η, χ)


 .

For any t ∈ [0, T ], this matrix defines a linear bounded self-adjoint operator Ft map-
ping the space Em × L2[−h, 0;En+m] into itself. In what follows, we assume:
(A4) For any t ∈ [0, T ], the operator Ft is uniformly positive.

Using Lemmas 3.1, 3.3, 3.4, Corollaries 3.2, 3.6 and the results of [10, 11], we
obtain the theorem.

Theorem 3.7. Let the assumptions A1-A4 be valid. Then, there exists a number
ε∗ > 0 such that for all ε ∈ (0, ε∗]:
(I) the problem (3.2)-(3.14) has the unique solution

{
Pk(t, ε), Qi(t, τ, ε), Rk(t, τ, ρ, ε),

(k = 1, 2, 3; i = 1, ..., 4)
}

in the domain Ωε such that for any t ∈ [0, T ] the matrix(
P (t, ε) Q(t, ρ, ε)

Q
′
(t, τ, ε) R(t, τ, ρ, ε)

)
, where P (t, ε), Q(t, τ, ε), R(t, τ, ρ, ε) are given by (3.1),

defines a linear bounded self-adjoint positive operator mapping the space En+m ×
L2[−εh, 0;En+m] into itself;
(II) this solution satisfies the inequalities

∥∥Pk(t, ε) − P̄k0(t)
∥∥ ≤ aε,

∥∥Qi0(t, τ, ε) −
Qτi0(t, τ/ε)

∥∥ ≤ aε,
∥∥Rk(t, τ, ρ, ε) − Rτ,ρk0 (t, τ/ε, ρ/ε)

∥∥ ≤ aε, (k = 1, 2, 3; i = 1, ..., 4),
(t, τ, ρ) ∈ Ωε, where a > 0 is some constant independent of ε.

Remark 5. Note, that the ε-free assumptions A1-A2 yield the fulfilment of the
equality (2.15) providing the existence and uniqueness of the corresponding solution to
the problem (2.10)-(2.14),(2.16) for all ε ∈ (0, ε∗]. Moreover, these conditions, along
with A3-A4, guarantee the validity of the inequalities presented in Theorem 3.7.
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NONEXISTENCE OF SOLUTIONS OF SOME INEQUALITIES WITH
GRADIENT NONLINEARITIES AND FRACTIONAL LAPLACIAN∗
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Abstract. We obtain sufficient conditions for nonexistence of nontrivial solutions for some
classes of nonlinear partial differential inequalities containing the fractional powers of the Laplace
operator.
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1. Introduction. The necessary conditions of solvability of nonlinear partial
differential equations and inequalities has been recently studied by many authors.

In particular, in [4, 1, 2] (see also references therein) such conditions were ob-
tained for some classes of nonlinear elliptic and parabolic inequalities, in particular
containing integer powers of the Laplacian, using the test function method developed
by S. Pohozaev [5]. However, for similar inequalities with fractional powers of the
Laplacian the problem remained open. For such inequalities with nonlinear terms of
the form uq it was considered in [6].

In the present paper we obtain sufficient conditions for nonexistence of solutions
for a class of elliptic inequalities with fractional powers of the Laplacian and nonlinear
terms of the form |Du|q, as well as for elliptic systems of the same type.

The rest of the paper consists of three sections. In §2 we obtain some auxiliary
estimates for the fractional Laplacian used further. In §3, we prove a nonexistence
theorem for single elliptic inequalities with fractional powers of the Laplacian, and in
§4, for systems of such inequalities.

2. Auxiliary estimates. We define the operator (−∆)s by the formula

(−∆)su(x)
def
= cn,s · p.v.

∫

IRn

(−∆)[s]u(y)− (−∆)[s]u(x)

|x− y|n+2{s} dy,(2.1)

where

cn,s
def
=

2{s}Γ
(
n+{s}

2

)

πn/2
∣∣∣Γ
(
−{s}2

)∣∣∣

(see, e.g., [3]).
We will use definition (2.1) for the proof of the following Lemmas.
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Lemma 2.1. Let s ∈ IR+, α ∈ IR and q, q′ > 1,
1

q
+

1

q′
= 1. Consider a function

ϕ1 : IRn → IR defined by

ϕ1(x)
def
=





1 (|x| ≤ 1),
(2− |x|)λ (1 < |x| < 2),
0 (|x| ≥ 2)

(2.2)

with λ > [s] + 2q′. Then one has
∫

IRn

|(−∆)sϕ1(x)|q′(1 + |x|)−
αq′
q ϕ1−q′

1 (x) dx <∞.(2.3)

Remark. In the Mitidieri–Pohozaev approach such estimates were established
by direct calculation of the iterated Laplacian of the test functions. This does not
work for the fractional Laplacian, so we need to establish some additional estimates.

Proof. Let 3
2 < |x| < 1. Use (2.1) with notation f(x, y) =

∆[s]ϕ1(x)−∆[s]ϕ1(y)

|x− y|n+2{s} :

|(−∆)sϕ1)(x)| = cn,s

∣∣∣∣∣∣

∫

IRn

f(x, y) dy

∣∣∣∣∣∣
= cn,s

∣∣∣∣∣∣

2∑

i=1

∫

Di

f(x, y) dy

∣∣∣∣∣∣
,(2.4)

where

D1
def
= {y ∈ IRn : |x− y| ≥ (2− |x|)/2},

D2
def
= {y ∈ IRn : |x− y| < (2− |x|)/2}

(here and below the singular integrals are understood in the sense of the Cauchy
principal value).

For any ε ∈ (0, 2{s}), since we have |x− y| ≥ (2− |x|)/2 in D1, we get
∫

D1

f(x, y) dy =

∫

D1

(−∆)[s]ϕ1(x)− (−∆)[s]ϕ1(y)

|x− y|n+2{s} dy ≤

≤ (−∆)[s]ϕ1(x)

∫

D1

dy

|x− y|n+2{s} ≤

≤ (−∆)[s]ϕ1(x) ·
(

2− |x|
2

)ε−2s ∫

D1

dy

|x− y|n+ε ≤ c1(2− |x|)λ+ε−2s

(2.5)

with some constant c1 > 0.
Finally, the Lagrange Mean Value Theorem implies that

∫

D2

f(x, y) dy =

=
1

2

∫

D̃2

2(−∆)[s]ϕ1(x)− (−∆)[s]ϕ1(x+ z) + (−∆)[s]ϕ1(x− z)
|z|n+2s

dz ≤

≤ c2 · max
z∈D̃2

|((2− |x+ z|)λ−[s])′′|
∫

D̃2

|z|2
|z|n+2{s} dy

=

= c3 · max
z∈D̃2

(2− |x+ z|)λ−[s]−2 ·
∫

D̃2

dz

|z|n+2{s}−2 ,
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where D̃2 = {z ∈ IRn : |z| < (2− |x|)/2}, with constants c2, c3 > 0.
For z ∈ D̃2 we have

2− |x+ z| = 2− |x|+ |x| − |x+ z| ≤ (2− |x|) + |z| ≤ 3

2
(2− |x|).

Hence
∫

D2

f(x, y) dy ≤ c4(2− |x|)λ−[s]−2(2.6)

with some constant c4 > 0.
Combining (2.4)–(2.6), we obtain

|(−∆)sϕ1(x)| ≤ c5(2− |x|)λ−[s]−2(2.7)

and consequently

|(−∆)sϕ1(x)|q′(1 + |x|)−
αq′
q ϕ1−q′

1 (x) ≤

≤ c6(2− |x|)(λ−[s]−2)q′−λ(1−q′) = c6(2− |x|)λ−([s]+2)q′

with some constants c5, c6 > 0 independent of x, which implies (2.3).

Lemma 2.2. Let s ∈ IR+, α ∈ IR and q, q′ > 1,
1

q
+

1

q′
= 1. For a family of

functions ϕR(x) = ϕ1

( x
R

)
, where R > 0, one has

∫

IRn

|(−∆)sϕR(x)|q′(1 + |x|)−
αq′
q ϕ1−q′

R (x) dx ≤ cRn−2q′s−
αq′
q(2.8)

for any R > 0 and some c > 0 independent of R.

Proof. By (2.1) and a change of variables ỹ =
y

R
, we have

(−∆)sϕR(x) = R−2s(−∆)sϕ1(x).(2.9)

Substituting (2.9) into the left-hand side of (2.8) and applying Lemma 2.1, we obtain
the claim.

3. Single elliptic inequalities. Now consider the nonlinear elliptic inequality

(−∆)su ≥ c|Du|q(1 + |x|)α (x ∈ IRn),(3.1)

where s > 1, c > 0, q > 1 and α are real numbers.
Definition 3.1. A weak solution of inequality (3.1) is a function u ∈W 1,q

loc (IRn)
such that for any nonnegative function ϕ ∈ C∞0 (IRn) there holds the inequality

−
∫

IRn

(Du,D((−∆)s−1ϕ)) dx ≥ c
∫

IRn

|Du|q(1 + |x|)αϕdx.(3.2)
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Theorem 3.2. Inequality (3.1) has no nontrivial (i.e., distinct from a constant
a.e.) weak solutions for α > 1− 2s and

1 < q ≤ n+ α

n− 2s+ 1
.(3.3)

Proof. Introduce a test function ϕR(x) = ϕ1

( x
R

)
, where ϕ1 ∈ C∞0 (IRn) is non-

negative and

ϕ1(x) =

{
1 (|x| ≤ 1),
0 (|x| ≥ 2).

(3.4)

Substituting ϕ(x) = ϕR(x) into (3.1) and applying the Hölder inequality, we get

c

∫

IRn

|Du|q(1 + |x|)αϕR dx ≤ −
∫

IRn

(Du,D((−∆)s−1ϕ))ϕR dx ≤

≤
∫

IRn

|Du| · |D((−∆)s−1ϕR)| dx ≤



∫

IRn

|Du|q(1 + |x|)αϕR dx




1
q

×

×




∫

supp|DϕR|

|(−∆)sϕR|q
′
(1 + |x|)

αq′
q ϕ1−q′

R dx




1
q

,

(3.5)

where
1

q
+

1

q′
= 1. Hence,

∫

IRn

|Du|q(1 + |x|)αϕR dx ≤ c
∫

IRn

|D((−∆)s−1ϕR)|q′(1 + |x|)
αq′
q ϕ1−q′

R dx.(3.6)

From Lemma 2.2 we have
∫

IRn

|(−∆)sϕR|q
′
(1 + |x|)

αq′
q ϕ1−q′

R dx ≤

cRn−q
′(2s−1)−αq′q

∫

IRn

|(−∆)sϕ1(y)|q′(1 + |y|)
αq′
q ϕ1−q′

1 (y) dy,
(3.7)

where y =
x

R
. Combining (3.6) and (2.3), since the integral on the right-hand side of

(3.7) converges for an appropriate choice of ϕ1(y), we obtain

∫

IRn

|Du|q(1 + |x|)αϕR dx ≤ cRn−q
′(2s−1)−αq′q .

Taking R→∞, in case of strict inequality in (3.3) we come to a contradiction, which
proves the claim. In case of equality, we have

∫

IRn

|Du|q(1 + |x|)α dx <∞,
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whence
∫

supp|DϕR|

|Du|q(1 + |x|)αϕR dx→ 0 for R→∞

and by (3.5)

∫

IRn

|Du|q(1 + |x|)α dx = 0,

which completes the proof in this case as well.

4. Systems of elliptic inequalities. Here we consider a system of nonlinear
elliptic inequalities

{
(−∆)s1u ≥ c1|Dv|q1(1 + |x|)α1 (x ∈ IRn),
(−∆)s2u ≥ c2|Du|q2(1 + |x|)α2 (x ∈ IRn),

(4.1)

where s1 > 1, s2 > 1, q1 > 1, q2 > 1, α1 and α2 are real numbers.
Definition 4.1. A weak solution of system of inequalities (3.7) is a pair of

functions (u, v) ∈ W 1,q2
loc (IRn) × W 1,q1

loc (IRn) such that for any nonnegative function
ϕ ∈ C∞0 (IRn) there hold the inequalities

∫

IRn

(Du,D((−∆)s1ϕ)) dx ≥ c1
∫

IRn

|Dv|q1(1 + |x|)α1ϕdx,

∫

IRn

(Dv,D((−∆)s2ϕ)) dx ≥ c2
∫

IRn

|Du|q2(1 + |x|)α2ϕdx.
(4.2)

Denote

β1 = q1((2s2 − 1)q2 − (2s1 − 1)− α2)− α1,
β2 = q2((2s1 − 1)q1 − (2s2 − 1)− α2)− α2.

We will prove the following
Theorem 4.2. System (4.1) has no nontrivial (i.e., distinct from constants a.e.)

weak solutions for

n(q1q2 − 1) ≤ max{β1, β2}.(4.3)

Proof. Introduce a test function ϕR(x) as in the proof of the previous theorem.
Similarly to (3.5), we get

c1

∫

IRn

vq1(1 + |x|)α1ϕR dx ≤



∫

IRn

|Du|q2(1 + |x|)α2ϕR dx




1
q2

×

×




∫

supp|DϕR|

|D((−∆)s2ϕR)|q′2(1 + |x|)
α2q
′
2

q2 ϕ
1−q′2
R dx




1
q′
2

,
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c2

∫

IRn

uq2(1 + |x|)α2ϕR dx ≤



∫

IRn

|Dv|q1(1 + |x|)α1ϕR dx




1
q1

×

×




∫

supp|DϕR|

|D((−∆)s1ϕR)|q′1(1 + |x|)
α1q
′
1

q1 ϕ
1−q′1
R dx




1
q′
1

,

where
1

q1
+

1

q′1
=

1

q2
+

1

q′2
= 1. Estimating the second factors on the right-hand sides

of the obtained inequalities similarly to (2.3), we get

∫

IRn

|Dv|q1(1 + |x|)α1ϕR dx ≤ cR
n
q′
2

−(2s2−1)−α2
q2



∫

IRn

uq2(1 + |x|)α2ϕR dx




1
q2

,(4.4)

∫

IRn

|Du|q2(1 + |x|)α2ϕR dx ≤ cR
n
q′
1

−(2s1−1)−α1
q1



∫

IRn

vq1(1 + |x|)α1ϕR dx




1
q1

(4.5)

and, substituting (4.5) into (4.4) and vice versa,

∫

IRn

|Dv|q1(1 + |x|)α1ϕR dx ≤ cRn−
q1((2s2−1)q2−(2s1−1)−α2)−α1

q1q2−1 ,

∫

IRn

|Du|q2(1 + |x|)α2ϕR dx ≤ cRn−
q2((2s1−1)q1−(2s2−1)−α1)−α2

q1q2−1 .

Passing to the limit as R→∞, we complete the proof of the theorem similarly to the
previous one.
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SEMI-ANALYTICAL APPROACH TO INITIAL PROBLEMS FOR
SYSTEMS OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

WITH CONSTANT DELAY.

HELENA ŠAMAJOVÁ ∗

Abstract. This paper deals with the differential transform method for solving of an initial value
problem for a system of two nonlinear functional partial differential equations of parabolic type.
We consider non-delayed as well as delayed types of coupling and the different variety of initial
functions are thought over. The convergence of solutions and the error estimation to the presented
procedure is studied. Two numerical examples for non-delayed and delayed systems are included.

Key words. nonlinear partial differential equation, parabolic type equation, delayed equation,
system of partial differential equation, initial problem

AMS subject classifications. 35K55, 35K51 35K61

1. Introduction. We consider a system of two nonlinear functional partial dif-
ferential equations of parabolic type with constant delays

∂y1(x, t)

∂t
=
∂2y1(x, t)

∂x2
+K1(y2(x, t− τ1)− y1(x, t)) + η1y

3
1(x, t)

(1.1)
∂y2(x, t)

∂t
=
∂2y2(x, t)

∂x2
+K2(y1(x, t− τ2)− y2(x, t)) + η2y

3
2(x, t)

with the given initial function ψ̃i(x, t), constant delays τi , constants ηi , and
Ki where i = 1, 2 .

We may rewrite the system (1.1) into the vector form

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
+ κ1u(x, t) + κ2û(x, t) + ηũ(x, t)(1.2)

where we consider square matrix

κ1 =

(
−K1 0

0 −K2

)
; κ2 =

(
0 K1

K2 0

)
; η =

(
η1 0
0 η2

)
(1.3)

and the vector form of functions

u(x, t) =

(
u1(x, t)
u2(x, t)

)
; û(x, t) =

(
u1(x, t− τ1)
u2(x, t− τ2)

)
; ũ(x, t) =

(
u31(x, t)
u32(x, t)

)
.

(1.4)
We consider the system where the time of response may be 0 or different from

0. A real time of response causes that solutions do not affect each other in the same
time.

∗Dept. of Applied Mathematics, Faculty of Mechanical Engineering, University of Žilina, Uni-
verzitná 1, Slovakia (helena.samajova@fstroj.uniza.sk).
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Some types of nonlinear parabolic equation with a constant delay are exactly
solved in [5] by functional constraints method. This method brings exact solutions
that are supposed to be in the generalized separable form

u(x, t) =

N∑

n=1

ϕn(x)ψn(t)

where N ∈ N. Functions ϕn(x) and ψn(x) are established by additional functional
constrains given by difference or functional equation. The results in the cited paper
are extended to a class of nonlinear partial differential-difference equations with linear
differential operators which are defined as separated differential operators with respect
to the independent variables x, t and to some partial functional differential equations
with time delay. The presented way of solution in [5] requires an assumption that
initial functions to an initial problem of a delayed equation are obliged to satisfy the
considered equation.

An approach established in this paper enables us to use different types of initial
functions that need not indispensable to fulfill the system (1.1).

2. Main Properties of 2D Differential Transform Method (DTM). In
the next it is proposed a procedure which allows us to combine DTM and method of
steps to obtain semi-analytical solutions for given system of two equations (1.1). This
method is used for example in [2, 6, 7] and the references given therein.

The two dimensional Differential transformation method ( DTM ) for a function
g(x, t) is defined by

G(m,n) =
1

m!n!

[
∂m+ng(x, t)

∂xm∂tn

]

x=x0,t=t0

.

An inverse transform of G(m,n) leads to

g(x, t) =

∞∑

m=0

∞∑

n=0

G(m,n)(x− x0)m(t− t0)n

and if x = 0, t = 0 then

g(x, t) =
∞∑

m=0

∞∑

n=0

G(m,n)xmtn.

The main properties of the DTM are given in the overview:
Let functions G,Gi(n), i = 1, 2, 3 are differential transforms of the functions

g, gi(n), i = 1, 2, 3, constants r, s ∈ N, and α, β ∈ R

1. g(x, t) = αg1(x, t) + βg2(x, t) G(m,n) = αG1(m,n) + βG2(m,n)

2. g(x, t) = xrts G(m,n) = δ(m− r, n− s) = δ(m− r)δ(n− s)
3. g(x, t) = eαx+βt G(m,n) = αmβn

m!n!

4. g(x, t) = sin(αx)ts G(m,n) =
αm

m!
sin(

mπ

2
)δ(n− s)
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5. g(x, t) = cos(αx)ts G(m,n) =
αm

m!
cos(

mπ

2
)δ(n− s)

6. g(x, t) = g1(x, t)g2(x, t)g3(x, t)

G(m,n) =
∑m
i=0

∑m−i
j=0

∑n
k=0

∑n−k
l=0 G1(i, n− k − l)G2(j, k)G3(m− i− j, l)

7. g(x, t) =
∂g1(x, t)

∂x

∂g2(x, t)

∂t

G(m,n) =
∑m
i=0

∑n
j=0(m− i+ 1)(n− j + 1)G1(m− i+ 1, j)G2(i, n− j + 1).

For delayed functions in the next we suppose N →∞
8. g(x, t) = g1(x, t+ τ) G(m,n) =

∑N
h=n

(
h
n

)
τh−nG1(m,h)

where δ(n) is the Kronecker delta symbol and N ∈ N.
The main steps of the DTM, as a tool for solving different classes of nonlinear prob-
lems, are the following. First, we apply the differential transform to the presented
problem, and then the functions G(m,n) are given by the recurrence relations. In
the second, the iterative solution of this relations and using the inverse differential
transform, lead to the solution of the problem as polynomials of two independent
variables.
Applying this rules for system (1.1) one obtains following recurrence relations for
τ = 0

Y1(m,n+ 1) =
1

n+ 1
[(m+ 2)Y1(m+ 2, n) +K1 [Y2(m,n)− Y1(m,n)]

+η1

m∑

r1=0

m−r1∑

r2=0

n∑

s1=0

n−s1∑

s2=0

Y1(r1, n− s1 − s2)Y1(r2, s1)Y1(m− r1 − r2, s2)

]

(2.1)

Y2(m,n+ 1) =
1

n+ 1
[(m+ 2)Y2(m+ 2, n) +K2 [Y1(m,n)− Y2(m,n)]

+η2

m∑

r1=0

m−r1∑

r2=0

n∑

s1=0

n−s1∑

s2=0

Y2(r1, n− s1 − s2)Y2(r2, s1)Y2(m− r1 − r2, s2)

]
.

2.1. Initial problem for systems of delayed functions. If we suppose de-
layed system with τi > 0, i = 1, 2 the system is considered with the known initial
functions ψi, i = 1, 2

ψi(x, t) =





0, t < −τ ;

ψ̃i(x, t), t ∈ 〈−τ, 0〉;
0, t > 0.

(2.2)

We consider different types of functions on the intervals (−τi, 0), as an initial
functions for unknown solutions yi(x, t), i = 1, 2 to the system (1.1).

A different types of initial functions produce appertaining initial conditions for
the system (1.1) and some of them are presented in the table below.

• Calculations are valid on minimum length of the intervals (0, τi), i = 1, 2
• ψ̃1(x, t), ψ̃2(x, t) are considered as constant, polynomial, exponential, sin, cos

functions
• Recurrent relations are used for evaluations of coefficients Y1(m,n), Y2(m,n)
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Table 2.1
Types of initial functions.

Initial functions Ψi(x, t) Initial condition Ψi(x, 0)
Ψi(x, t) = xrts Ψi(x, 0) = 0
Ψi(x, t) = xrεst r 6= 0 Ψi(x, 0) = xr

Ψi(x, t) = tsεrx s 6= 0 Ψi(x, 0) = 0
Ψi(x, t) = xr cos st Ψi(x, 0) = xr

Ψi(x, t) = xr sin st Ψi(x, 0) = 0

• An individual evaluation for the initial functions and initial conditions is
required

• Functions y1(x, t − τ2), y2(x, t − τ1) are replaced by the initial functions
ψ̃1(x, t), ψ̃2(x, t) on the intervals (−τ2, 0), (−τ1, 0) respectively

• The multi-step differential transform method (MsDTM) given in [1, 3] may
be used to extend the domain for the obtained solutions.

In the Table 2.1 we give some examples of types of the initial functions and the
initial conditions connected to the initial functions.

The DT method applied to the system (1.1) with τi > 0 gives

Y1(m,n+ 1) =
1

n+ 1

[
(m+ 2)Y1(m+ 2, n) +K1

(
N∑

h=n

(
h

n

)
τh−n1 Ψ2(m,h)− Y1(m,n)

)

+η1

m∑

r1=0

m−r1∑

r2=0

n∑

s1=0

n−s1∑

s2=0

Y1(r1, n− s1 − s2)Y1(r2, s1)Y1(m− r1 − r2, s2)

]

(2.3)

Y2(m,n+ 1) =
1

n+ 1

[
(m+ 2)Y2(m+ 2, n) +K2

(
N∑

h=n

(
h

n

)
τh−n2 Ψ1(m,h)− Y2(m,n)

)

+η2

m∑

r1=0

m−r1∑

r2=0

n∑

s1=0

n−s1∑

s2=0

Y2(r1, n− s1 − s2)Y2(r2, s1)Y2(m− r1 − r2, s2)

]
.

3. Convergence of the 2D Differential Transform Method. In this sec-
tion, the convergence of the 2-dimensional DTM when applied to a system of partial
differential equations is studied. Moreover there is given the sufficient condition for a
convergence of the vector function.

This condition of the convergence leads to an estimation of the maximum absolute
error of the approximate solutions.

Let consider functions f1(x, t) : R× R→ R, f2(x, t) : R× R→ R

f1(x, t) =

∞∑

m=0

∞∑

n=0

F1(m,n)(x− x0)m(t− t0)n;

f2(x, t) =

∞∑

m=0

∞∑

n=0

F2(m,n)(x− x0)m(t− t0)n;

and

~f(x, t) =

(
f1(x, t)
f2(x, t)

)
.
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For the vector function we define the vector norm L∞

‖~f‖∞ = max
i
|fi|, i ∈ {1, 2}.

The theorem stated below is a special case of the Banach fixed point theorem [4].
In the next this theorem is adapted for 2D DTM.

Theorem 3.1.
Let there exist two series for functions

f1(x, t) =
∞∑

m=0

∞∑

n=0

F1(m,n)(x− x0)m(t− t0)n

f2(x, t) =
∞∑

m=0

∞∑

n=0

F2(m,n)(x− x0)m(t− t0)n.

Then the vector series ~f(x, t) converges if there exists 0 < α < 1 such that

‖~fk+1(x, t)‖ ≤ α‖~fk(x, t)‖

for any k ≥ k0, for some k0 ∈ N .
The estimation of the error of the vector series is a part of the proof of Theorem 3.1.

Proof. We denote (C(A), ‖.‖) the Banach space of all continuous vector functions
on a domain A with the norm ‖f(x, t)‖ = max(x,t)∈A ‖f(x, t)‖ where A = [x0−ε, x0+
ε]× [t0 − τ, t0 + τ ].

Denote individual terms ϕ1
(m,n)(x, t) , ϕ2

(m,n)(x, t) , Φ(m,n)(x, t) as

ϕi(m,n)(x, t) = Fi(m,n)(x− x0)m(t− t0)n i = 1, 2 ,

Φ(m,n)(x, t) =

(
F1(m,n)(x− x0)m(t− t0)n

F2(m,n)(x− x0)m(t− t0)n

)
=

(
ϕ1
(m,n)(x, t)

ϕ2
(m,n)(x, t)

)
.

We define the sequence of vector partial sums {Sn}∞n=0 as follows

Sn = Φ(0,0)(x, t)+Φ(1,0)(x, t)+Φ(0,1)(x, t)+Φ(2,0)(x, t)+Φ(1,1)(x, t)+Φ(0,2)(x, t)+. . .+

Φ(n,0)(x, t) + Φ(n−1,1)(x, t) + . . .+ Φ(1,n−1)(x, t) + Φ(0,n)(x, t) =

n∑

j=0

j∑

i=0

Φ(i,j−i)(x, t).

In the next we will show that {Sn}∞n=0 is a Cauchy sequence in the Banach space.
For this purpose

‖Sn+1 − Sn‖ =

∥∥∥∥∥
n+1∑

i=0

Φ(i,n+1−i)(x, t)

∥∥∥∥∥ ≤ α
∥∥∥∥∥
n∑

i=0

Φ(i,n−i)(x, t)

∥∥∥∥∥ ≤ . . . ≤
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≤ αn−k0+1

∥∥∥∥∥
k0∑

i=0

Φi,k0−i(x, t)

∥∥∥∥∥ =

= αn−k0+1 max
(x,t)∈A

{
k0∑

i=0

∣∣∣ϕ1
(i,k0−i)(x, t)

∣∣∣ ,
k0∑

i=0

∣∣∣ϕ2
(i,k0−i)(x, t)

∣∣∣
}
.

For any i, j ∈ N, i > j > k0 we have

‖Si − Sj‖ =

∥∥∥∥∥∥

i−1∑

l=j

(Sl+1 − Sl)

∥∥∥∥∥∥
≤

i−1∑

l=j

‖(Sl+1 − Sl)‖

≤
i−1∑

l=j

αl−k0+1 max
(x,t)∈A

k0∑

s=0

‖Φs,k0−s(x, t)‖

=
1− αi−j

1− α αj−k0+1 max
(x,t)∈A

k0∑

s=0

‖Φs,k0−s(x, t)‖

and whereas 0 < α < 1, we obtain

lim
i,j→∞

‖(Si − Sj‖ = 0.

Therefore, {Sn}∞n=0 is a Cauchy sequence in the Banach space (C(A), ‖.‖) and
the vector series

( ∑∞
m=0

∑∞
n=0 ϕ

1
(m,n)(x, t)∑∞

m=0

∑∞
n=0 ϕ

2
(m,n)(x, t)

)

converges. The proof is complete.

Under the condition that there exists α ∈ (0, 1) such that

k+1∑

s=0

∥∥Φ(s,k+1−s)(x, t)
∥∥ ≤ α

k∑

s=0

∥∥Φ(s,k−s)(x, t)
∥∥

for any k ≥ k0 where k0 ∈ N, power series solution converges to the exact solution.
We define constants αk for any k ≥ k0

αk+1 =





∑k+1
s=0

∥∥Φ(s,k+1−s)(x, t)
∥∥

∑k
s=0

∥∥Φ(s,k−s)(x, t)
∥∥ for

∑k
s=0

∥∥Φ(s,k−s)(x, t)
∥∥ 6= 0;

0 for
∑k
s=0

∥∥Φ(s,k−s)(x, t)
∥∥ = 0.

If ∀k > k0 : 0 ≤ αk < 1, then an approximate solution in the form of finite series
converges to the exact solution ~u(x, t).
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Theorem 3.2. Let the approximate solution be in the form

~f(x, t) =

( ∑∞
m=0

∑∞
n=0 F1(m,n)(x− x0)m(t− t0)n∑∞

m=0

∑∞
n=0 F2(m,n)(x− x0)m(t− t0)n

)

and converges to the solution

~u(x, t) =

(
u1(x, y)
u2(x, y)

)
.

If the finite series
( ∑µ

m=0

∑ν
n=0 F1(m,n)(x− x0)m(t− t0)n∑µ

m=0

∑ν
n=0 F2(m,n)(x− x0)m(t− t0)n

)

is considered as an approximation to the solution, then the estimation of the absolute
error is given as

∥∥∥∥∥~u(x, t)−
( ∑µ

m=0

∑ν
n=0 ϕ

1
(m,n)(x, t)∑µ

m=0

∑ν
n=0 ϕ

2
(m,n)(x, t)

)∥∥∥∥∥ ≤

≤ 1

1− αα
j−k0+1 max

(x,t)∈A

k0∑

s=0

‖Φ(s,k0−s)(x, t)‖(3.1)

where j = min{µ, ν}, µ, ν ∈ N.
Proof. From the Theorem 3.1 we obtained

‖Si − Sj‖ ≤
1− αi−j

1− α αj−k0+1 max
(x,t)∈A

k0∑

s=0

∥∥Φ(s,k0−s)(x, t)
∥∥

Since the term (1−αi−j) < 1 under the condition that there exists an α ∈ (0, 1) and
k0 ≤ j ≤ i, the inequality above can be simplify to

‖Si − Sj‖ ≤
1

1− αα
j−k0+1 max

(x,t)∈A

k0∑

s=0

∥∥Φ(s,k0−s)(x, t)
∥∥ .

If we consider that i→∞ then Si → ~u(x, t) - two dimensional power series vector
solution converges to the vector solution and the estimation of an absolute error is
determined by (3.1).

In accordance with Theorem 3.2 the estimation of the absolute error is given by
the inequality below

∥∥∥∥~u(x, t)−
( ∑µ

m=0

∑ν
n=0 F1(m,n)(x− x0)m(t− t0)n∑µ

m=0

∑ν
n=0 F2(m,n)(x− x0)m(t− t0)n

)∥∥∥∥ ≤

1

1− β β
j−k0+1 max

(x,t)∈A

k0∑

s=0

∥∥Φ(s,k0−s)(x, t)
∥∥ ,

where β = max{αk, k = k0 + 1, k0 + 2, . . . , j + 1}.

As an example of non-delayed and delayed coupling there are given pairs of figures
of solutions y1(x, t) and y2(x, t). For different types of initial functions the Figures
(3.1) and (3.3) represent non-delayed coupling, the Figures (3.2) and (3.4) delayed
coupling. For calculation the system Mathematica was used.
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For parameters K1 = 0.5, K2 = 1.1, η1 = 0.5, η2 = 0.3, N = 6 and initial
functions ψ̃1 = 0 and ψ̃2 = cosx the solutions to the system (1.1) for a non-delayed
case are on Fig. 3.1

Fig. 3.1. Solutions from left: y1(x, t), y2(x, t), τ = 0.

where

y1(x, t) =0.5t− 0.9t2 + 0.6967t3 − 0.25tx2 + 0.2833t2x2 + 0.0208tx4

y2(x, t) =1− 2.1t+ 2.1467t2 − 1.5438t3 − 0.5x2 + 0.7167tx2 − 0.64t2x2 + 0.0417x4

−0.0542tx4 − 0.0014x6.

For a delayed case with τi = 0.8 the solutions are in Fig. 3.2

Fig. 3.2. Solutions from left: y1(x, t), y2(x, t), τ1 = τ2 = 0.8.

where

y1(x, t) =2.5t+ 3.75t2 + 4.7917t3 + 2.5tx+ 5t2x+ 2.5tx2 + 6.25t2x2

+2.5tx3 + 2.5tx4

y2(x, t) =1− 2.1t+ 1.8717t2 − 1.0213t3 − 0.5x2 + 0.7167tx2 − 0.5025t2x2

+0.0417x4 − 0.0542tx4 − 0.0014x6.
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For parameters K = 0.2, η1 = 1.5, η2 = 0.3 and initial functions ψ̃1 = cosx and
ψ̃2 = sinx, a non-delayed case is on Fig. 3.3

Fig. 3.3. Solutions from left: y1(x, t), y2(x, t), τ = 0.

where

y1(x, t) =1− 0.7t− 0.9183t2 + 0.5294t3 + 0.2tx+ 0.01t2x− 0.5x2

−0.4833tx2 + 1.0425t2x2 − 0.0333tx3 + 0.0417x4 + 0.4208tx4

−0.0014x6

y2(x, t) =0.2t− 0.19t2 − 0.063t3 + x− 0.7tx+ 0.2025t2x− 0.1tx2

−0.0217t2x2 − 0.0083x3 + 0.075tx3 + 0.0083tx4 + 0.0083x5.

Solutions for a delayed case with τi = 0.8 are on Fig.3.4

Fig. 3.4. Solutions from left: y1(x, t), y2(x, t), τ1 = τ2 = 0.8.

where

y1(x, t) =1 + 0.3t+ 1.2117t2 + 3.2051t3 + tx+ 2.65t2x− 0.5x2

+0.5167tx2 + 3.4525t2x2 + tx3 + 0.0417x4 + 1.4208tx4

−0.0014x6

y2(x, t) =x− 0.7tx+ 0.1825t2x− 0.1667x3 + 0.075tx3 + 0.0083x5.
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VISCO-ELASTO-PLASTIC MODELING ∗

JANA KOPFOVÁ, MÁRIA MINÁROVÁ AND JOZEF SUMEC

Abstract. In this paper we deal with the mathematical modelling of rheological models with
applications in various engineering disciplines and industry. We study the mechanical response of
visco-elasto-plastic materials. We describe the basic rheological elements and focus our attention to
the specific model of concrete, for which we derive governing equations and discuss its solution. We
provide an application of rheological model involving rigid-plastic element as well - mechanical and
mathematical model of failure of one dimensional construction member, straight beam. Herein, the
physical model is considered with a homogeneous isotropic material of the beam, quasi static regime
is supposed.

Key words. rheological elements, constitutive equation, large deformations, hysteresis, dissi-
pated energy

AMS subject classifications. 35J86, 00A79

Introduction. In mechanics, the constitutive relation between the stress σ and
the strain ε, is essential. Rheology deals with problems concerning deformation pro-
cesses of materials exhibiting different kinds of material response, e.g. elastic, viscous
and plastic behavior. Time dependent mechanical behavior is governed by constitu-
tive equations describing the relations between stress and strain variables and their
time derivatives. There exist materials that behave in a different way during loading
and unloading, some are and some are not able to recover. This phenomenon is called
hysteresis. Herein, and this it is very well known fact [9, 7, 2], the potential energy
plays important role. There are elementary matters, called also members or elements
involved in each model. Very elegant presentation of basic rheological models can an
interested reader find in the monograph [2]. There, the main focus is on elasto-plastic
materials, hysteresis phenomena being the main area of interest. For the description
of visco-plastic materials we refer to the book [1]. Corresponding models in electricity
are studied in detail in [3].

There are specific tests executed on material models by prescribed stress or strain
load action. The creep or relaxation of stress is recorded. Creep is a deformation
change in time under constant stress load being maintained, relaxation is a stress
change in time when a constant deformation is maintained. Boltzmann theory using
hereditary integrals is exerted, as well, [5].

In the paper the basic phenomena of rheology models are introduced together
with constitutive relation derivation techniques. Involving a viscous member in the
model yields the presence of derivatives in physical equations, plastic element brings a
variational inequality. Finally, the three of them - elastic, plastic and viscous members
are involved in a very simple model of concrete. The constitutive relation is derived.

1. Fundamental elements, compositions, relations. In agreement with De-
finition 1.1 in [2] we call a rheological element a system consisting of a constitutive
relation between stress σ and strain ε and a potential energy U ≥ 0. Along this paper

∗This work was supported by Grant No.: VEGA 1/0456/17, by GAČR Grant 15-12227S, and by
the institutional support for the development of research organizations IČ 47813059.
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Fig. 1.1. Stress - strain dependence in an a) elastic, b) viscous, c) rigid-plastic element.

we will deal with uniaxial thermodynamically consistent rheological models, which
means that the quantity called dissipation rate

q̇ = 〈ε̇, σ〉 − U̇ (1.1)

will be supposed to be non-negative in sense of distributions for all ε, σ, [2].

1.1. Fundamental elements of a visco-elasto-plastic model, physical
properties. [4, 2]

There are Newton’s viscous (N), Hook’s elastic (H) and Saint-Venant (StV) rigid-
plastic elements involved in a visco-elasto-plastic model.

Elastic element (H) is represented by an ideally elastic spring, where the stress -
strain relation is linear:

σ = Aε, (1.2)

with A an elastic modulus matrix, in the case of homogeneous isotropic material
it is replaced by a real number E - Young elastic modulus. In more dimensions it
includes both volumetric and deviatoric change. (H) is completely reversible, i.e.
all inner potential energy U gathered in the loading process is conserved and no
energy is dissipated. After loading stops all energy is used to reverse the previous
position. Potential energy is given by U = 1

2Eε
2 and it can be easily checked that

the thermodynamical consistency of the model is fulfilled.
Viscous element (N) is symbolized graphically by a piston. Here we have is a linear

relation between stress and strain rate, which can be expressed both in deviatoric and
volumetric components σdev = ηε̇dev, σvol = ζε̇vol, with η and ζ being deviatoric
and volumetric proportional coefficient respectively. For incompressible liquids only
deviatoric component comes into play and the stress-strain relation can be expressed
simply as

σ = η ε̇ (1.3)

No potential energy is stored, i.e. U = 0, the deformation process is irreversible.
Viscous elements act as dashpots.

Rigid plastic element (StV). Its graphical symbol is depicted as two touching
plates with certain friction between. When a (StV) is exposed to a load, it remains
rigid as long as the instantaneous stress does not reach the threshold. If so, material
becomes plastic immediately.

Let Z be the space of all admissible stress values with all thresholds situated in
its boundary ∂Z. The plasticity is governed by the following physical principles:

• σ ∈ int(Z) ensures the rigidity persisting of the body
• σ ∈ ∂Z (the plastic behavior is triggered)
• 〈ε̇, σ − σ̃〉 ≥ 0, ∀σ̃ ∈ Z

The last principle, the variational inequality, is called the maximal dissipation rate
principle with regard to admissible stress values. It states that while the threshold is
not reached, the deformation does not change, i.e. ∀σ ∈ int(Z) =⇒ ε̇ = 0, [9, 2].
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Fig. 1.2. Parallel and serial combination of fundamental elements.

In the uniaxial case Z = 〈−σC , σT 〉 and ∂Z = {−σC , σT }, where we assume
that σC , σT are two positive constants, so 0 ∈ Z, which corresponds to the natural
hypotheses that no deformation occurs for σ = 0. This condition is essential for the
thermodynamic consistency of the model.

In Fig 1.1c) an uniaxial representation of rigid-plastic body is performed. The
polygonal line graph is called three branch diagram. Herein, as Z is an interval, its
boundary are the endpoints called compressive threshold −σC and tension threshold
σT . In general σC 6= σT . When a threshold is reached, plasticity proceeds and takes
place until the magnitude decreases again and the rigidity comes back, permanent
(plastic) deformation persists. No potential energy is stored, i.e. U = 0 and no
recovery occurs. It has been observed that during plastic deformation the volume
change is negligible. [6]

In Fig. 1.1 the graphical symbols representing particular elementary matters and
graphical interpretation of the stress - strain relations are shown. Here P denotes the
tension force.

1.2. Configuration, geometry and corresponding relations. There are
two possible ways of connecting any couple of fundamental elements - either seri-
ally or in parallel, by using two auxiliary rigid slabs for this sake, as depicted in Fig.
1.2 a), the two slabs are represented by the upper and lower thick lines connecting
(H) and (N).

• Serial connection of elementary members
Under a load P , the resulting deformation of the system of serially connected
elementary matters is the sum of the deformations of particular members,
stress is distributed among the members equally:

ε = εH + εN , σ = σH = σN . (1.4)

Sub-indexes H, N, then SvV indicate an incidence with Hook elastic, Newton
viscous and Saint-Venant rigid-plastic matters.

• Parallel connection of elementary members
As two linking slabs are shifting vertically up or down without any rotation,
the deformation is the same, while the stress of the entire model is the sum
of stresses of particular members:

ε = εH = εN , σ = σH + σN . (1.5)

Having the two or more elementary matters at hand and utilizing both parallel
and serial connection, and considering the fundamental elements as simplest rheolog-
ical models, we can proceed in composing visco-elasto-plastic models recursively. By
connecting two simpler models serially or in parallel we compose the new, more com-
plex one. When we couple the geometry equations yielded by configuration with the
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fundamental element constitutive relations into account, we can derive the resulting
constitutive equation of the entire model.
For the sake of clear notation it is worth utilizing an abbreviations of such models.
Having, beside (N), (H) and (Stv) marks standing for the particular fundamental
elements, the vertical line standing for parallel and the horizontal line standing for
serial, we can assign a structural formula to each model. Accordingly, the structural
formulas of the two-element models in Fig. 1.2 are: (H)|(N) for the left one and
(H)− (N) for the right one respectively.

2. Creep and relaxation tests. Creep and relaxation tests are typical for
testing materials with the aim of their mechanical response prediction and materials’
mechanical behavior comparison. The special load is imposed to the material and the
response is recorded and monitored. Roughly speaking, creep-deformation change in
time under the constant stress load is maintained or relaxation-stress change in time
when a constant deformation is maintained.

Creep test is executed by inflicting an instantaneous stress keeping it constant in
a given time period. The immediate change is obviously followed by subsidiary one -
the creep. Resulting deformation response is recorded.

Relaxation test is executed by carrying out an instantaneous strain, keeping it
constant during a given time period. The immediate change of stress is obviously
followed by subsidiary one - the relaxation. Changes of stress are recorded.

3. Elasto-plasticity resulting in Hysteresis. Let us examine what happens
when we combine elastic and plastic element. First for the combination in paralel we
get

ε = εH = εStV , (3.1)

σ = σH + σStV , (3.2)

σH = E εH . (3.3)

Let us employ the Saint Venant variational inequality for the rigid-plastic matter

ε̇StV
(
σStV − σ̃

)
≥ 0 ∀σ̃ ∈ 〈−σC , σT 〉 (3.4)

and we have

ε̇ (σ − Eε− σ̃) ≥ 0 ∀σ̃ ∈ 〈−σC , σT 〉. (3.5)

For the potential energy we get U = 1
2Eε

2
H (the only contribution comes from the

elastic element) and the thermodynamical consistency of the model follows actually
from the variational inequality (3.5) (with σ̃ = 0).

For the combination in series we get similarly

ε = εH + εStV , (3.6)

σ = σH = σStV , (3.7)

σH = E εH . (3.8)

Let us now employ again the Saint Venant variational inequality for the rigid-
plastic matter

ε̇StV
(
σStV − σ̃

)
≥ 0 ∀σ̃ ∈ 〈−σC , σT 〉 (3.9)
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Fig. 3.1. a) Stop and b) Play operators

Fig. 4.1. Concrete beam under heavy transversal load, compressed and stretched fibres, crack,
rupture

and we have as a consequence

(
ε̇− 1

E
σ̇

)
(σ − σ̃) ≥ 0 ∀σ̃ ∈ 〈−σC , σT 〉. (3.10)

The potential energy is again given by U = 1
2Eε

2
H and the thermodynamical

consistency follows from (3.10) (again taking σ̃ = 0).
The variational inequalities obtained in both cases (series or paralel) are both of

the same type and it was shown e.g. in [2], Theorem 1.9, that there exists a unique
solution of these variational inequalities, which is given by a hysteresis operator -
the so-called play or stop operator respectively. Hysteresis operators exhibit memory
effects (the current state depends on the previous history of the system) and they are
rate independent (this property allows us to draw diagrams as on Fig.3.1. For more
details in this direction we refer to [2] and the references therein.

4. Rheological model of concrete. There exists an exceptional group within
the rheology of composite materials on a silicate basis, group of concretes and rein-
forced concretes. Due to mechanical, chemo-mechanical or thermo-mechanical load
acting in concrete or steel-concrete constructions, some immediate, short-term and
long-term deformations evolve, the change lasting up to several years. When the
concrete mixture is poured into a form, it initiates the solidification together with
a chemical processes resulting in a volume contraction regardless the load imposed.
And, on the other hand, an imposed load activates a creep, hysteresis response in-
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Fig. 4.2. Parallel and serial connection of fundamental elements.

volved. Creep is the essential phenomenon that has to be investigated carefully as the
mechanical behavior of the designed structures and constructions can be predicted.

4.1. Concrete behavior under frequent heavy load. When the imposed
load is of magnitude within the range obvious in concrete constructions, the resulting
deformation as a consequence of creep will be several times greater than the initial
(immediate) one. In this context, the notion ”aging of concrete” is often used. [8]
Nevertheless, the mechanical response of the concrete construction is proportional to
the subjected load, accordingly the habitual operating load response of a construction
is derived by using the superposition principle. However, once unloaded, a permanent
deformation remains, [9].

Another essential fact concerning concrete has to be mentioned: Compressive
strength of concrete is much higher then tensile strength. Hence, concrete mechanical
response to tensile and to the compressive load of the same magnitude differs signifi-
cantly. That is why the reinforcement with material strong in tension is placed where
a tensile stress is supposed. In Fig. 4.1 the reinforcement is placed at the bottom
of the beam. Namely, it is supposed to be doubly supported at the ends and loaded
transversally by a pressure.

4.2. Simplified model of concrete - graphical representation structural
form, geometrical relations. As proposed by [7], the simplest model of concrete
can be set up by connecting viscous and rigid-plastic element in parallel and connect
an elastic member with this couple in series. The structural form is (H)−[(N)|(StV )].
The physical relations are considered as given in Section 1.1, E being Young elastic
modulus of (H), η the viscous coefficient of (N), σT and σC the stress tensile and
compressive thresholds of the stress in (StV).
In the following considerations, the subindexes of stress and strain variables will

be used to indicate the incidence with particular elementary members; e.g. εH will
stand for partial deformation of Hook elastic matter, etc. Geometric equations of the
(H)− [(N)|(StV )] model are:

ε = εH + εN (4.1)

εN = εStV (4.2)

σ = σH = σN + σStV , (4.3)
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where σStV ∈ 〈−σC , σT 〉.

Energy audit yields that the energy of elastic member is the only nonzero part of
the potential energy of the whole system

U =
1

2
Eε2H

and the thermodynamical consistency of the model

ε̇σ − 1

2
Eε̇2H ≥ 0

follows from the variational inequality (4.9) bellow, taking σ̃ = 0.
In the following we will deduce the constitutive relation of the model. We are

looking for the σ ∼ ε equation, describing the dependence between global stress and
global strain employing merely physical parameters of particular elementary members.
It means we want to exclude the sub-indexed stress and strain variables from the
dependence forms. Reminding elementary physical relations embedded in Section
1.1, we can proceed in the following way:

σH = E εH , σN = η ˙εN =⇒ εN = ε− εH = ε− 1

E
σH , (4.4)

σ = EεH = η ε̇N + σStV , (4.5)

σStV = σ − η ˙εN = σ − ηε̇+
η

E
σ̇. (4.6)

Let us employ the variational inequality of the Saint-Venant rigid-plastic matter

ε̇StV (σStV − σ̃) ≥ 0,∀σ̃ ∈ 〈−σC , σT 〉. (4.7)

Let us recall that

εStV = εN = ε− εH = ε− σ

E
. (4.8)

As a result we get the following variational inequality
(
ε̇− σ̇

E

)(
σ − ηε̇+

η

E
σ̇ − σ̃

)
≥ 0 ∀σ̃ ∈ 〈−σC , σT 〉 (4.9)

When we denote v̇ = ε̇− σ̇
E , we can rewrite (4.9) in the form

v̇
(
σ − ηv̇ − σ̃

)
≥ 0 ∀σ̃ ∈ 〈−σC , σT 〉 (4.10)

Let us have a closer look at the variational inequality (4.10). First of all, if σ−ηv̇
is in the open interval (−σC , σT ), the second bracket can take positive or negative
values as σ̃ changes. Therefore we must have v̇ = 0.

Let us now aim our attention to the compressive marginal value σ − ηv̇ = −σC .
In such a case, it is apparent for all σ̃ ∈ 〈−σC , σT 〉 that the expression in brackets
on the left hand side of (4.10) is non-positive. This implies that in order to hold the
inequality (4.10) it must be hold v̇ ≤ 0, so:

ε̇− σ̇

E
≤ 0 (4.11)
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And accordingly, if σ − ηv̇ = −σT then it must be v̇ ≥ 0 or

ε̇− σ̇

E
≥ 0. (4.12)

This can be described by a single relation in terms of v

v̇ =
1

η
(σ − P(σ)), (4.13)

where P denotes the projection on the interval 〈−σC , σT 〉 (in the sense of convex
analyses).

Alternatively in terms of σ and ε we have

ε̇ =
σ̇

E
+

1

η
(σ − P(σ)). (4.14)

This is the constitutive relation we were looking for. It involves both stress on
strain and strain on stress dependence. It means that with such a constitutive relation
of the model at hand we can operate further and investigate and predict material
behavior depending on the kind and magnitude of the load. Either we impose stress
load, solving the corresponding linear non-homogenous differential equation in sense
of deformation, or vice versa, i.e. we impose a strain and compute stress response.
The initial condition have to be posed as well. The first equation is of course much
simpler to solve, we can get the solution by simple integration. Alternatively the
obtained differential equations can be solved easily e.g. numerically.

Creep and relaxation test are examples of material behavior investigation.

5. Conclusion. Nowadays, a lot of new material is developed and used in in-
dustry. Undoubtedly, the investigation prior to their usage is inevitable. Avoiding or
predicting the failure due to heavy or repeating load is essential. For this sake the
models with time dependent material behavior are utilized, each material matched
with its appropriate models. Then by using mathematical tools various theoretical
tests can be executed and response vs. load can be traced. Constitutive equations are
essential, visco-elasto-plastic models being of great importance and interest within
them.
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CROSS-DIFFUSION SYSTEMS WITH ENTROPY STRUCTURE∗

ANSGAR JÜNGEL†

Abstract. Some results on cross-diffusion systems with entropy structure are reviewed. The
focus is on local-in-time existence results for general systems with normally elliptic diffusion opera-
tors, due to Amann, and global-in-time existence theorems by Lepoutre, Moussa, and co-workers for
cross-diffusion systems with an additional Laplace structure. The boundedness-by-entropy method
allows for global bounded weak solutions to certain diffusion systems. Furthermore, a partial result
on the uniqueness of weak solutions is recalled, and some open problems are presented.

Key words. Strongly coupled parabolic systems, local existence of solutions, global existence
of solutions, gradient flow, duality method, boundedness-by-entropy method, nonlinear Aubin-Lions
lemma, Kullback-Leibler entropy.

AMS subject classifications. 35K51, 35K57, 35B65.

1. Introduction. Multi-species systems from physics, biology, chemistry, etc.
can be modeled by reaction-diffusion equations. When the gradient of the density of
one species induces a flux of another species, cross diffusion occurs. Mathematically,
this means that the diffusion matrix involves nonvanishing off-diagonal elements. In
many applications, it turns out that the diffusion matrix is neither symmetric nor
positive definite, which considerably complicates the mathematical analysis (see the
examples in Section 2 and [25, Section 4.1]). In recent years, some progress has been
made in this analysis by identifying a structural condition, namely a formal gradient-
flow or entropy structure, allowing for a mathematical treatment. In this review, we
report on selected results obtained from several researchers.

The cross-diffusion equations have the form

∂tui −
n∑

j=1

div(Aij(u)∇uj) = fi(u) in Ω, t > 0, i = 1, . . . , n, (1.1)

where ui(x, t) is the density or concentration or volume fraction of the ith species of a
multicomponent mixture, u = (u1, . . . , un), Aij(u) are the diffusion coefficients, fi(u)
is the reaction term of the ith species, and Ω ⊂ Rd (d ≥ 1) is a bounded domain with
smooth boundary. We impose no-flux and initial conditions

n∑

j=1

Aij∇uj · ν = 0 on ∂Ω, t > 0, ui(0) = u0
i in Ω, i = 1, . . . , n, (1.2)

with the exterior normal unit vector ν on ∂Ω, but Dirichlet or mixed Dirichlet-
Neumann boundary conditions could be considered as well [20]. Setting A(u) =
(Aij(u)) and f(u) = (f1(u), . . . , fn(u)), we may write (1.1) more compactly as

∂tu− div(A(u)∇u) = f(u) in Ω, t > 0.

∗The author acknowledges partial support from the Austrian Science Fund (FWF), grants P27352,
P30000, F65, and W1245.
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In contrast to scalar parabolic equations, generally there do not exist maximum
principles or a regularity theory for diffusion systems. For instance, there exist Hölder
continuous solutions to certain parabolic systems that develop singularities in finite
time [37]. Here, the situation is even worse: The diffusion matrix A(u) is generally
neither symmetric nor positive definite such that coercivity theory cannot be applied.
Our approach is to assume a structure inspired from thermodynamics: We suppose
that there exists a convex function h : Rn → R, called an entropy density, such that
the (possibly nonsymmetric) matrix product h′′(u)A(u) is positive semidefinite (in
the sense z>h′′(u)A(u)z ≥ 0 for all z ∈ Rn). Here, h′′(u) denotes the Hessian of h
at the point u. We say that A has a strict entropy structure if h′′(u)A(u) is positive
definite for all u. Then the entropy H[u] =

∫
Ω
h(u)dx is a Lyapunov functional along

solutions to (1.1)-(1.2) if f(u) · h′(u) ≤ 0 for all u:

dH
dt

=

∫

Ω

∂tu · h′(u)dx = −
∫

Ω

∇u : h′′(u)A(u)∇udx+

∫

Ω

f(u) · h′(u)dx ≤ 0, (1.3)

where “:” denotes the Frobenius matrix product. If h′′(u)A(u) is positive definite,
this yields gradient estimates needed for the global existence analysis.

Introducing the entropy variables wi = ∂h/∂ui or w = h′(u), we may write (1.1)
equivalently as

∂tu(w)− div(B(w)∇w) = f(u(w)), B(w) := A(u(w))h′′(u(w))−1, (1.4)

where u(w) = (h′)−1(w) is interpreted as a function of w = (w1, . . . , wn) and h′′(u)−1

is the inverse of the Hessian of h. By assumption, B(w) is positive semidefinite, which
indicates a (nonstandard) parabolic structure.

The entropy structure will be made more explicit for two examples in Section 2.
In Sections 3 and 4, the local and global in time existence of solutions, respectively,
will be reviewed. Furthermore, we comment in Section 5 on uniqueness results, and
we close in Section 6 with some open problems.

2. Examples. We present two prototypic examples.
Example 1 (Maxwell-Stefan equations). The dynamics of a fluid mixture of

n = 3 components with volume fractions u1, u2, u3 = 1 − u1 − u2 can be described
by the Maxwell-Stefan equations [38], defined by (1.1) with

A(u) =
1

a(u)

(
d2 + (d0 − d2)u1 (d0 − d1)u1

(d0 − d2)u2 d1 + (d0 − d1)u2

)
,

where di > 0 and a(u) = d1d2(1− u1 − u2) + d0(d1u1 + d2u2) > 0. The model can be
generalized to n ≥ 3 components; see [4, 26]. For simplicity, we set f ≡ 0. Define the
entropy density

h(u) =
2∑

i=1

ui(log ui − 1) + (1− u1 − u2)
(

log(1− u1 − u2)− 1
)
,

where u = (u1, u2), and the entropy H[u] =
∫

Ω
h(u)dx. A formal computation shows

that

dH
dt

+

∫

Ω

1

a(u)

(
d2
|∇u1|2
u1

+ d1
|∇u2|2
u2

+ d0
|∇(u1 + u2)|2
1− u1 − u2

)
dx = 0,
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and in particular, h′′(u)A(u) is positive definite for ui > 0. The entropy variables
become wi = ∂h/∂ui = log(ui/(1−u1−u2)) with inverse ui(w) = ewi/(1+ew1 +ew2),
which lies in the triangle G = {u ∈ R2 : u1, u2 > 0, 1− u1 − u2 > 0}. This property
makes sense since ui are volume fractions and they are expected to be bounded. This
property can be exploited in the existence analysis to obtain bounded solutions without
using a maximum principle (which generally cannot be applied). �

Example 2 (Population model). The evolution of two interacting species may
be modeled by equations (1.1) with the diffusion matrix

A(u) =

(
a10 + a11u1 + a12u2 a12u1

a21u2 a20 + a21u1 + a22u2

)
,

where aij ≥ 0 [36]. We neglect the environmental potential and source terms, so
f ≡ 0. The entropy is given by H[u] =

∫
Ω
h(u)dx, where h(u) = a21u1(log u1 − 1) +

a12u2(log u2 − 1). A formal computation shows that

dH
dt

+

∫

Ω

{(
a10

u1
+ a21a11

)
|∇u1|2 +

(
a20

u2
+ a12a22

)
|∇u2|2 + 4|∇√u1u2|2

}
dx = 0.

(2.1)
The entropy variables are w1 = a21 log u1, w0 = a12 log u2. Then the population
densities are u1 = ew1/a21 , u2 = ew2/a12 > 0. An upper bound cannot be expected.

The model can be generalized to n ≥ 2 species with diffusion coefficients

Aij(u) = δij

(
ai0 +

n∑

k=1

aikuk

)
+ aijui, i, j = 1, . . . , n. (2.2)

The entropy structure is more delicate than in the two-species case. Indeed, assume
that there exist numbers πi > 0 such that the equations

πiaij = πjaji, i, j = 1, . . . , n, (2.3)

are satisfied. Then h(u) =
∑n
i=1 πiui(log ui − 1) is an entropy density, i.e. dH/dt ≤ 0

[8]. Equations (2.3) are recognized as the detailed-balance condition for the Markov
chain with transition rates aij , and π = (π1, . . . , πn) is the corresponding invariant
measure [25, Section 5.1]. �

3. Local existence of classical solutions. A very general result on the local-
in-time existence of classical solutions to diffusion systems was proved by Amann (see
[2, Section 1] or [3, Theorem 14.1]). A special version reads as follows.

Theorem 3.1 (Amann [2]). Let G ⊂ Rn be open, Aij, fi ∈ C∞(G), all eigenval-
ues of A(u) have positive real parts for all u ∈ G, and u0 ∈ V := {v ∈ W 1,p(Ω;Rn) :
v(Ω) ⊂ G}, where p > d. Then there exists a unique maximal solution u to (1.1)-(1.2)
satisfying u ∈ C0([0, T ∗);V ) ∩ C∞(Ω× (0, T ∗);Rn), where 0 < T ∗ ≤ ∞.

An elliptic operator u 7→ div(A(u)∇u) with the property that all eigenvalues of
A(u) have positive real parts is called normally elliptic. We claim that any cross-
diffusion system with strict entropy structure is normally elliptic.

Lemma 3.2 (Eigenvalues of A). Let A ∈ Rn×n. We assume that there exists a
symmetric, positive definite matrix H ∈ Rn×n such that HA is positive definite. Then
every eigenvalue of A has a positive real part.

In the context of cross-diffusion systems, H stands for the Hessian h′′(u).
Proof. Let λ = ξ + iη with ξ, η ∈ R be an eigenvalue of A with eigenvector

u = v + iw, where v, w ∈ Rn with v 6= 0 or w 6= 0. It follows from Au = λu
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that Av = ξv − ηw, Aw = ηv + ξw. We multiply both equations by v>H, w>H,
respectively:

0 < v>HAv = ξv>Hv − ηv>Hw, 0 < w>HAw = ηw>Hv + ξw>Hw.

Since H is symmetric, we have v>Hw = w>Hv. Therefore, adding both identities,

0 < v>HAv + w>HAw = ξ(v>Hv + w>Hw).

We infer from the positive definiteness of H that ξ > 0, proving the claim.

4. Global existence of weak solutions. The classical solution of Amann can
be continued for all time under some assumptions [3, Theorem 15.3].

Theorem 4.1 (Amann [3]). Let u be the classical maximal solution to (1.1)-(1.2)
on [0, T ∗). Assume that u|[0,T ] is bounded away from ∂G for each T > 0 and that
there exists α > 0 such that ‖u(t)‖C0,α ≤ C(T ) for all 0 ≤ t ≤ T <∞, t < T ∗. Then
T ∗ =∞.

Unfortunately, it is not easy to derive a uniform bound in the Hölder norm.
A possibility is to show that the gradient ∇ui(t) satisfies some higher integrability,
namely Lp(Ω) for p > d, since W 1,p(Ω) embeds continuously into C0,α(Ω) for α =
1 − p/d > 0. Estimates in the W 1,p norm with p > d for a particular system were
derived in, e.g., [23, 29].

Another approach is to find weak solutions using the entropy method as outlined
in the introduction. The key elements of the existence proof are the definition of an
approximate problem and a compactness argument. We are aware of two approaches
in the literature. In both approaches, the time derivative is replaced by the implicit
Euler discretization. This avoids issues with the (low) time regularity. To define
the change of unknowns u(w), we need bounded approximate solutions w. The first
approach regularizes the equations by adding a weak form of ε((−∆)sw + w). Since
Hs(Ω) ↪→ L∞(Ω) for s > d/2, this yields bounded weak solutions. The second
approach formulates the implicit Euler scheme as a fixed-point equation involving the
solution operator (M −∆)−1 for sufficiently large M > 0. This allows one to exploit
the regularization property of the solution operator (M −∆)−1 : Lp(Ω) → W 2,p(Ω),
and the continuous embedding W 2,p(Ω) ↪→ L∞(Ω) for p > d yields bounded solutions.
We detail both approaches in the following subsections.

4.1. Boundedness-by-entropy method. This method does not only give the
global existence of solutions but it also yields L∞ bounds. It was first used in [5] and
made systematic in [24]. The first key assumption is that the derivative h′ : G→ Rn
is invertible, where G ⊂ Rn is a bounded set. Then u(w(x, t)) = (h′)−1(w(x, t)) ∈ G
yields lower and upper bounds for the densities ui; see Example 1. The second key
assumption is the positive definiteness of h′′(u)A(u). Applications indicate that this
property does not hold uniformly in u. Therefore, we impose a weaker condition.
(H1) h ∈ C2(G; [0,∞)) is convex with invertible derivative h′ : G→ Rn.
(H2) G ⊂ (0, 1)n and for z = (z1, . . . , zn)> ∈ Rn and u = (u1, . . . , un) ∈ G,

z>h′′(u)A(u)z ≥ κ
n∑

i=1

u2m−2
i z2

i , where m ≥ 1

2
, κ > 0. (4.1)

(H3) A = (Aij) ∈ C0(G;Rn×n) and |Aij(u)| ≤ CA|uj |a for all u ∈ G, i, j = 1, . . . , n,
where CA, a > 0.

(H4) f ∈ C0(G;Rn) and ∃ Cf > 0: ∀ u ∈ G: f(u) · h′(u) ≤ Cf (1 + h(u)).
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Hypothesis (4.1) is satisfied with m = 1
2 in Examples 1 and 2 if a10 > 0, a20 > 0

and m = 1 in Example 2 if a11 > 0, a22 > 0. The following theorem is proved in [24,
Theorem 2]; also see [25, Section 4.4].

Theorem 4.2 (Global existence [24]). Let (H1)-(H4) hold and let u0 ∈ L1(Ω;Rn)
be such that u0(Ω) ⊂ G. Then there exists a bounded weak solution u to (1.1)-
(1.2) satisfying u(Ω, t) ⊂ G for all t > 0 and u ∈ L2

loc(0,∞;H1(Ω;Rn)), ∂tu ∈
L2

loc(0,∞;H1(Ω;Rn)′), for all T > 0 and φ ∈ L2(0, T ;H1(Ω;Rn)),

∫ T

0

〈∂tu, φ〉dt+

∫ T

0

∫

Ω

∇φ : A(u)∇udxdt =

∫ T

0

∫

Ω

f(u) · φdxdt,

where 〈·, ·〉 denotes the dual pairing of H1(Ω)′, and u(0) = u0 holds in H1(Ω;Rn)′.
The idea of the proof is to solve first for given uk−1 the regularized problem

1

τ

∫

Ω

(
u(wk)− u(wk−1)

)
· φdx+

∫

Ω

∇φ : B(wk)∇wkdx

+

∫

Ω

( ∑

|α|=s
Dαwk ·Dαφ+ wk · φ

)
dx =

∫

Ω

f(u(wk)) · φdx
(4.2)

for φ ∈ Hs(Ω;Rn), where s > d/2, α = (α1, . . . , αn) ∈ Nn0 with |α| = α1 + · · ·+αn = s
is a multiindex, Dα = ∂s/(∂xα1

1 · · · ∂xαnn ) is a partial derivative of order m, u(w) :=
(h′)−1(w), and wk is an approximation of w(·, kτ) with the time step τ > 0. This
problem is solved by the Leray-Schauder theorem. Uniform estimates are derived
from a discrete version of the entropy-production identity (1.3) and Hypothesis (H2).

Let u(τ)(x, t) = u(wk(x)) for x ∈ Ω and t ∈ ((k − 1)τ, kτ ], k = 1, . . . , N , be
piecewise constant functions in time. If t = 0, we set u(τ)(·, 0) = u0. We also need
the time shift operator (στu

(τ))(·, t) = u(wk−1) for t ∈ ((k − 1)τ, kτ ]. It follows from
the boundedness and the discrete entropy-production inequality that [25, Section 4.4]

‖u(τ)‖L∞(0,T ;L1(Ω)) ≤ C, (4.3)

τ−1‖u(τ) − στu(τ)‖L2(0,T ;Hs(Ω)′) + ‖(u(τ))m‖L2(0,T ;H1(Ω)) ≤ C, (4.4)

where C > 0 is independent of ε and τ . (In fact, we have even a bound for (u(τ))
in L∞(0, T ;L∞(Ω)).) If m = 1, we deduce relative compactness for (u(τ)) in L2(QT )
(where QT = Ω× (0, T )) from the discrete Aubin-Lions lemma in the version of [15].
When m 6= 1, we need the nonlinear version of [8, 11, 39].

Lemma 4.3 (Nonlinear Aubin-Lions). Let T > 0, m > 0, and let (u(τ)) be a
family of nonnegative functions that are piecewise constant in time with uniform time
step τ > 0. Assume that there exists C > 0 such that (4.4) holds for all τ > 0.

• Let m > 1 and let (u(τ)) be bounded in L∞(QT ). Then (u(τ)) is relatively compact
in Lp(QT ) for any p <∞ [39, Lemma 9].

• Let 1/2 ≤ m ≤ 1. Then (u(τ)) is relatively compact in L2m(0, T ;Lpm(Ω)), where
p ≥ 1/m and H1(Ω) ↪→ Lp(Ω) is continuous [11, Theorem 3].

• Let max{0, 1/2 − 1/d} < m < 1/2 and let (4.3) hold. Then (u(τ)) is relatively
compact in L1(0, T ;Ld/(d−1)(Ω)) [8, Theorem 22].

Another version of the nonlinear Aubin-Lions lemma is shown in [31].

Theorem 4.2 can be directly applied to the Maxwell-Stefan equations from Ex-
ample 1 yielding the global existence of bounded weak solutions.
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4.2. Cross-diffusion system with Laplace structure. Theorem 4.2 can be
only applied to situations in which the densities are bounded (volume fractions).
However, the method of proof can be adapted to cases, in which the domain G is not
bounded. The main difference is that we cannot work in L∞(Ω) anymore but only in
Lp(Ω) for suitable p <∞. The precise value of p depends on m in Hypothesis (H2),
and a global existence result can be proved under certain growth conditions on Aij(u)
and fi(u). As an example, consider the population model from Example 2 for n ≥ 2
species. The following theorem was proved in [8].

Theorem 4.4 (Population model, linear Aij [8]). Let u0
i ≥ 0 be such that∫

Ω
h(u0)dx < ∞ and let the detailed-balance condition (2.3) and aii > 0 hold. Then

there exists a weak solution u = (u1, . . . , un) to (1.1)-(1.2) with diffusion matrix (2.2)

satisfying ui ≥ 0 in Ω, t > 0, and ui ∈ L2
loc(0,∞;H1(Ω)), ∂tui ∈ Lq

′

loc(0, T ;W 1,q(Ω)′),
where q = 2d+ 2 and q′ = (2d+ 2)/(2d+ 1).

We have assumed that there is self-diffusion aii > 0, yielding an L2 estimate for
∇ui, which is stronger than the L2 estimate for ∇umi with m < 1. An existence
result with vanishing self-diffusion aii = 0 was shown in [7] for the two-species model.
Here, we only have an L2 bound for ∇√ui. The lack of regularity for ∇ui can be
compensated by exploiting the gradient estimate for ∇√u1u2 in (2.1) and an L2 logL2

estimate coming from the Lotka-Volterra reaction terms.
The detailed-balance condition can be replaced by a “weak cross-diffusion” as-

sumption which is automatically satisfied if (Aij) is symmetric; see [8, Formula (12)].
Another generalization concerns nonlinear diffusion coefficients

Aij(u) = δij

(
ai0 +

n∑

k=1

aiku
sk
k

)
+ sjaijuiu

sj−1
j , i, j = 1, . . . , n, (4.5)

for si ≥ 0. The corresponding cross-diffusion system can be analyzed by the method
of the previous subsection. However, improved results can be obtained by exploiting
the Laplace structure, meaning that (1.1) with (4.5) writes as

∂tui −∆(uipi(u)) = fi(u), where pi(u) = αi0 +

n∑

j=1

αiju
sj
j , (4.6)

and αij = aij for i 6= j and αii = (si + 1)aii. Let aii > 0 and si ≤ 2. Then, by

the entropy-production inequality, ∇usi/2i is bounded in L2(QT ), and the Gagliardo-
Nirenberg inequality with q = 2 + 4/(dsi) and θ = dsi/(2 + dsi) shows that

‖usi/2i ‖qLq(QT ) =

∫ T

0

‖usi/2i ‖qLq(Ω)dt ≤
∫ T

0

‖usi/2i ‖qθH1(Ω)‖u
si/2
i ‖q(1−θ)

L2/si (Ω)
dt

≤ ‖ui‖qsi(1−θ)/2L∞(0,T ;L1(Ω))

∫ T

0

‖usi/2i ‖2H1(Ω)dt ≤ C.

We deduce that ui is bounded in Lsi+2/d(QT ). Using the duality method of Pierre
[35], an improved regularity result can be derived. Indeed, set ū =

∑n
i=1 ui and

µ =
∑n
i=1 uipi(u)/ū. If fi(u) grows at most linearly in ui, we find that ū solves

∂tū − ∆(µū) ≤ Cū for some constant C > 0 depending on fi. Then (see, e.g., [30,
Lemma 1.2] or the review [34])

∫ T

0

∫

Ω

µū2dxdt ≤ C(T, u0). (4.7)
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We infer that u2
i pi(u) is uniformly bounded in L1(QT ), giving a bound for ui in

Lsi+2(QT ). For d > 1, this bound is better than the bound in Lsi+2/d(QT ) derived
above. The improved regularity is a key element in proving the global existence of
solutions [30, Theorem 1.10] (also see the precursor versions in [12, 13]). We define
the entropy density h(u) =

∑n
i=1 hi(ui), where

hi(ui) =

{
(usii − siui + si − 1)/(si − 1) if si 6= 1,
ui(log ui − 1) + 1 if si = 1.

Theorem 4.5 (Population model, nonlinear Aij [30]). Assume that si > 0,
sisj ≤ 1 for i 6= j, let the detailed-balance condition (2.3) hold, and fi(u) = bi0 −∑n
j=1 biju

αij
j for bij ≥ 0 and αij < 1. Finally, let u0

i ∈ L1(Ω) ∩H1(Ω)′,
∫

Ω
hi(u

0
i ) <

∞. Then there exists an integrable solution ui ≥ 0 to (4.6) and (1.2) such that for
all smooth test functions φ satisfying ∇φi · ν = 0 on ∂Ω,

−
∫ ∞

0

∫

Ω

u · ∂tφdxdt−
∫ ∞

0

∫

Ω

n∑

i=1

uipi(u)∆φidxdt

=

∫ ∞

0

∫

Ω

f(u) · φdxdt+

∫

Ω

u0(x) · φ(x, 0)dx.

It is an open problem to show the same result for arbitrary si > 0.
The key idea of the proof is to formulate the implicit Euler scheme

τ−1(uki − uk−1
i ) = ∆Fi(u

k) + fi(u
k), where Fi(u

k) = uki pi(u
k),

as the fixed-point equation

uk = F−1
(

(M −∆)−1
(
uk−1 − uk +MF (uk)

))
,

where F = (F1, . . . , Fn) and M > 0 is a sufficiently large number. In fact, if M is
large and uk−1

i > 0, we can show that v := uk−1
i − uki + MFi(u

k
i ) > 0, and by the

maximum principle, (M − ∆)−1v > 0. Then, if F is a homeomorphism on [0,∞)n,
uki > 0, which yields positivity. Moreover, elliptic regularity theory implies that for
v ∈ Lp(Ω) with p > d/2, we have (M −∆)−1v ∈W 2,p(Ω) ↪→ L∞(Ω). This shows that
uki is bounded in L∞ and it defines a fixed-point operator on L∞(Ω;Rn).

The main assumption is that F is a homeomorphism. Under this assumption,
Theorem 4.5 can be considerably generalized; see [30, Theorem 1.7] for details.

5. Uniqueness of weak solutions. The uniqueness of weak solutions to diffu-
sion systems is a delicate topic. One of the first uniqueness results was shown in [1],
assuming that the elliptic operator is linear and the time derivative of ui is integrable.
The latter hypothesis was relaxed in [32] allowing for finite-energy solutions but to
scalar equations only. The uniqueness of solutions was shown in [33] for a cross-
diffusion system with a strictly positive definite diffusion matrix. For cross-diffusion
systems with entropy structure (and not necessarily positive definite A(u)), there are
much less papers. The first result was for a special two-species population model [27],
later extended to a volume-filling system [39], and generalized in [9] for a class of
cross-diffusion systems. In this section, we report on the result of [9].

We allow for cross-diffusion systems involving drift terms,

∂tui = div
n∑

j=1

(
Aij(u)∇uj +Bij(u)∇φ

)
, i = 1, . . . , n, (5.1)
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where φ is a potential solving the Poisson equation

−∆φ = u0 − f(x) in Ω, u0 :=

n∑

i=1

aiui, (5.2)

ai ≥ 0 are some constants, and f(x) is a given background density. The equations
are complemented by (1.2) and ∇φ · ν = 0 on ∂Ω, t > 0. For consistency, we need to
impose the condition

∫
Ω

∑n
i=1 aiu

0
i dx =

∫
Ω
f(x)dx.

The uniqueness proof only works for a special class of coefficients, namely

Aij(u) = p(u0)δij + ajuiq(u0), Bij(u) = r(u0)uiδij , i, j = 1, . . . , n, (5.3)

for some functions p, q, and r. The main result is as follows.
Theorem 5.1 (Uniqueness of bounded weak solutions [9]). Let u0 ∈ L∞(Ω) and

f ∈ L2(Ω). Let (u, φ) be a weak solution to (5.1)-(5.3), (1.2) such that u0(Ω, t) ⊂ [0, L]
for some L > 0. Assume that there exists M > 0 such that for all s ∈ [0, L],

p(s) ≥ 0, p(s) + q(s)s ≥ 0, (5.4)

r(s)s ∈ C1([0, L]),
(r(s) + r′(s)s)2

p(s) + q(s)s
≤M. (5.5)

Then (u, φ) is unique in the class of solutions satisfying
∫

Ω
φdx = 0, ∇φ ∈ L∞(0, T ;

L∞(Ω)), and ui ∈ L2(0, T ;H1(Ω)), ∂tui ∈ L2(0, T ;H1(Ω)′) for i = 1, . . . , n. In
the case r ≡ 0, the boundedness of u0 is not needed, provided that

√
p(u0)∇ui,√

|q(u0)|∇ui ∈ L2(Ω× (0, T )).
The proof is based on the H−1 method and the entropy method of Gajewski [19].

First, we show the uniqueness of u0 =
∑n
i=1 aiui, solving

∂tu0 = div
(
∇Q(u0) +R(u0)∇φ

)
,

where Q(s) =
∫ s

0
(p(z) + q(z)z)dz and R(s) = r(s)s. Sine Q is nondecreasing, the

use of the H−1 technique seems to be natural. Given two solutions (u, φ) and (v, ψ),
the idea is to use the test function χ that solves the dual problem −∆χ = u0 − v0

in Ω, ∇χ · ν = 0 on ∂Ω and to show that d
dt‖∇χ‖2L2(Ω) ≤ C‖∇χ‖2L2(Ω), using the

monotonicity of Q. This implies that u0 = v0 and φ = ψ. Second, we differentiate (a
regularized version of) the semimetric

d(u, v) =
n∑

i=1

∫

Ω

(
h(ui) + h(vi)− 2h

(
ui + vi

2

))
dx,

where h(s) = s(log s− 1) + 1. Computing the time derivative of d(u(t), v(t)), it turns
out that the drift terms cancel and we end up with d

dtd(u, v) ≤ 0 implying that u = v.
Gajewski’s semimetric is related to the relative entropy or Kullback-Leibler en-

tropy H[u|v] = H[u] − H[v] − H′[v] · H(u − v) used in statistics [28]. In fact, the
proof of Theorem 5.1 can be performed as well with the symmetrized relative entropy
d0(u, v) = H[u|v] + H[v|u]. Both distances d(u, v) and d0(u, v) behave like |u − v|2
for “small” |u − v|, but they lead to different expressions when computed explic-
itly. The Kullback-Leibler entropy was also employed to derive explicit exponential
convergence rates to equilibrium [6] and to prove weak-strong uniqueness results for
(diagonal) reaction-diffusion systems [18].
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6. Open problems. We mention some open questions.

• Reaction terms: Hypothesis (H4) excludes reaction terms which grow superlin-
early. The global existence of solutions to cross-diffusion systems with, for instance,
quadratic reactions is an open problem. One approach could be to consider renor-
malized instead of weak solutions, as done in [17] for (diagonal) reaction-diffusion
systems. This is currently under development [9]. Another idea is to exploit the
entropy techniques devised for reaction-diffusion systems [16].

• n-species population model: It is an open problem to find global solutions to the
population model with diffusion matrix (2.2) and n ≥ 3 without detailed balance
or “weak cross-diffusion”. Numerical experiments indicate that standard choices
like the Boltzmann entropy, relative entropy, etc. are not Lyapunov functionals.
So, the problem to find a priori estimates is open.

• Uniqueness of solutions: The uniqueness result presented in Theorem 5.1 is rather
particular. One may ask whether weak-strong uniqueness of solutions can be shown
like in [18] for diagonal diffusion systems. In fact, uniqueness of weak solutions is
known to be delicate even for drift-diffusion equations; see, e.g., [14].

• Regularity theory: The duality method yields global Lp regularity results for cross-
diffusion systems with Laplace structure (see (4.7)). Another approach is to apply
maximal Lp regularity theory as done in [21] for Maxwell-Stefan systems, at least
for local solutions. The (open) question is to what extent this theory can be applied
to general systems with entropy structure?

• Entropies: Given a cross-diffusion system, a major open question is how an entropy
structure can be detected. In thermodynamics, often the entropy (more precisely:
free energy) and entropy production are given and the system of partial differen-
tial equations follows from these quantities. Furthermore, it is an open question
how large is the class of cross-diffusion systems with entropy structure. Are there
diffusion systems with normally elliptic operator, which have no entropy structure?
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[37] J. Stará and O. John. Some (new) counterexamples of parabolic systems. Comment. Math.

Univ. Carolin. 36 (1995), 503-510.
[38] J. Wesselingh and R. Krishna. Mass Transfer in Multicomponent Mixtures. Delft University

Press, Delft, 2000.
[39] N. Zamponi and A. Jüngel. Analysis of degenerate cross-diffusion population models with vol-

ume filling. Ann. Inst. H. Poincaré Anal. Non Lin. 34 (2017), 1-29.
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NUMERICAL MODELING OF HEAT EXCHANGE AND
UNSATURATED-SATURATED FLOW IN POROUS MEDIA∗

JOZEF KAČUR† , PATRIK MIHALA‡ , AND MICHAL TÓTH§

Abstract. We discuss the numerical modeling of heat exchange between the infiltrated water
and porous media matrix. An unsaturated-saturated flow is considered with boundary conditions
reflecting the external driven forces. The developed numerical method is efficient and can be used for
solving the inverse problems concerning determination of transmission coefficients for heat energy
exchange inside and also on the boundary of porous media. Numerical experiments support our
method.

Key words. porous media infiltration, water and heat transport, heat energy exchange, numer-
ical modeling of nonlinear system

AMS subject classifications. 65M08, 65M32, 76S05

1. Introduction. In this contribution we discuss the heat transported by in-
filtrated water into porous media taking into account the heat exchange between
infiltrated water and the porous media matrix assuming the flow is unsaturated. This
is motivated by an analysis of hygrothermal insulation properties of building facades.
The influence of external weather conditions is included in the considered model. We
focus especially on the determination of model parameters in a complex mathemat-
ical model. Solution of corresponding inverse problems relies on measurements in
laboratory conditions using real 3D samples.

The mathematical model consists of the coupled system of strongly nonlinear PDE
of elliptic-parabolic type. The flow of water in unsaturated-saturated porous media
is governed by Richard’s equation. The heat energy transported by infiltrated water
is subject to the convection, molecular diffusion, and dispersion, which are driven by
external forces due to water and heat fluxes caused by weather conditions. Math-
ematical models are well known and presented in many monographs, e.g., [1], with
very complex list of quotations. Fundamentals of heat and mass transfer with many
applications are discussed in [9]. In our setting the heat energy transmission from
water in pores to the porous media matrix is treated analogously to the reversible
adsorption of contaminant in unsaturated porous media, see e.g. [8],[2]. Additionally,
we take into account the heat conduction of the porous media matrix itself. Thus, so-
luted contaminant in water is replaced by heat energy. Solving the heat conduction of
porous media (without water in pores) is difficult task and is modeled by homogeniza-
tion method. In our setting we assume very simple heat conduction in matrix, where
heat permeability is obtained separately by solving a corresponding inverse problem
and using practical measurements. We also determine both transmission coefficient
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(Jozef.Kacur@fmph.uniba.sk).
‡FMFI UK Bratislava, Department of Mathematics, Mlynská dolina, 842 48, Slovakia

(pmihala@gmail.com).
§FMFI UK Bratislava, Department of Mathematics, Mlynská dolina, 842 48, Slovakia
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Fig. 1.1. Sample

and heat permeability in matrix via the solution of the inverse problem.

Recently, we have discussed in [6] determination of soil parameters in porous me-
dia flow model, based on empirical van Genuchten/Mualem capillary/pressure model.
There, we have used radially symmetric 3D sample using inflow/outflow measure-
ments. The main reason was that 1D samples (in form of thin tubes) used before
suffer from preferential stream lines arising in experiments, especially using centrifu-
gation. We have significantly eliminated this effect by suitable infiltration scenario
with cylindrical sample, where infiltration flux from sample mantle is orthogonal to
gravitational force. Moreover, the infiltration area is substantially larger then the
area of the top of the tube. Thus, we obtained more reliable results in determination
of soil parameters. In Fig. 1.1 we sketch the cylinder sample used in experiments.

In this manuscript we present the experiment scenarios to determine transmis-
sion, heat conduction and heat boundary transmission coefficients. The heat energy
exchange is modeled by temperature gap, water saturation and transmission coeffi-
cient. It is almost impossible to measure the temperature gap between the water in
pores and in matrix inside the porous media, but we can measure the consequences of
heat energy exchange. To determine the heat transmission coefficient and heat con-
duction coefficient of the matrix we suggest the following experiment scenario. The
cylindrical sample is initially uniformly low saturated (almost dry). The temperature
of water and matrix is the same, e.g. 20C. Then we let to infiltrate water (through
the cylinder mantle) with lower temperature, e.g., 5C. The top and bottom boundary
of the cylinder are isolated. We measure the time evolution of temperature in the
middle of the top of the cylinder. We note that temperatures of water and matrix
in this point (even on whole axis of the cylinder) are the same for long time interval
in experiment. The reason is that the infiltrating water has a very sharp front and
slowly progresses towards the cylinder axis. Simultaneously the heat is conducted by
the matrix and due to the heat exchange the temperature of water and the matrix
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are almost the same in the neighborhood of the axis and decreases. This observation
is supported by our numerical experiments. Thus, the time evolution of temperature
in the top point of axis is the main information in determination of transmission
coefficient and, moreover, also heat conduction coefficient of the matrix.

To determine the boundary heat transmission coefficient we consider saturated
sample with constant temperature field in porous media. The sample boundary is flow
isolated (except of the top and bottom). The external temperature is constant and
different from the initial temperature of the sample. We measure the time evolution
temperature of the cumulated outflow water. The initial sample temperature and the
temperature of infiltrated water from the top is the same. Water infiltrates from the
cylindrical chambre with constant water level. In this scenario we have simple flow
model and outflow boundary condition. This experimental scenario is used also in
analysis of temperature isolation propertis of material applied on mantel surface in
thin film form.

In our model setting we do not assume the temperature influence on the water
flow, but it could be included. However, the heat transport and its mutual transmis-
sion with the porous matrix strongly depend on the water saturation in pores.

In the heat and mass transfer problem in facades we consider 2D problem which
represents a cross-section of the facade, or cylindrical sample. The parallel vertical
boundaries of the rectangle represent the building and outdoor environment contacts.
In the case of cylindrical sample the left vertical boundary corresponds to its axis.

In the numerical method we use operator splitting method where we successively
along small time interval separately solve water flow, then heat transport in water and
then in matrix including heat exchange. In the solution of water flow we follow the
approximation strategy introduced in [5] and also used in well known software Hy-
drus (see [3]). To control the correctness of our numerical results we have developed
also an approximation scheme (see [8] used only for 1D) based on the reduction of the
governing parabolic equations to a stiff system of ordinary differential equations. This
approximation solves simultaneously whole system, but computational time is signif-
icantly larger. The main reason is that the system is stiff and too large when using
necessary space discretization. Comparisons justify our method which is significantly
quicker and therefore applicable in the solution of inverse problems in mathematical
model scaling. Moreover, present method could be efficiently used also for solving 3D
problems.

2. Mathematical model.

2.1. Water flow model. Water saturation θ ∈ (θr, θs) (θr is irreducible satu-
ration and θs is porosity) we rescale to effective saturation

θef (h) =
θ(h)− θr
θs − θr

.

Here, h ([cm]) is head and the fundamental empirical relation between saturation θ
and h in terms of van Genuchten/Mualem empirical model (capillary/pressure law)
is

θ(h) = θr +
θs − θr

(1 + (αh)n)m
, θef (h) = 1 for h ≥ 0, (2.1)

where α < 0, n > 1 and m(m = 1− 1/n) are soil parameters. Hydraulic permeability
K is modeled by

K(h) = Ksk(θef ), k(θef ) = θ
1
2

ef (1− (1− θ
1
m

ef )m)2, (2.2)
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where Ks is hydraulic permeability for fully saturated porous media. Water flux ~q

~q = (qx, qy), ~q(h) = −K(h)(∇h− ey),

where ey is a unit vector in direction y representing gravitational driving force.
Richards equation is of the form

∂tθ(h)− div(K(h)(∇h− ey)) = 0 (2.3)

with the corresponding boundary conditions which will be specified in numerical ex-
periments.

2.2. Heat energy in the water. Conservation of water heat energy is expressed
in PDE

cv∂t(θTw)− div(−cv~qTw + (Doθ + D̄)∇Tw) = σθ(Tw − Tm) (2.4)

where Tw is temperature of water, cv is heat capacity of unite water volume, σ is
transmission coefficient at the heat exchange with the matrix. Convective part is
cv~qTw and the diffusion/dispersion are characterized by molecular diffusion coefficient
Do and dispersion matrix D̄, where

D̄ =

(
D1,1 D1,2

D2,1 D2,2

)
=

(
αL((qx)2 + αT ((qy)2 (αL − αT )(qxqy)

(αL − αT )(qxqy) αL((qy)2 + αT ((qx)2

)
1

|~q|
Here, αL, αT are longitudinal and transversal dispersion coefficients. The correspond-
ing initial and boundary conditions will be specified in the numnerical experiments.

2.3. Heat conduction in the matrix. We assume the simple heat conduction
model in the matrix

cm∂tTm − λ∆Tm = σθ(Tw − Tm). (2.5)

where Tm - matrix temperature, λ - heat conduction coefficient and cm- heat capacity
of the matrix.

For simplicity, we assume that on the boundary there are presribed fluxes or
values of the unknown h, Tw, Tm and a combination of them.

2.4. Boundary conditions. Our solution domain Ω is a rectangle (x, y) ∈
(0, X) × (0, Y ) and t ∈ (0,Υ) . We consider the following boundary and initial
conditions in our numerical solution drawn in Fig. 2.1

∂yTm = 0, QT y = 0, h = h0 on (0, X)× {0} × (0,Υ)

∂yTm = 0, QT y = 0, qy = 0 on (0, X)× {Y } × (0,Υ)

Tm = 20, Tw = 20, h = −200 on (0, X)× (0, Y )× {0}.
The boundary conditions on {X} × (0, Y )× (0,Υ) are in the form

∂xTm = σm,r(TMr − Tm), QT x = σw,r(TWr − Tm), qx = σww,r(HWr − h)

and on {0} × (0, Y )× (0,Υ)

−∂xTm = σm,l(TMl − Tm), −QT x = σw,l(TWl − Tw), −qx = σww,l(HWl − h),

where TM, TW, TH are external temperature and pressure sources, and σ.,r, σ.,l
are corresponding boundary transmission coefficients. The boundary flux conditions
could be changed to Dirichlet boundary conditions.
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2.5. Mathematical model in cylindrical coordinates. Consider the cylin-
der with radius R and height Y . Using cylindrical coordinates (r, y) in (2.3), (2.4) ,
(2.5) we obtain

∂tθ(h) =
1

r
∂r(rK(h)∂rh) + ∂y(K(h)(∂yh− 1)) (2.6)

for water flow

cv∂t(θTw)−
(

1

r
∂r(rQT

r) + ∂y(QT y)

)
= σθ(Tw − Tm) (2.7)

for heat transport in water and

cm∂tTm − λ
(

1

r
∂r(rQT

r
m) + ∂y(∂yTm)

)
= σθ(Tw − Tm).

for heat conduction in the matrix, where

q = −(qr, qy)T , qr = K(h)∂rh, q
y = K(h)(∂zh− 1), (2.8)

QT r = −qrTw + θ(D1,1∂rTw +D1,2∂yTw +Doθ, (2.9)

QT y = −qyTw + θ(D2,1∂rTw +D2,2∂yTw +Doθ, QT
r
m = ∂rTm. (2.10)

2.6. Model data and corresponding numerical solution for cylindrical
sample. Our solution domain R = X = 10, Y = 10. In our numerical experiments
we assume the following model data ([CGS] units) as ”standard data” : θ0 = 0.38,
θr = 0, Ks = 2.4 10−4, α = 0.0189, n = 2.81, Do = 0.03, λ = 0.3, αL = 1, αT = 1

10 ,
cv = cm = 1 and σ = 1. These data correspond to a limestone.
We consider the boundaries (0, 10)× 0 and (0, 10)× 10 with zero heat and flow fluxes
(isolation). On the boundary 10 × (0, 10) the hydrostatic pressure h = (Y − y), y ∈
(0, Y ) is prescribed and Tw = 0. On the axis 10 × (0, 10) we have qr = 0, QT r = 0.
We consider heat isolation for matrix boundaries.
The initial conditions are h = −200 and Tw = Tm = 20. In the Fig. 2.1 we draw the
corresponding flow and temperature fields for the cylinder cross-section at the time
moment t = 60s.

3. Numerical method. In our approximation scheme we apply a flexible time
stepping and a finite volume method in space variables. We consider uniform parti-
tion of the domain with (Nx, Ny) = (31, 31) grid points (xi, yj) = (i∆x, j∆y), i, j =
0, 1, ..., 30, ∆x = X

Nx−1 ,∆y = Y
Ny−1 . The time derivative we approximate by back-

wards difference and then we integrate our system over the angular control volume
Vi,j with the corners xi± 1

2
, yj± 1

2
and with the length (∆x,∆y) of the edges. Then,

our approximation linked with the inner grid point (xi, yj) at the time t = tk is

∆x∆y
θ(h)− θ(hk−1)

τ
−∆y

[
K(hi+1) +K(h)

2

(
hi+1 − h

∆x

)]

+∆y

[
K(h) +K(hi−1)

2

(
h− hi−1

∆x

)]
−∆x

[
K(hj+1) +K(h)

2

(
hj+1 − h

∆y
− 1

)]

+∆x

[
K(h) +K(hj−1)

2

(
h− hj−1

∆y
− 1

)]
= 0.

Omitted indices are of values {i, j, k}.
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Fig. 2.1. Water pressure h and temperatures Tw, Tm in cylinder at t = 60s

3.1. Quasi-Newton linearization. In each (xi, yj) we linearize θ in terms of h
iteratively (with iteration parameter l) following [Cellia at all][5] in the following way

θ(hk,l+1)− θ(hk−1)

τ
= Ck,l

hk,l+1 − hk,l
τ

+
θk,l − θk−1

τ
(3.1)

where

Ck,l =
∂θk,l

∂hk,l
= (θs − θr)(1− n)α(αhk,l)n−1(1 + (αhk,l)n)−(m+1)

for hk,l < 0, else Ck,l = 0. We stop iterations for l = l∗, when

|hk,l∗ − hk,l∗−1| ≤ Tollerance, then we put hk := hk,l
∗
.

Finally. we replace the nonlinear term K(hk) by K(hk,l). Our approximation scheme
then becomes linear in terms of hk,l+1. Generally, we speed up the iteration by a spe-
cial construction of starting point hk,0 ≈ hk−1 and eventually using suitable damping
parameter in solving corresponding linearized system.
The complex system is solved by operator splitting method. To obtain an ap-
proximate solution for temperatures in water and matrix at the time section t = tk,
starting from t = tk−1 we use flow characteristics obtained at t = tk for θk, hk, ~qk,
and Dk.
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3.2. Approximation scheme for water temperature. For Tw(≡ T ), Tm at
(xi, yj) for t = tk we obtain by finite volume

cvθ
T−T k−1

τ
∆x∆y

−∆y

[
−cvqxi+1

2

Ti+1+Ti
2

+D1,1,i+1
2

Ti+1−Ti
∆x

+D1,2,i+1
2

Ti+1,j+1+Ti,j+1−Ti+1,j−1−Ti,j−1
4∆y

]

+∆y

[
−cvqxi−1

2

Ti+Ti−1
2

+D1,1,i−1
2

Ti−Ti−1
∆x

+D1,2,i−1
2

Ti,j+1+Ti−1,j+1−Ti,j−1−Ti−1,j−1
4∆y

]

−∆x

[
−cvqyj+1

2

Tj+1+Tj
2

+D2,2,j+1
2

Tj+1−Tj
∆y

+D2,1,j+1
2

Ti+1,j+1+Ti+1,j−Ti−1,j+1−Ti−1,j
4∆x

]

+∆x

[
−cvqyj−1

2

Tj+Tj−1
2

+D2,2,j−1
2

Tj−Tj−1
∆y

+D2,1,j−1
2

Ti+1,j+Ti+1,j−1−Ti−1,j−Ti−1,j−1
4∆x

]

= ∆x∆yσθk(Tm−Tw).
(3.2)

3.3. Approximation of ~q and D in middle points. We approximate ~q and
D in middle points by

qxi± 1
2
=−K(hi±1)+K(hi)

2

(±hi±1 ∓ hi
∆x

)
, qy

j± 1
2

=−K(hj±1)+K(hj)

2

(±hj±1∓hj
∆y

−1

)

qy
i± 1

2

= −K(hi±1) +K(hi)

2

(
hi±1,j+1 + hi,j+1 − hi±1,j−1 − hi,j−1

4∆y
− 1

)

qxj± 1
2

= −K(hj±1) +K(hi)

2

(
hi+1,j±1 + hi+1,j − hi−1,j±1 − hi−1,j

4∆x

)
,

D1,1,i± 1
2

=
(
αL(qxi± 1

2
)2 + αT (qy

i± 1
2

)2
) 1√

(qx
i± 1

2

)2 + (qy
i± 1

2

)2
+ λtθi± 1

2

D1,2,i± 1
2

= (αL − αT )qxi± 1
2
qy
i± 1

2

1√
(qx
i± 1

2

)2 + (qy
i± 1

2

)2

and analogously

D2,2,j± 1
2

= D1,1,i± 1
2

(i↔ j;αL ↔ αT ); D2,1,j± 1
2

= D1,2,i± 1
2

(i↔ j).

3.4. Approximation scheme for matrix temperature. The governing PDE
with BC and IC

cm∂tTm − λ∆Tm = σθ(Tw − Tm) (3.3)

Tm = T km is approximated by FVM ( (xi, yj), t = tk ) to

cm
Tm − T k−1

m

τ
∆x∆y −∆yλ

[
Tm i+1 − Tm i

∆x
− Tm i − Tm i−1

∆x

]

−∆xλ

[
Tm j+1 − Tm j

∆y
− Tm j − Tm j−1

∆y

]
= ∆x∆yσθk(Tm − Tw).

(3.4)
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3.5. Solution of the inverse problem to determine σ, λ. Measuring the
temperature of water and matrix in the sample is a difficult task. So we propose the
infiltration scenario which enables us to measure σ. There is uniformly distributed
small amount of water h = −100 in the sample and the initial temperature of water
and matrix are the same Tw = Tm = 20C. The top and bottom of the sample are
isolated (zero water and temperature fluxes). The top boundary is free and from
the bottom we let water to infiltrate. Water infiltrates by hydraulic pressure from
the mantel. The temperature of infiltrating water is 0C We are measuring the water
temperature on the top boundary. The model data are the same as data in Fig. 2.1.
The time evolution of the computed temperature on the top is presented in the Fig. 3.1
(blue line).

Fig. 3.1. Time evolution of temperature in top of the axis

The computed data have been perturbed by the 0.5C of noise using the random
function (green line). These were considered to be measured data. Then, we forgot
our transmission coefficient σ (= 1), and matrix heat conduction coefficient λ (= 0.3)
and we used an iteration procedure to minimize the discrepancy between the measured
data and the computed data.
The optimal point σopt, λopt (with respect to the given tolerance) is taken for the
required transmission and conduction coefficients. We verify its stability with respect
to the choice of starting points in iteration procedure. All measured data correspond
to different random noises. During the measured time interval t ∈ (0, 500) we have
used only 31 time moments.

The obtained results with different starting points are collected in Table 3.1. Used
starting points are combinations of σ ∈ {0.5, 1.5} and λ ∈ {0.1, 0.5}. The final value
does not depend on the starting point. However, it can be noticed that values of
parameters σ, λ slightly mutually interfer. There is always one that is lower than the
exact value while the other is changed in a opposite way.

3.6. Solution of the inverse problem to determine σm,r, σw,r. In the fact,
we shall assume that σm,r = σw,r := σB and in this case we obtain the stable results.
When they differ, the determination procedure is unstable and one can note the sub-
stitution effects between them. In the determination procedure we proceed as in the



NUMERICAL MODELING OF HEAT EXCHANGE AND FLOW IN POROUS MEDIA 199

Table 3.1
Optimal values of λ, σ

start σ, λ σ, λ
[0.5, 0.1] [1.0475, 0.2974] [0.9842, 0.3082]
[1.5, 0.1] [0.9547, 0.3277] [1.0212, 0.2945]
[0.5, 0.5] [1.0324, 0.2821] [0.9771, 0.3114]
[1.5, 0.5] [0.9685, 0.2854] [1.0389, 0.2901]

previous section determining (σ, λ). In our experiment we use the ”standard” model
data with the following changes. The sample is fully saturated and the temperature of
the sample is 20C. The mantel of the cylinder is water flow isolated. The temperature
outside the cylinder matle is 15C. The temperature field in the sample is drawn in
the Fig. 3.2 at the time moment t = 1500s. Water is infiltrated into sample throught
the smaller circle on top (Rin = 5) with pressure 5 and temperature 20. Water flows
out from the sample bottom. Temperature time evolution of the cumulated outflow
water is drawn in Fig. 3.3.

Fig. 3.2. Pressure and temperatures at t = 1500

Fig. 3.3. Temperature of cumulated outflow water

To determine σB (= 1) we are using measurements from the blue line in Fig. 3.3
which correspond to 0.5C of noise using the random function. As a starting point
for σB we use {0.5, 11.5} with two different noise applications. The obtained optimal
values are collected in Table 3.2. We present there also experiments corresponding to
0.1 noise.

Originally, we have solved our system using its approximation by a corresponding
stiff system of ODE, where space discretizarion is realized by finite volume method.
In this case we do not use operator splitting method. The solution coincides with
that one obtained by present method up to the first two digits when ruther dense grid
points are used. But the present method is signifficantly faster and more suitable in
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Table 3.2
Optimal values of αL

start σB (0.5) σB (0.5) — σB (0.1) σB (0.1)

0.5 0.90322 1.13708 1.03359 0.98857
1.5 1.18073 1.11269 0.96027 1.01879

solving inverse problems. In 1D we have compared solutions with that ones in [8], [3]
and [4].

4. Summary.
• Numerical modeling of heat exchange arising in water infiltration in unsatu-

rated porous media is discussed.
• Efficient numerical method is developed on the base of time stepping, operator

splitting and FVM.
• An infiltration scenario is proposed to determine the heat transmission coef-

ficient inside the porous media by solution of inverse problem.
• Also a scenario is proposed to determine the boundary heat transmission

coefficient.
• The efficiency of the numerical method is demonstrated by numerical exper-

iments.
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[3] J. Šimunek, M. Šejna, H. Saito, M. Sakai, M. Th. van Genuchten, The Hydrus-1D Software
Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably
Saturated Media, (2013).
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A WELL-POSEDNESS RESULT FOR A STOCHASTIC MASS
CONSERVED ALLEN-CAHN EQUATION WITH NONLINEAR

DIFFUSION.∗
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Abstract. In this paper, we prove the existence and uniqueness of the solution of the initial
boundary value problem for a stochastic mass conserved Allen-Cahn equation with nonlinear diffusion
together with a homogeneous Neumann boundary condition in an open bounded domain of Rn with
a smooth boundary. We suppose that the additive noise is induced by a Q-Brownian motion.

Key words. stochastic nonlocal reaction-diffusion equation, monotonicity method, conservation
of mass.
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1. Introduction. In this paper, we study the problem

(P )





∂ϕ

∂t
= div(A(∇ϕ)) + f(ϕ)− 1

|D|

∫

D

f(ϕ)dx+
∂W

∂t
, x ∈ D, t ≥ 0

A(∇ϕ).ν = 0, x ∈ ∂D, t ≥ 0

ϕ(0, x) = ϕ0(x), x ∈ D

where:
• D is an open bounded set of Rn with a smooth boundary ∂D;
• ν is the outer normal vector to ∂D;
• The function f is given by f(s) = s− s3;
• We assume that A = ∇vΨ(v) : Rn → Rn for some strictly convex function

Ψ ∈ C1,1(Rn) (i.e. Ψ ∈ C1(Rn) and ∇Ψ is Lipschitz continuous) which
satisfies




A(0) = ∇Ψ(0) = 0,Ψ(0) = 0

‖D2Ψ‖L∞(Rn;Rn×n) ≤ c1,
(1.1)

for some constant c1 > 0. We remark that (1.1) implies that

|A(a)−A(b)| ≤ C|a− b| (1.2)

for all a, b ∈ Rn,where C is a positive constant, and that the strict convexity of
Ψ implies that A is strictly monotone, namely there exists a positive constant
C0 such that

(A(a)−A(b))(a− b) ≥ C0|a− b|2, (1.3)

∗This work was supported by a public grant as part of the Investissement d’avenir project, refer-
ence ANR-11-LABX-0056-LMH, LabEx LMH.
†University of Paris-Sud.
‡CNRS and University of Paris-Sud.
§University of Tokyo, Japan.
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for all a, b ∈ Rn.

We remark that if A is the identity matrix, the nonlinear diffusion operator
−div(A(∇u)) reduces to the linear operator −∆u.

• The function W = W (x, t) is a Q-Brownian motion. More precisely, let Q be a
nonnegative definite symmetric operator on L2(D), {el}l≥1 be an orthonormal
basis in L2(D) diagonalizing Q, and {λl}l≥1 be the corresponding eigenvalues,
so that

Qel = λlel, for all l ≥ 1.

We suppose that Q satisfies

TrQ =

∞∑

l=1

〈Qel, el〉L2(D) =

∞∑

l=1

λl ≤ Λ0. (1.4)

for some positive constant Λ0. We suppose furthermore that el ∈ H1(D) ∩
L∞(D) for l = 1, 2... and that there exist positive constants Λ1 and Λ2 such
that

∞∑

l=1

λl‖el‖2L∞(D) ≤ Λ1, (1.5)

∞∑

l=1

λl‖∇el‖2L2(D) ≤ Λ2. (1.6)

• Next we define the following spaces:

H =

{
v ∈ L2(D),

∫

D

v = 0

}
, V = H1(D) ∩H and Z = V ∩ L4(D)

where ‖ · ‖ corresponding to the space H.
We also define 〈·, ·〉 = 〈·, ·〉Z∗,Z as the duality product between Z and its dual

space Z∗ = V ∗ + L
4
3 (D) ([3], p.175).

The corresponding deterministic equation with linear diffusion has been intro-
duced by Rubinstein and Sternberg [10] as a model for phase separation in a binary
mixture. The well-posedness and the stabilization of the solution for large times for
the corresponding Neumann problem were proved by Boussäıd, Hilhorst and Nguyen
[4]. They assumed that the initial function was bounded in L∞(D) and proved the
existence of the solution in an invariant set using the Galerkin method together with
a compactness method.

A singular limit of a rescaled version of Problem (P) with linear diffusion has been
studied by Antonopoulou, Bates, Blömker and Karali [1] to model the motion of a
droplet. However, they left open the problem of proving the existence and uniqueness
of the solution, which we address here. The proof of the existence of the solution of
Problem (P ) is based on a Galerkin method together with a monotonicity argument
similar to that used in [9] for a deterministic reaction-diffusion equation, and that in
[8] for a stochastic problem. We refer to the forthcoming article [6] for more details
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and for the proofs.

The organization of this paper is as follows. In section 2, we present regular-
ity properties of the solution WA of the nonlinear stochastic heat equation with a
homogeneous Neumann boundary condition and initial condition zero. In section 3,
we prove the existence of a solution of Problem (P ). To that purpose we take the
function ϕ −WA as the new unknown function. Finally, we prove the uniqueness of
the solution in section 4.

2. An auxiliary problem. We consider the Neumann boundary value problem
for the stochastic nonlinear heat equation

(P1)





∂WA

∂t
= div(A(∇WA)) +

∂W

∂t
, x ∈ D, t ≥ 0

A(∇WA).ν = 0, x ∈ ∂D, t ≥ 0

WA(0, x) = 0, x ∈ D.

First we define a solution of Problem (P1).
Definition 2.1. We say that WA is a solution of Problem (P1) if :
1. WA ∈ L∞(0, T ;L2(Ω×D)) ∩ L2(Ω× (0, T );H1(D));
2. div(A(∇WA)) ∈ L2(Ω× (0, T ); (H1(D))′);
3. WA satisfies almost surely the problem



WA(t) =

∫ t

0

div(A(∇WA(s)))ds+W (t), in the sense of distributions,

A(∇WA).ν = 0, in the sense of distributions on ∂D × R+.

(2.1)
Using ideas from Krylov & Rosovskii [8] we prove in [6] that this problem possesses
a unique solution WA. We are interested in further regularity properties of the solu-
tion WA. A first step is to apply a result of Gess [7] who proves the existence and
uniqueness of a solution in the sense of L2(D), namely almost everywhere in D. More
precisely, he defines a strong solution as follows (cf. [7], Definition 1.3).

Definition 2.2. (Strong solution) We say that WA is a strong solution of
Problem (P1) if :

1. WA is a solution in the sense of Krylov and Rosovskii;
2. WA ∈ L2(Ω;C([0, T ];L2(D)));
3. div(A(∇WA)) ∈ L2(Ω× (0, T );L2(D));
4. WA satisfies a.s. for all t ∈ (0, T ) the problem




WA(t) =

∫ t

0

div(A(∇WA(s)))ds+W (t), in L2(D),

A(∇WA(t)).ν = 0, in a suitable sense of trace on ∂D.

(2.2)

We will show in [6] the boundedness of WA in L∞(0, T ;Lq(Ω×D)) for all q ≥ 2.
The proof of this result is based on an article by Bauzet, Vallet, Wittbold [2] where a
similar result is proved for a convection-diffusion equation with a multiplicative noise
involving a standard adapted one-dimensional Brownian motion.
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Theorem 2.3. Let WA be a solution of Problem (P1); then
WA ∈ L∞(0, T ;Lq(Ω×D)), for all q ≥ 2.

3. Existence and uniqueness of the solution of Problem (P ). To begin
with, we perform the change of functions u(t) := ϕ(t) −WA(t); then ϕ is a solution
of (P) if and only if u satisfies:

(P2)





∂u

∂t
= div[A(∇(u+WA))−A(∇WA)] + f(u+WA)

− 1

|D|

∫

D

f(u+WA)dx, x ∈ D, t ≥ 0,

A(∇(u+WA)).ν = 0, x ∈ ∂D, t ≥ 0,

u(0, x) = ϕ0(x), x ∈ D.

We remark that Problem (P2) has the form of a deterministic problem; however it is
stochastic since the random function WA appears in the parabolic equation for u.

Definition 3.1. We say that u is a solution of Problem (P2) if :
1. u ∈ L∞(0, T ;L2(Ω×D)) ∩ L2(Ω× (0, T );H1(D)) ∩ L4(Ω× (0, T )×D);

div[A(∇(u+WA))] ∈ L2(Ω× (0, T ); (H1(D))′);
2. u satisfies almost surely the problem: for all t ∈ [0, T ]





u(t) = ϕ0 +

∫ t

0

div[A(∇(u+WA))−A(∇WA)] ds+

∫ t

0

f(u+WA)ds

−
∫ t

0

1

|D|

∫

D

f(u+WA)dxds, in the sense of distributions,

A(∇(u+WA)).ν = 0, in the sense of distributions on ∂D × R+.

(3.1)

The conservation of mass property holds, namely
∫

D

u(x, t)dx =

∫

D

ϕ0(x)dx, a.s. for a.e. t ∈ R+.

The main result of this section is the following.

Theorem 3.2. There exits a unique solution of Problem (P2).

Proof. In this section we apply the Galerkin method to prove the existence of
solution of Problem (P2). Denote by 0 < γ1 < γ2 ≤ ... ≤ γk̃ ≤ ... the eigenvalues of the

operator −∆ with homogeneous Neumann boundary conditions, and by wk̃, k̃ = 0, ...
the corresponding unit eigenfunctions in L2(D). Note that they are smooth functions.
We remark that the functions {wj} are an orthonormal basis of L2(D) and satisfy

∫

D

wjw0 = 0 for all j 6= 0 and w0 =
1√
|D|

.

We look for an approximate solution of the form

um(x, t)−M =
m∑

i=1

uim(t)wi =
m∑

i=1

〈um(t), wi〉wi,
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where M =
1

|D|

∫

D

ϕ0(x)dx; the function um satisfies the equations

∫

D

∂

∂t
(um(x, t)−M)wjdx= −

∫

D

[A(∇(um −M +WA))−A(∇WA)]∇wjdx

+

∫

D

f(um +WA)wjdx−
1

|D|

∫

D

( ∫

D

f(um +WA)dx
)
wjdx,

(3.2)

for all wj , j = 1, ...,m. We remark that um(x, 0) = M +
m∑

i=1

(ϕ0, wi)wi converges

strongly to ϕ0 in L2(D) as m→∞.

Problem (3.2) is an initial value problem for a system of m ordinary differential equa-
tions, so that it has a unique solution um on some interval (0, Tm), Tm > 0; in fact
the following a priori estimates show that this solution is global in time.

First we remark that the contribution of the nonlocal term vanishes. Indeed for all
j = 1, ...,m

− 1

|D|

∫

D

( ∫

D

f(um +WA(t))dx
)
wjdx = − 1

|D| (
∫

D

f(um +WA(t))dx)×
∫

D

wjdx

= 0. (3.3)

We substitute (3.3) into (3.2), we multiply (3.2) by ujm = ujm(t), sum on j = 1, ...,m
and use property (1.3) to deduce that

1

2

d

dt

∫

D

(um −M)2dx+ C0

∫

D

|∇(um −M)|2dx+ C1

∫

D

(um −M)4dx

≤ C2

∫

D

|WA(t)|4dx+ C̃2(M)|D|. (3.4)

3.1. A priori estimates and passing to the limit. In what follows, we derive
a priori estimates for the function um.

Lemma 3.1. There exists a positive constant C such that

sup
t∈[0,T ]

E
∫

D

(um −M)2dx ≤ C, E
∫ T

0

∫

D

|∇(um −M)|2dxdt ≤ C, (3.5)

E
∫ T

0

∫

D

(um −M)4dxdt ≤ C, (3.6)

E
∫ T

0

∫

D

(f(um +WA))
4
3 dxdt ≤ C, (3.7)

E
∫ T

0

‖ div(A(∇(um +WA)))‖2(H1(D))′dt ≤ C. (3.8)
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Proof. Integrating (3.4) from 0 to t and taking the expectation we deduce for all
t ∈ [0, T ]

1

2
E
∫

D

(um −M)2(t)dx+ C0E
∫ t

0

∫

D

|∇(um −M)|2dxds+ C1E
∫ t

0

∫

D

(um −M)4dxds

≤ 1

2

∫

D

(um(0)−M)2dx+ C2E
∫ t

0

∫

D

|WA(t)|4dxds+ C̃2(M)|D|T

≤ K,

where we have used Theorem 2.3 of section 2. Therefore um is bounded independently
of m in L∞(0, T, L2(Ω×D)) ∩ L2(Ω× (0, T );H1(D)) ∩ L4(Ω× (0, T )×D)).

Moreover we have that

E‖f(um +WA)‖
4
3

L
4
3 ((0,T )×D)

≤ c2E
∫ T

0

∫

D

|um −M |4dxdt+ c2E
∫ T

0

∫

D

|WA|4dxdt

+C5|D|T
≤ K1,

by (3.6) and Theorem 2.3 in section 2.

Finally one can show that the elliptic term is bounded in the sense of distributions.

Hence there exists a subsequence which we denote again by {um−M} and a function
u−M ∈ L2(Ω× (0, T );V ) ∩ L4(Ω× (0, T )×D) ∩ L∞(0, T ;L2(Ω×D)) such that

um −M ⇀ u−M weakly in L2(Ω× (0, T );V ) (3.9)

and L4(Ω× (0, T )×D)

um −M ⇀ u−M weakly star in L∞(0, T ;L2(Ω×D)) (3.10)

f(um +WA) ⇀ χ weakly in L
4
3 (Ω× (0, T )×D) (3.11)

div(A(∇(um +WA))) ⇀ Φ weakly in L2(Ω× (0, T ); (H1(D))′) (3.12)

as m→∞.

Next, we pass to the limit as m → ∞. To that purpose, we integrate in time the
equation (3.2), we recall that the nonlocal term vanishes in (3.2) and multiply the
equation by the product yψ, where y(ω) is any a.s. bounded random variable and
ψ(t) is a bounded function on (0,T); we finally integrate between 0 and T and take



A WELL-POSEDNESS RESULT FOR A STOCHASTIC ALLEN-CAHN EQUATION 207

the expectation, which yields for all j = 1, ..,m

E
∫ T

0

∫

D

yψ(t)(um(t)−M)wjdxdt

= E
∫ T

0

∫

D

yψ(t)(um(0)−M)wjdxdt

+E
∫ T

0

yψ(t){
∫ t

0

〈div[A(∇(um −M +WA))], wj〉ds}dt

−E
∫ T

0

yψ(t){
∫ t

0

〈div[A(∇WA)], wj〉ds}dt

+E
∫ T

0

yψ(t){
∫ t

0

∫

D

f(um +WA)wjdxds}dt. (3.13)

Passing to the limit in (3.13) by using Lebesgue-dominated convergence theorem, we
deduce that for a.e. (t, ω) ∈ (0, T )× Ω and for all w̃ ∈ V ∩ L4(D).

〈u(t)−M, w̃〉 = 〈ϕ0 −M, w̃〉+

∫ t

0

〈Φ + χ− div(A(∇WA)), w̃〉ds. (3.14)

Lemma 3.2. The function u is such that u ∈ C([0, T ];L2(D)) a.s.

Proof. Apply Lemma 1.2 p. 260 in [11].

It remains to prove that 〈Φ + χ, w̃〉 = 〈div(A(∇(u−M +WA))) + f(u+WA(t)), w̃〉
for all w̃ ∈ V ∩ L4(D).

3.2. Monotonicity argument. Let w be such that w−M ∈ L2(Ω×(0, T );V )∩
L4(Ω×D × (0, T )) and let c be a constant such that c ≥ 2. We define

Om = E
[ ∫ T

0

e−cs{2〈div
(
A(∇(um −M +WA))−A(∇WA)

)

− div
(
A(∇(w −M +WA))−A(∇WA)

)
, um −M − (w −M)〉Z∗,Z

+2〈f(um +WA)− f(w +WA), um −M − (w −M)〉Z∗,Z
−c‖um −M − (w −M)‖2}]ds.

We have the following result

Lemma 3.3. Om ≤ 0.

We write Om in the form Om = O1
m +O2

m where

O1
m = E

[ ∫ T

0

e−cs{2〈div
(
A(∇(um −M +WA))−A(∇WA)

)
, um −M〉Z∗,Z

+2〈f(um +WA), um −M〉Z∗,Z − c‖um −M‖2}]ds.
(3.15)

We integrate the equation (3.2) between 0 and T and recall that the nonlocal term in
(3.2) vanishes, we apply a chain rule formula and take the expectation to obtain
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E[e−cT ‖um(T )−M‖2]

= E[‖um(0)−M‖2]− cE[

∫ T

0

e−cs‖um(s)−M‖2ds]

+2E[

∫ T

0

e−cs〈div[A(∇(um −M +WA))−A(∇WA)], um −M〉Z∗,Z

+2E[

∫ T

0

e−cs〈f(um +WA), um −M〉Z∗,Z ]. (3.16)

It follows from (3.15) and (3.16) that

lim
m→∞

supO1
m = E[e−cT ‖u(T )−M‖2]− E[‖u(0)−M‖2] + δe−cT , (3.17)

where δ = lim
m→∞

supE[‖um(T )−M‖2]− E[‖u(T )−M‖2] ≥ 0.

On the other hand, the equation (3.14) implies that a.s. in Z∗ = V ∗ + L
4
3 (D) :

u(t)−M = ϕ0 −M +

∫ t

0

Φ− div(A(∇WA)) +

∫ t

0

χ, ∀t ∈ [0, T ]. (3.18)

Applying a chain rule formula we deduce that

E[e−cT ‖u(T )−M‖2] = E[‖u(0)−M‖2]− cE[

∫ T

0

e−cs‖u(s)−M‖2ds]

+2E
∫ T

0

e−cs〈Φ− div(A(∇WA)), u−M〉Z∗,Z

+2E[

∫ T

0

e−cs〈χ, u−M〉Z∗,Z ].

which we combine with (3.17) to deduce that

lim
m→∞

supO1
m = 2E[

∫ T

0

e−cs〈Φ− div(A(∇WA)), u−M〉Z∗,Z ]

+2E
∫ T

0

e−cs〈χ, u−M〉Z∗,Z − cE[

∫ T

0

e−cs‖u(s)−M‖2ds] + δe−cT .

(3.19)

It remains to compute the limit of O2
m; in view of (3.9), (3.11) and (3.12), we deduce

that

lim
m→∞

O2
m

= E
∫ T

0

e−cs{−2〈div[A(∇(w −M +WA))−A(∇WA)], u−M〉Z∗,Z
−2〈Φ− div(A(∇WA))− div[A(∇(w −M +WA))−A(∇WA)], w −M〉Z∗,Z
−2〈f(w +WA), u−M〉Z∗,Z − 2〈χ− f(w +WA), w −M〉Z∗,Z
−c‖w −M‖2 + 2c〈u−M,w −M〉}ds. (3.20)
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Combining (3.19) and (3.20), and remembering that Om ≤ 0, yields

E
∫ T

0

e−cs{2〈Φ− div
(
A∇(w −M +WA)), u−M − (w −M)〉Z∗,Z

+2〈χ− f(w +WA), u−M − (w −M)〉Z∗,Z − c‖u−M − (w −M)‖2}ds+ δe−cT ≤ 0.

Let v ∈ L2(Ω× (0, T );V ) ∩ L4(Ω× (0, T )×D) be arbitrary and set

w −M = u−M − λv, with λ ∈ R+.

Dividing by λ and letting λ→ 0, we find that for all v ∈ L2(Ω× (0, T );V ) ∩ L4(Ω×
(0, T )×D)

E
∫ T

0

〈Φ + χ, v〉Z∗,Z = E
∫ T

0

〈div[A(∇(u−M +WA))] + f(u+WA), v〉Z∗,Z .

One finally concludes that u satisfies Definition 3.1.

4. Uniqueness of the solution of Problem (P2). Let ω be given such that
two pathwise solutions of Problem (P2), u1 = u1(ω, x, t) and u2 = u2(ω, x, t) satisfy

ui(·, ·, ω) ∈ L∞(0, T ;L2(D)) ∩ L2(0, T ;H1(D)) ∩ L4((0, T )×D),

f(ui +WA) ∈ L 4
3 ((0, T )×D),

div(A(∇(ui +WA)) ∈ L2((0, T ); (H1(D))′)

for i = 1, 2, and u1(·, 0) = u2(·, 0) = ϕ0. The difference u1 − u2 satisfies the equation

u1(t)− u2(t) =

∫ t

0

div(A(∇(u1 +WA)))− div(A(∇(u2 +WA)))

+

∫ t

0

[f(u1 +WA)− f(u2 +WA)]

− 1

|D|

∫ t

0

[

∫

D

f(u1 +WA)−
∫

D

f(u2 +WA)dx],

in L2((0, T );V ∗) + L
4
3 ((0, T )×D).

We take the duality product of the equation for the difference u1− u2 with u1− u2 ∈
L2((0, T );V ∗) ∩ L 4

3 ((0, T )×D), we use (1.3) to obtain

‖u1 − u2‖2L2(D)≤ −C0

∫ t

0

∫

D

|∇(u1 − u2)|2

+

∫ t

0

〈f(u1 +WA)− f(u2 +WA)), u1 − u2〉Z∗,Z

−
∫ t

0

〈 1

|D|

∫

D

(f(u1 +WA)− f(u2 +WA))dx, u1 − u2〉Z∗,Z .

Since

∫

D

u1(x, t)dx =

∫

D

u2(x, t)dx =

∫

D

ϕ0(x)dx, it follows that the nonlocal term

vanishes. Using the fact that f ′ ≤ 1 we obtain
∫

D

(u1 − u2)2(x, t)dx ≤
∫ t

0

∫

D

(u1 − u2)2(x, t)dxds, for all t ∈ (0, T ).

which in turn implies by Gronwall’s Lemma that u1 = u2 a.e. in D × (0, T ).
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VECTORIAL QUASILINEAR DIFFUSION EQUATION

WITH DYNAMIC BOUNDARY CONDITION

RYOTA NAKAYASHIKI∗

Abstract. In this paper, we consider a class of initial-boundary value problems for quasilinear
PDEs, subject to the dynamic boundary conditions. Each initial-boundary problem is denoted
by (S)ε with a nonnegative constant ε, and for any ε ≥ 0, (S)ε can be regarded as a vectorial
transmission system between the quasilinear equation in the spatial domain Ω, and the parabolic
equation on the boundary Γ := ∂Ω, having a sufficient smoothness. The objective of this study
is to establish a mathematical method, which can enable us to handle the transmission systems of
various vectorial mathematical models, such as the Bingham type flow equations, the Ginzburg–
Landau type equations, and so on. On this basis, we set the goal of this paper to prove two Main
Theorems, concerned with the well-posedness of (S)ε with the precise representation of solution, and
ε-dependence of (S)ε, for ε ≥ 0.

Key words. vectorial parabolic equation, quasilinear diffusion, dynamic boundary condition

AMS subject classifications. 35K40, 35K59, 35R35.

1. Introduction. Let 0 < T <∞ and κ > 0 be fixed constants, and let m ∈ N
and 1 < N ∈ N be fixed constants of dimensions. Let Ω be a bounded spatial domain
in RN with a smooth boundary Γ := ∂Ω, and let nΓ be the unit outer normal to Γ.
Besides, we denote by Q := (0, T )×Ω the product space of a time interval (0, T ) and
the spatial domain Ω, and we put Σ := (0, T )× Γ.

In this paper, we take a constant ε ≥ 0, and consider the following initial-
boundary value problem:

(S)ε: 



∂tu− div

( ∇u
‖∇u‖ + κ2∇u

)
3 θ in Q,

∂tuΓ −∆Γ(ε2uΓ) +
( ∇u
‖∇u‖ + κ2∇u

)
|ΓnΓ 3 θΓ and u|Γ = uΓ on Σ,

u(0, ·) = u0 in Ω and uΓ(0, ·) = uΓ,0 on Γ,

for the vectorial unknowns u : Q→ Rm and uΓ : Σ→ Rm. In the context, θ : Q→ Rm
and θΓ : Σ → Rm are given forcing terms, and u0 : Ω → Rm and uΓ,0 : Γ → Rm
are given initial data for u and uΓ, respectively. “|Γ” denotes the trace of a Sobolev
function on Ω, and ∆Γ denotes the Laplace–Beltrami operator on Γ.

The boundary condition of (S)ε is given in the form of the so-called “dynamic
boundary condition”. In particular, since we can use the equation u|Γ = uΓ on Σ
to resemble a kind of the transmission condition, we can say that the problem (S)ε
is a vectorial transmission system between the quasilinear equation in Ω, and the
parabolic equation on Γ.

The objective of this study is to establish a mathematical method, which enables
us to handle various nonlinear phenomena described by vectorial unknowns. In this
regard, the study on (S)ε, for any ε ≥ 0, is aimed at the mathematical analysis for
quasilinear transmission systems, associated with the Bingham type flow equations,
the Ginzburg–Landau type equations, and so on.

∗Department of Mathematics and Informatics, Graduate School of Science, Chiba University,
1–33, Yayoi-cho, Inage-ku, Chiba, 263–8522, Japan.
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In view of such backgrounds, we set the goal to obtain some generalized results
for the previous works [4, 10], which dealt with the scalar-valued cases of quasilinear
transmission systems. On this basis, our principal results will be stated in forms of
the following two Main Theorems, which will be to verify the qualitative properties
of the systems, for every ε ≥ 0.

Main Theorem 1 : the well-posedness for (S)ε with the precise expression of solu-
tions, for any ε ≥ 0.

Main Theorem 2 : the continuous dependence of solutions to (S)ε with respect to
ε ≥ 0.

The content of this paper is as follows. Main Theorems are stated in Section 3
and these are discussed on the basis of the preliminaries prepared in Section 2. The
keypoints of the proofs are specified in Section 4, and the proofs of the Main Theorems
are provided in the last Section 5.

2. Preliminaries. In this section, we outline some basic notations.

Abstract Notations. For an abstract Banach space X, we denote by |·|X the norm
of X, and denote by 〈 · , · 〉X the duality pairing between X and the dual space X∗ of
X. Let IX : X → X be the identity map from X onto X. In particular, when X is a
Hilbert space, we denote by ( · , · )X the inner product of X.

For any proper lower semi-continuous (l.s.c. from now on) and convex function
Ψ defined on a Hilbert space X, we denote by D(Ψ) its effective domain, and denote
by ∂Ψ its subdifferential. The subdifferential ∂Ψ is a set-valued map corresponding
to a weak differential of Ψ, and it turns out to be a maximal monotone graph in the
product space X2 := X×X (see [1–3,7], for details). More precisely, for each z0 ∈ X,
the value ∂Ψ(z0) is defined as a set of all elements z∗0 ∈ X which satisfy the following
variational inequality:

(z∗0 , z − z0)X ≤ Ψ(z)−Ψ(z0), for any z ∈ D(Ψ).

The set D(∂Ψ) := {z ∈ X | ∂Ψ(z) 6= ∅} is called the domain of ∂Ψ. We often use the
notation “[z0, z

∗
0 ] ∈ ∂Ψ in X2”, to mean that “z∗0 ∈ ∂Ψ(z0) in X with z0 ∈ D(∂Ψ)”,

by identifying the operator ∂Ψ with its graph in X2.

Additionally, in this study, we use the following notion of convergence, called
“Mosco-convergence”, for sequences of convex functions.

Definition 2.1 (Mosco-convergence: cf. [9]). Let X be an abstract Hilbert space.
Let Ψ : X → (−∞,∞] be a proper l.s.c. and convex function, and let {Ψn}∞n=1 be a
sequence of proper l.s.c. and convex functions Ψn : X → (−∞,∞], n ∈ N. Then, it
is said that Ψn → Ψ on X, in the sense of Mosco, as n → ∞, iff. the following two
conditions are fulfilled.

(M1) Lower-bound condition: limn→∞Ψn(žn) ≥ Ψ(ž), if ž ∈ X, {žn}∞n=1 ⊂ X,
and žn → ž weakly in X as n→∞.

(M2) Optimality condition: for any ẑ ∈ D(Ψ), there exists a sequence
{ẑn}∞n=1 ⊂ X such that ẑn → ẑ in X and Ψn(ẑn)→ Ψ(ẑ), as n→∞.

Notations in real analysis. Let d ∈ N be any fixed dimension. Then, we simply

denote by a · b and |a| the standard scalar product of a, b ∈ Rd and the Euclidean
norm of a ∈ Rd, respectively. Besides, for arbitrary d-dimensional vectors a = [ai],
b = [bi] ∈ Rd with components ai, bi ∈ R (i = 1, . . . , d), we define:
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a⊗ b := atb =



a1b1 · · · a1bd

...
. . .

...
adb1 · · · adbd


 ∈ Rd×d.

For any d ∈ N, the d-dimensional Lebesgue measure is denoted by Ld, and d-
dimensional Hausdorff measure is denoted by Hd. Unless otherwise specified, the
measure theoretical phrases, such as “a.e.”, “dt”, “dx”, and so on, are with respect
to the Lebesgue measure in each corresponding dimension. Also, in the observation
on a smooth surface S, the phrase “a.e.” is with respect to the Hausdorff measure in
each corresponding Hausdorff dimension, and the area element on S is denoted by dS.

Notations of surface-differentials. Throughout this paper, let 1 < N ∈ N be a

fixed dimension, let Ω ⊂ RN be a bounded domain with C∞-boundary Γ := ∂Ω, and
let nΓ ∈ C∞(Γ;RN ) be the unit outer normal on Γ. Besides, we suppose that the
distance function x ∈ RN 7→ dΓ(x) := infy∈Γ |x − y| ∈ R forms a C∞-function on a
neighborhood of Γ. Based on these, we define:

L2
tan(Γ) := { ω̃ ∈ L2(Γ;RN ) ω̃ ·nΓ = 0 on Γ },

and we define the so-called Laplace–Beltrami operator ∆Γ as the composition ∆Γ :=
divΓ ◦ ∇Γ : C∞(Γ)→ C∞(Γ) of the surface-gradient :

ϕ ∈ C1(Γ) 7→ ∇Γϕ := ∇ϕex − (∇dΓ ⊗∇dΓ)∇ϕex ∈ L2
tan(Γ) ∩ C(Γ;RN ),

and the surface-divergence:

ω ∈ C1(Γ;RN ) 7→ divΓ ω := divωex −∇(ωex · ∇dΓ) · ∇dΓ ∈ C(Γ).

As is well-known (cf. [11]), the surface-gradient ∇Γ can be extended to a linear oper-
ator from the Sobolev space H1(Γ) into L2

tan(Γ), and the extension (also denoted by
∇Γ) define the inner product of the Hilbert space H1(Γ) as follows:

(ϕ,ψ)H1(Γ) := (ϕ,ψ)L2(Γ) + (∇Γϕ,∇Γψ)L2(Γ;RN ), for all ϕ,ψ ∈ H1(Γ).

Also, the surface-divergence divΓ can be extended to an operator from L2(Γ;RN )
into H−1(Γ), and as a consequence, the composition −divΓ ◦ ∇Γ = −∆Γ : H1(Γ) →
H−1(Γ) provides a duality map, such that:

〈−∆Γϕ,ψ〉H1(Γ) = (∇Γϕ,∇Γψ)L2(Γ;RN ), for all ϕ,ψ ∈ H1(Γ).

Notations in tensor analysis. Let m ∈ N be another dimension (besides N). For

arbitrary (m×N)-matrices A = [aij ], B = [bij ] ∈ Rm×N with components aij , bij ∈ R
(i = 1, . . .m, j = 1, . . . , N), we denote by A : B and ‖A‖ the scalar product of A and
B and the Frobenius norm of A, respectively, i.e.:

A : B :=

N∑

j=1

m∑

i=1

aijbij ∈ R and ‖A‖ :=
√
A : A ∈ R, for all A,B ∈ Rm×N .

For any vectorial function z = [zi] ∈ L2(Ω;Rm), we denote by ∇z the (distribu-
tional) gradient of z, defined as:

∇z := t[∇z1, . . . ,∇zm] =




∂1z1 · · · ∂Nz1

...
. . .

...
∂1zm · · · ∂Nzm


 ∈ D′(Ω)m×N ,
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and, for any matrix-valued function Z = [zij ] ∈ L2(Ω;Rm×N ), we denote by divZ the
(distributional) divergence of Z, defined as:

divZ :=

[
N∑

k=1

∂kzik

]
∈ D′(Ω)m.

Similarly, for any vectorial function z = [zi] ∈ H1(Γ;Rm), we define the surface-
gradient ∇Γz of z by ∇Γz := t[∇Γz1, . . . ,∇Γzm] ∈ L2

tan(Γ)m, and we define ∆Γz :=
[∆Γzi] ∈ H−1(Γ;Rm).

Remark 1 (cf. [8, Proposition 1.6]). The mapping M ∈ H1(Ω;Rm×N ) 7→
M |ΓnΓ ∈ H

1
2 (Γ;Rm) can be extended as a linear and continuous operator [ · , nΓ]

Γ

from

L2
div(Ω) :=

{
M̃ ∈ L2(Ω;Rm×N ) divM̃ ∈ L2(Ω;Rm)

}

into H−
1
2 (Γ;Rm), such that:

〈
[M,nΓ]Γ , z|Γ

〉
H

1
2 (Γ;Rm)

:=

∫

Ω

divM · z dx+

∫

Ω

M : ∇z dx,

for all M ∈ L2
div(Ω) and z ∈ H1(Ω;Rm).

(2.1)

3. Main Theorems. Let us set

H := L2(Ω;Rm)× L2(Γ;Rm),

and for any ε ≥ 0, let us set:

Vε :=

{
[v, vΓ] ∈H

v ∈ H1(Ω;Rm), vΓ ∈ H
1
2 (Γ;Rm),

εvΓ ∈ H1(Γ;Rm), and v|Γ = vΓ, a.e. on Γ

}
.

Note that H is a Hilbert space endowed with the inner product:

([z1, zΓ,1], [z2, zΓ,2])H := (z1, z2)L2(Ω;Rm) + (zΓ,1, zΓ,2)L2(Γ;Rm),

for [zk, zΓ,k] ∈H , k = 1, 2.

Also, if ε > 0 (resp. ε = 0), then the corresponding class Vε (resp. V0) is a closed linear

space in H1(Ω;Rm)×H1(Γ;Rm) (resp. in H1(Ω;Rm)×H 1
2 (Γ;Rm)), and hence, it is

a Hilbert space endowed with the standard inner product of H1(Ω;Rm)×H1(Γ;Rm)

(resp. H1(Ω;Rm)×H 1
2 (Γ;Rm)). Furthermore, for any ε ≥ 0, Vε is dense in H , i.e.

Vε = H , and the embedding Vε ⊂H is compact.
By using the above notations, we define the solution to (S)ε, for ε ≥ 0, as follows.
Definition 3.1. Let ε ≥ 0 be a fixed constant. Then, a pair of functions [u, uΓ] ∈

L2(0, T ; H ) is called a solution to (S)ε, iff. the following conditions are fulfilled.
(S1) [u, uΓ] ∈ C([0, T ]; H ) ∩W 1,2

loc ((0, T ]; H ) ∩ L2(0, T ; Vε) ∩ L∞loc((0, T ]; Vε),
[u(0), uΓ(0)] = [u0, uΓ,0] in H .

(S2) There exists a function Mu : Q→ Rm×N , such that:

Mu(t) ∈ L2
div(Ω), a.e. t ∈ (0, T ) and [∇u,Mu] ∈ ∂‖·‖ in [Rm×N ]2, a.e. in Q,
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and
∫

Ω

∂tu(t) · z dx+

∫

Ω

(Mu(t) + κ2∇u(t)) : ∇z dx

+

∫

Γ

∂tuΓ(t) · zΓ dΓ +

∫

Γ

∇Γ(εuΓ(t)) : ∇Γ(εzΓ) dΓ

=

∫

Ω

θ(t) · z dx+

∫

Γ

θΓ(t) · zΓ dΓ, for any [z, zΓ] ∈ Vε, and a.e. t ∈ (0, T ),

where ∂‖ · ‖ ⊂ [Rm×N ]2 denotes the subdifferential of the Frobenius norm ‖ · ‖
on Rm×N .

Based on this, the Main Theorems of this paper are stated as follows.
Main Theorem 1 (Well-posedness). Let ε ≥ 0 be a fixed constant. Then, the

following two items hold.
(I-1) (Solvability) For every [θ, θΓ] ∈ L2(0, T ; H ) and [u0, uΓ,0] ∈ H , the system

(S)ε admits a unique solution [u, uΓ].
(I-2) (Continuous dependence) For k = 1, 2, let [uk, uΓ,k] be two solutions to (S)ε,

corresponding to the forcing pairs [θk, θΓ,k] ∈ L2(0, T ; H ) and the initial pairs
[u0,k, uΓ,0,k] ∈H , respectively. Then, it follows that:

|[u1 − u2, uΓ,1 − uΓ,2]|2C([0,T ];H )

≤ eT
(
|[θ1 − θ2, θΓ,1 − θΓ,2]|2L2(0,T ;H ) + |[u0,1 − u0,2, uΓ,0,1 − uΓ,0,2]|2H

)
.

Main Theorem 2 (Continuous dependence with respect to ε ≥ 0). Let ε0 ≥ 0
be a fixed constant. Let {[θε, θΓ,ε]}ε≥0 ⊂ L2(0, T ; H ) be a sequence of the forcing
pair, let {[u0,ε, uΓ,0,ε]}ε≥0 ⊂ H be a sequence of the initial pair, and for any ε ≥ 0,
let [uε, uΓ,ε] be a solution to (S)ε corresponding to the forcing pair [θε, θΓ,ε] and the
initial pair [u0,ε, uΓ,0,ε]. Here, if:

{
[θε, θΓ,ε]→ [θε0 , θΓ,ε0 ] weakly in L2(0, T ; H ),

[u0,ε, uΓ,0,ε]→ [u0,ε0 , uΓ,0,ε0 ] in H ,
as ε→ ε0,

then:

[uε, uΓ,ε]→ [uε0 , uΓ,ε0 ] in C([0, T ]; H ), and in L2(0, T ; V0) as ε→ ε0, (3.1)

and in particular, if ε0 > 0, then:

uΓ,ε → uΓ,ε0 in L2(0, T ;H1(Γ;Rm)), as ε→ ε0. (3.2)

4. Keypoints of the proofs. In this section, we specify the keypoints in the
proofs of Main Theorems. Roughly summarized, we will prove the Main Theorems
by reformulating our system (S)ε to the following Cauchy problem for an evolution
equation, denoted by (CP)ε:

(CP)ε

{
U ′(t) + ∂Φε(U(t)) 3 Θ(t) in H , a.e. t ∈ (0, T ),

U(0) = U0 in H ,
for ε ≥ 0.

In the context, the unknown U ∈ L2(0, T ; H ) corresponds to the solution [u, uΓ] to the
system (S)ε, and Θ := [θ, θΓ] in L2(0, T ; H ) and U0 := [u0, uΓ,0] in H correspond to
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the pair of the forcing terms and the pair of the initial data, respectively. ∂Φε denotes
the subdifferential of a proper l.s.c. and convex function Φε : H → [0,∞], defined as:

U = [u, uΓ] ∈H 7→ Φε(U) = Φε(u, uΓ)

:=





∫

Ω

(
‖∇u‖+

κ2

2
‖∇u‖2

)
dx+

1

2

∫

Γ

‖∇Γ(εuΓ)‖2 dΓ,

if U = [u, uΓ] ∈ Vε,

∞, otherwise,

for ε ≥ 0.

Now, the essential keypoint is to show the following Key-Lemma, which is to
sustain a certain association between the system (S)ε and the Cauchy problem (CP)ε,
for any ε ≥ 0.

Key-Lemma 1 (The representation of ∂Φε) For any ε ≥ 0, the following two
items are equivalent.
(I) [u, uΓ] ∈ D(∂Φε) and [u∗, u∗Γ] ∈ ∂Φε(u, uΓ) in H .
(II) [u, uΓ] ∈ D(Φε) and there exists M∗u ∈ L∞(Ω;Rm×N ), such that:

[∇u,M∗u ] ∈ ∂‖ · ‖ in [Rm×N ]2, a.e. in Ω, (4.1)
{
M∗u + κ2∇u ∈ L2

div(Ω),

−∆Γ(ε2uΓ) + [(M∗u + κ2∇u), nΓ]Γ ∈ L2(Γ;Rm),
(4.2)

{
u∗ = −div(M∗u + κ2∇u) in L2(Ω;Rm),

u∗Γ = −∆Γ(ε2uΓ)+[(M∗u+κ2∇u), nΓ]
Γ

in L2(Γ;Rm).
(4.3)

For the proof of the Key-Lemma, we prepare a class of relaxed convex functions
{Φδε | ε ≥ 0, 0 < δ ≤ 1}, defined as:

U = [u, uΓ] ∈H 7→ Φδε(U) = Φδε(u, uΓ)

:=





∫

Ω

(√
‖∇u‖2 + δ2 +

κ2

2
‖∇u‖2

)
dx+

1

2

∫

Γ

‖∇Γ(εuΓ)‖2 dΓ,

if U = [u, uΓ] ∈ Vε,

∞, otherwise,
for all ε ≥ 0 and 0 < δ ≤ 1.

Similar relaxation methods have been adopted in some previous results (e.g. [4,
Key-Lemma 1-2 and Lemma 4.1]), and referring to some of these, we can verify the
following facts.
(Fact 1) Let us fix all ε > 0, 0 < δ ≤ 1, and let us define:

Dδ
ε :=



[z, zΓ] ∈H

∇z√
‖∇z‖2+δ2

+ κ2∇z ∈ L2
div(Ω),

−∆Γ(ε2zΓ)+[( ∇z√
‖∇z‖2+δ2

+κ2∇z), nΓ]
Γ
∈ L2(Γ;Rm)



 ,

and let us define a single-valued operator Aδε : Dδ
ε ⊂H →H , by letting:

[z, zΓ] ∈ Dδ
ε 7→ Aδε[z, zΓ]

:=

t



−div( ∇z√
‖∇z‖2+δ2

+ κ2∇z)
−∆Γ(ε2zΓ) + [( ∇z√

‖∇z‖2+δ2
+ κ2∇z), nΓ]

Γ


 ∈H .
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Then, ∂Φδε ⊂H 2 coincides with the (graph of) operator Aδε, i.e.:

∂Φδε = Aδε in H 2, for all ε > 0 and 0 < δ ≤ 1.

(Fact 2) Let ε0 ≥ 0, and let {εn}∞n=1 ⊂ [0,∞) and {δn}∞n=1 ⊂ (0, 1] be arbitrary
sequences, which fulfill that εn → ε0 and δn → 0, as n → ∞. Then, the
sequence of convex functions {Φδnεn}∞n=1, converges to the convex function Φε0
on H , in the sense of Mosco, as n→∞.

(Fact 3) A sequence of convex functions:

W ∈ L2(Ω;Rm×N ) 7→
∫

Ω

√
‖W‖2 + δ2 dx ∈ [0,∞), for any 0 < δ ≤ 1

converges to the convex function:

W ∈ L2(Ω;Rm×N ) 7→
∫

Ω

‖W‖ dx ∈ [0,∞)

on L2(Ω;Rm×N ), in the sense of Mosco, as δ → 0.

Finally, in the rest of this section, we give the proof of the Key-Lemma.

Proof of Key-Lemma 1. Let us take a constant ε ≥ 0, and let us set:

Dε :=
{

[u, uΓ] ∈ Vε there exists M∗u ∈ L∞(Ω;Rm×N ), such that (4.1)–(4.2)
}
,

and let us define a set-valued operator Aε, by putting:

[u, uΓ] ∈ Dε 7→ Aε[u, uΓ]

:=

{
[u∗, u∗Γ] ∈H

(4.3) holds, for some M∗u ∈ L∞(Ω;Rm×N ),
fulfilling (4.1)–(4.2)

}
.

Then, the assertion of Key-Lemma 1 can be rephrased as follows:

∂Φε = Aε in H 2, for any ε ≥ 0. (4.4)

We prove the above (4.4) via the following two Claims.

Claim #1: Aε ⊂ ∂Φε in H 2, for any ε ≥ 0.
Let us assume that [u, uΓ] ∈ Dε and [u∗, u∗Γ] ∈ Aε[u, uΓ] in H . Then, by (2.1)

and the definition of the subdifferential, we can verify that:

([u∗, u∗Γ], [z, zΓ]− [u, uΓ])H

= (−div(M∗u + κ2∇u), z − u)L2(Ω;Rm)

+ (−∆Γ(ε2uΓ) + [(M∗u + κ2∇u), nΓ]
Γ
, zΓ − uΓ)L2(Γ;Rm)

=

∫

Ω

(M∗u + κ2∇u) : ∇(z − u) dx+

∫

Γ

∇Γ(εuΓ) : ∇Γ(ε(zΓ − uΓ)) dΓ

≤
∫

Ω

(
‖∇z‖+

κ2

2
‖∇z‖2

)
dx−

∫

Ω

(
‖∇u‖+

κ2

2
‖∇u‖2

)
dx

+
1

2

∫

Γ

‖∇Γ(εzΓ)‖2 dΓ− 1

2

∫

Γ

‖∇Γ(εuΓ)‖2 dΓ

= Φε(z, zΓ)− Φε(u, uΓ), for any [z, zΓ] ∈ Vε.
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Claim #2: (Aε + IH )H = H .
It is sufficient to show (Aε+IH ) ⊃H , because the other inclusion is trivial. Let

[w,wΓ] ∈H be any pair of functions. Then, owing to (Fact 1) and Minty’s Theorem,
we can configure a class of functions {[uδ, uΓ,δ]}0<δ≤1 ⊂H , such that:

[uδ, uΓ,δ] := (Aδε + IH )−1[w,wΓ] in H , for any 0 < δ ≤ 1,

and by taking any [z, zΓ] ∈ Vε, we can see that:

∫

Ω

( ∇uδ√
‖∇uδ‖2+δ2

+ κ2∇uδ) : ∇z dx+

∫

Γ

∇Γ(εuΓ,δ) : ∇Γ(εzΓ) dΓ

= (w − uδ, z)L2(Ω;Rm) + (wΓ − uΓ,δ, zΓ)L2(Γ;Rm), for any 0 < δ ≤ 1.

(4.5)

Here, let us put [z, zΓ] = [uδ, uΓ,δ] ∈ Vε in (4.5). Then, by using Young’s inequality,
we deduce that:

|[uδ, uΓ,δ]|2H + 2
(
κ2|∇uδ|2L2(Ω;Rm) + |∇Γ(εuΓ,δ

)
|2L2(Γ;Rm)) ≤ |[w,wΓ]|2H + δLN (Ω),

for any 0 < δ ≤ 1.

The above estimation may suppose that {[uδ, uΓ,δ]}0<δ≤1 is bounded in Vε, and is
compact in H . Therefore, we can find a sequence {δn}∞n=1 ⊂ {δ} and a pair of
functions [u, uΓ] ∈ Vε, such that:

[un, uΓ,n] := [uδn , uΓ,δn ]→ [u, uΓ] in H and weakly in Vε, as n→∞. (4.6)

Additionally, since

∣∣∣∣ ∇un√
‖∇un‖2+δ2

n

∣∣∣∣ ≤ 1, a.e. in Ω, for any n ∈ N,

there exists a function M∗u ∈ L∞(Ω;Rm×N ), such that:

∇un√
‖∇un‖2+δ2

n

→M∗u , weakly-∗ in L∞(Ω;Rm×N ), as n→∞, (4.7)

by taking more one subsequence if necessary.
Now, with (4.6)–(4.7) in mind, let us take any function ϕ0 ∈ H1

0 (Ω;Rm), and let
us put [z, zΓ] = [ϕ0, 0] ∈ Vε in (4.5). Then, putting δ = δn with n ∈ N, and letting
n→∞ in (4.5) yield that:

∫

Ω

(M∗u + κ2∇u) : ∇ϕ0 dx = (w − u, ϕ0)L2(Ω;Rm).

It implies that:

−div(M∗u + κ2∇u) = w − u ∈ L2(Ω;Rm) in D′(Ω)m. (4.8)

As well as, putting δ = δn, letting n → ∞ in (4.5) and applying (2.1) and (4.8) lead
to:

(wΓ − uΓ, zΓ)L2(Γ;Rm) =
〈
−∆Γ(ε2uΓ) + [(M∗u + κ2∇u), nΓ]Γ , zΓ

〉
H1(Γ;Rm)

,

for any zΓ ∈ H1(Γ;Rm).
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Therefore, we can observe that:

−∆Γ(ε2uΓ) + [(M∗u + κ2∇u), nΓ]
Γ

= wΓ − uΓ ∈ L2(Γ;Rm) in H−1(Γ;Rm). (4.9)

Finally, from (Fact 2)–(Fact 3), it is immediately seen that:





lim
n→∞

∫

Ω

√
‖∇un‖2 + δ2

n dx ≥
∫

Ω

‖∇u‖ dx,

lim
n→∞

(
κ2

2

∫

Ω

‖∇un‖2 dx
)
≥ κ2

2

∫

Ω

‖∇u‖2 dx,

lim
n→∞

(
1

2

∫

Γ

‖∇Γ(εuΓ,n)‖2 dΓ

)
≥ 1

2

∫

Γ

‖∇Γ(εuΓ)‖2 dΓ.

(4.10)

Then, by putting [z, zΓ] = [un − u, uΓ,n − uΓ] ∈ Vε in (4.5), we can compute that:

∫

Ω

(√
‖∇un‖2 + δ2

n +
κ2

2
‖∇un‖2

)
dx+

1

2

∫

Γ

‖∇Γ(εuΓ,n)‖2 dΓ

≤
∫

Ω

(√
‖∇u‖2 + δ2

n +
κ2

2
‖∇u‖2

)
dx+

1

2

∫

Γ

‖∇Γ(εuΓ)‖2 dΓ

+ (w − un, un − u)L2(Ω;Rm) + (wΓ − uΓ,n, uΓ,n − uΓ)L2(Γ;Rm).

Based on these, we take the limit of the above inequality, and infer that:

lim
n→∞

(∫

Ω

(√
‖∇un‖2 + δ2

n +
κ2

2
‖∇un‖2

)
dx+

1

2

∫

Γ

‖∇Γ(εuΓ,n)‖2 dΓ

)

≤
∫

Ω

(
‖∇u‖+

κ2

2
‖∇u‖2

)
dx+

1

2

∫

Γ

‖∇Γ(εuΓ)‖2 dΓ. (4.11)

By virtue of (4.6)–(4.7), (4.10)–(4.11) and the uniform convexity of the L2-based
topologies, it is further deduced that:

∇un → ∇u in L2(Ω;Rm×N ), as n→∞. (4.12)

On account of (4.12), (Fact 3), [1, Proposition 3.59 and Theorem 3.66], [3, Proposition
2.16] and [5, Appendix], we can obtain that:

M∗u ∈ { M̃ ∈ L2(Ω;Rm×N ) [∇u, M̃ ] ∈ ∂‖ · ‖ in [Rm×N ]2, a.e. in Ω }. (4.13)

As a consequence of (4.8)–(4.9) and (4.13), we verify Claim #2.

Now, with Claims #1–#2 and the maximality of the subdifferential ∂Φε ⊂ H 2

in mind, we can deduce the coincidence (4.4), and we conclude Key-Lemma 1. 2

5. Proofs of Main Theorems. In this section, we will prove the Main The-
orems 1–2 on the basis of Key-Lemma 1 and (Fact 1)–(Fact 3) as in the previous
sections.

Proof of Main Theorem 1. First, we show the item (I-1). In the Cauchy problem
(CP)ε, let us first confirm that:

Θ := [θ, θΓ] ∈ L2(0, T ; H ) and U0 := [u0, uΓ,0] ∈ D(Φε) = Vε = H .
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Then, by applying the general theories of evolution equations, e.g. [2, Theorem 4.1], [3,
Proposition 3.2], [6, Section 2], and [7, Theorem 1.1.2], we immediately have the
existence and uniqueness of the solution U = [u, uΓ] ∈ L2(0, T ; H ) to (CP)ε, such
that:

U ∈ C([0, T ]; H )∩L2(0, T ; H )∩W 1,2
loc ((0, T ]; H ) and Φε(U) ∈ L1(0, T )∩L∞loc((0, T ]).

Now, by Key-Lemma 1, we observe that the solution U = [u, uΓ] to (CP)ε coin-
cides with that to the system (S)ε, and hence, we verify the item (I-1).

In the meantime, the equivalence between (S)ε and (CP)ε enables us to conclude
the other item (I-2) by applying the standard methods for evolution equations: more
precisely, by taking the difference between the two evolution equations, multiplying
its both sides by the difference of solutions, and using Gronwall’s lemma. 2

Proof of Main Theorem 2. For any ε ≥ 0, let us simply put Θε := [θε, θΓ,ε] ∈
L2(0, T ; H ) and U0,ε := [u0,ε, uΓ,0,ε] ∈ H , and let us denote by Uε the solution
[uε, uΓ,ε] to (S)ε corresponding to the forcing term Θε = [θε, θΓ,ε] and the initial data
U0,ε = [u0,ε, uΓ,0,ε]. Then, by the equivalence between (S)ε and (CP)ε, we can apply
some of analytic techniques for nonlinear evolution equations, e.g. [7, Theorem 2.7.1]
and [4, Main Theorem 2], and we can derive the following convergences:

Uε → Uε0 in C([0, T ]; H ),

∫ T

0

Φε(Uε(t)) dt→
∫ T

0

Φε0(Uε0(t)) dt, as ε→ ε0. (5.1)

Now, the required convergences (3.1)–(3.2) will be obtained as straightforward
convergences of (5.1) and the uniform convexity of L2-based topologies. 2
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[11] Savaré, G.; Visintin, A. Variational convergence of nonlinear diffusion equations: applications
to concentrated capacity problems with change of phase. Atti Accad. Naz. Lincei Cl. Sci.
Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 8(1):49–89, 1997.



Proceedings of EQUADIFF 2017
pp. 221–228

REMARKS ON THE QUALITATIVE BEHAVIOR OF THE
UNDAMPED KLEIN-GORDON EQUATION ∗
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Abstract. We present sufficient conditions on the initial data of an undamped Klein-Gordon
equation in bounded domains with homogeneous Dirichlet boundary conditions to guarantee the
blow up of weak solutions. Our methodology is extended to a class of evolution equations of second
order in time. As an example, we consider a generalized Boussinesq equation. Our result is based on
a careful analysis of a differential inequality. We compare our results with the ones in the literature.
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1. Functional framework and previous results. For the Cauchy problem
associated to any evolution equation on a Banach space, we have the usual questions
in terms on the initial data:

• Existence and uniqueness of solutions.
• Non global existence: maximal time of existence ≡ TMAX <∞.
• Global existence: TMAX =∞.
• In the latter case, the behavior of the solution as time approaches infinity.

Here, we present a short overview paper presenting recent advances, published in
[1, 2], on the non global existence of solutions corresponding to a non-linear Klein-
Gordon equation and to abstract wave equations, in particular to a generalized Boussi-
nesq equation.

We shall first consider the following problem for a Klein-Gordon equation

(P)





utt(x, t)−∆u(x, t) +m2u(x, t) = f(u(x, t)), (x, t) ∈ Ω× (0, T ),
u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
u(x, 0) = u0(x), ut(x, 0) = v0(x), x ∈ Ω.

where m 6= 0 is a real constant, which is assumed to be equal to one without loss of
generality, and Ω ⊂ Rn is a bounded and open set with sufficiently smooth boundary.
We assume that the source term f , is locally Lipschitz continuous and satisfies

|f(s)| ≤ µ|s|r−1, sf(s)− rF (s) ≥ 0, ∀s ∈ R,

where F (s) ≡
∫ s

0
f(t)dt, and r > 2, µ > 0, are constants. For this problem, Ball [3, 4]

proved the following theorem about existence, uniqueness and continuation of weak
solutions.

Theorem 1.1. Assume that r ≤ 2(n − 1)/(n − 2) if n ≥ 3. For every initial
data (u0, v0) ∈ H ≡ H1

0 (Ω) × L2(Ω), there exists a unique (local) weak solution

∗This work was supported by UAM Azacpotzalco
†Departamento de Ciencias Básicas, Análisis Matemático y sus Aplicaciones, UAM-

Azcapotzalco, Av. San Pablo 180, Col. Reynosa Tamaulipas, 02200 México, D. F., México
(jaea@correo.azc.uam.mx).
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(u0, v0) 7→ (u(t), v(t)), v(t) ≡ d
dtu(t), of problem (P), that is

d

dt
(v(t), w)2 + (∇u(t),∇w)2 + (u(t), w)2 = (f(u(t)), w)2,

a. e. in (0,T) and for every w ∈ H1
0 (Ω), such that (u, v) ∈ C([0, T );H). Here, (·, ·)2

denotes the inner product in L2(Ω). Furthermore, the following energy equation holds

E(u(t0), v(t0)) = E(u(t), v(t)) ≡ 1

2
‖v(t)‖22 + J(u(t)), ∀t ≥ t0 ≥ 0,

J(u(t)) ≡ 1

2

(
‖u(t)‖22 + ‖∇u(t)‖22

)
−
∫

Ω

F (u(t))dx.

Here, ‖·‖q is the norm in Lq(Ω). Finally, if the maximal time of existence TMAX <∞,
then the solution blows up in finite time. That is,

lim
t↗TMAX

‖(u(t), v(t))‖2H ≡ lim
t↗TMAX

‖u(t)‖22 + ‖∇u(t)‖22 + ‖v(t)‖22 =∞.

Moreover, by the energy equation,

lim
t↗TMAX

‖u(t)‖r =∞.

Remark 1. Problem (P) is invariant if we reverse the time direction: t 7→ −t.
The solution backwards (u(t), v(t)), t < 0, with initial conditions (u0, v0) corresponds
to the solution forwards (u(−t),−v(−t)),−t > 0 with initial conditions (u0,−v0).
Then, the local existence and uniqueness Theorem 1.1 holds backwards and the re-
sults presented in this work for positive times have the corresponding for backwards
solutions.

If the solution u is independent of time, it is called an equilibrium and satisfies

(∇u,∇w)2 + (u,w)2 = (f(u), w)2,

for every w ∈ H1
0 (Ω). In particular, for w = u,

I(u) ≡ ‖∇u‖22 + ‖u‖22 − (f(u), u)2 = 0.

We notice that u = 0 is an equilibrium. The set of equilibria u 6= 0, with minimal
energy is called the ground state, and the corresponding value of the energy is positive
and denoted by d. This number is the mountain pass level of the functional J , see [5].
For initial energies E(u0, v0) < d, a characterization of the qualitative properties of
the solutions in terms of the sign of I(u0) has been proved in [6] by the potential well
method. Indeed, if I(u0) ≥ 0, respectively I(u(t0)) < 0, the corresponding solution
is global and uniformly bounded in H, respectively the solution blows up in finite
time. For high values of the initial energy the sign of I(u0) is not sufficient in order
to prove qualitative properties of the solution. Certainly, for E(u0, v0) > d and for a
source term of the form f(u) ≡ |u|r−2u, r > 2, in [7] is proved that the solution blows
up if I(u0) < 0, (u0, v0)2 ≥ 0, and ‖u0‖2 ≥ sup {‖u‖2 : I(u)) = 0, J(u) ≤ E(u0, v0)}.
For E(u0, v0) = d and f(u) ≡ |u|r−2u, in [8] the following is proved: (i) the solution
blows up if I(u0) < 0 and (u0, v0)2 ≥ 0 and (ii) the solution is global and uniformly
bounded in H if I(u0) > 0. Recently, several works have proved blow up of solutions
with one o several source terms of the form |u|r−2u, under sufficient conditions that
involve upper bounds on the initial energy as follows.
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Theorem 1.2. For every solution of problem (P) with

(u0, v0)2 > 0, ‖u0‖2 > 0,

the solution blows up in finite time if one of the following holds:

(Wang [9]). E(u0, v0) ≤ r − 2

2r
‖u0‖22, I(u0) < 0,(1.1)

(Korpusov [10]). E(u0, v0) <
1

2
P (u0, v0),(1.2)

(Kutev, et al. [11]). E(u0, v0) <
r − 2

2r
‖u0‖22 +

1

2
P (u0, v0),(1.3)

(Dimova, et al. [12]). E(u0, v0) ≤ r − 2

2r
‖u0‖22 +

1

2
P (u0, v0)

+
‖u0‖22
r

[
1−

{
1 +

P (u0, v0)

‖u0‖22

}−( r−2
2 )
]
,(1.4)

where P (u0, v0) ≡ |(v0,u0)2|2
‖u0‖22

.

Remark 2. For the proof of anyone of the items in this theorem, some differen-
tial inequality is employed to prove that the solution only exists up to a finite time:
T < ∞. The estimate of the maximal time of existence by this means is not always
optimal, that is, T > TMAX . See [13, 3, 4] for more discussion. The technique de-
scribed above belongs to the so called functional method. That is, some functional in
terms of a norm of the solution well defined in the sense of Theorem 1.1, satisfies a
differential inequality that necessarily implies that such norm blows up in finite time.
Consequently, the solution can not be global. This method has been used for many
authors to show nonexistence of solutions, see for instance [14] for an early reference
where a concavity argument is used.

Remark 3. In [11] is proved that any one of the sufficient conditions (1.1) or
(1.2) imply (1.3), and that the contrary is not true. We notice that (1.3) implies (1.4)
but the opposite does not occur. In next section we easily show this implication and by
this means we propose a new condition to get blow up of the solution in finite time.

2. Main result. In this section we consider solutions with any positive value
of the initial energy, in particular with E(u0, v0) ≥ d. The understanding of the
complete dynamics in this case is an open question and very much complicated. Here,
we limit ourselves to study blow up and give sufficient conditions on (u0, v0) ∈ H and
E(u0, v0) > 0.

We first notice that the right hand-side of (1.3) and (1.4) have the following form

ηq(u, v) ≡ 1

2
Φ(u, v)− 1

r
Ψ(u)

(
Ψ(u)

Φ(u, v)

)q
,

where q ≥ 0 and

Φ(u, v) ≡ Ψ(u) + P (u, v), Ψ(u) ≡ ‖u‖22, P (u, v) ≡ |(v, u)2|2
‖u‖22

.

The functional P comes from the orthogonal decomposition of the velocity, introduced
in [11]. That is,

v =
(v, u)2

‖u‖22
u+ h, ‖v‖22 = ‖h‖22 + P (u, v),
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where (u, h)2 = 0. Indeed, the one in (1.4) is equal to η r−2
2

(u0, v0). We notice that

the function q 7→ ηq(u0, v0), is strictly increasing for q ≥ 0, whenever P (u0, v0) > 0,
and that η0(u0, v0) is equal to the right-hand side of condition (1.3). Hence, (1.4) is
implied by (1.3) but not the contrary. Now, we define a strictly decreasing function
λ 7→ µλ(u, v), for 0 < λ < 1, by

µλ(u, v) ≡ 1

2
Φ(u, v)− 1

r
Ψ(u, v)

(
r − 2

r − 2λ

Ψ(u)

Φ(u, v)

) r−2
2

,

with the property that µλ(u, v)→ η r−2
2

(u, v) if λ→ 1. That is, η r−2
2

(u, v) < µλ(u, v).

Next we present our blow up result whose proof is based on a careful analysis of a
differential inequality satisfied by Ψ(u), and where P (u, v) and µλ(u, v) are essential
to improve the previous results given in Theorem 1.2.

Theorem 2.1. (Esquivel-Avila [1]). Consider any solution of problem (P).
Assume that

‖u0‖2 > 0, (u0, v0)2 > 0.(2.1)

Hence, P (u0, v0) > 0, and there exists a nonempty interval

IP (u0,v0) ≡
(
αP (u0,v0), βP (u0,v0)

)
⊂
(

0,
1

2
Φ(u0, v0)

)
,

such that if E(u0, v0) ∈ IP (u0,v0), then the solution blows up in finite time. Moreover,
for fixed Ψ(u0),

lim
P (u0,v0)→∞

∣∣∣∣βP (u0,v0) −
1

2
Φ(u0, v0)

∣∣∣∣ = 0 = lim
P (u0,v0)→∞

αP (u0,v0).

Remark 4. We observe that βP (u0,v0) = µλ∗(u0, v0), where λ∗ ∈ (0, 1), is
uniquely defined by

λ∗ ≡
(

Ψ(u0)

Φ(u0, v0)

) r
2
(

r − 2

r − 2λ∗

) r−2
2

.

Hence, Theorem 2.1 improves the condition on the upper bound of the initial energy
given in Theorem 1.2, (1.1)-(1.4).

If µλ∗(u0, v0) ≤ E(u0, v0) ≤ µλ(u0, v0), for λ ≤ λ∗, the qualitative behavior of
the solution is unknown. However, given any positive value of the initial energy, if
(2.1) holds and P (u0, v0) is large enough, then we can always have that E(u0, v0) ∈
IP (u0,v0). Consequently, the corresponding solution blows up in finite time.

Remark 5. For small energies, the result in [6] characterizes blow up of any solu-
tion under the condition I(u0) < 0. For high energies, blow up follows from I(u0) < 0
and additional conditions on the initial data, see [7]-[9]. Under the hypotheses of
Theorem 2.1, I(u0) < 0 follows if P (u0, v0) > 0 is sufficiently large, see [1].
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3. Evolution equations of second order in time. We extend Theorem 2.1
to the following class of abstract wave equations:

(PM)

{
Mutt(t) +Au(t) = F(u(t)), t ∈ (0, T ),
u(0) = u0, ut(0) = v0,

where M : HM → H
′
M and A : V → V

′
, are linear, positive and symmetric operators,

and V ⊂ HM ⊂ H are linear subspaces of the Hilbert space H with inner product
(·, ·) and norm ‖ · ‖, and H = H

′ ⊂ H
′
M ⊂ V ′ are the dual spaces. Hence, we define

the bilinear forms and corresponding inner products and norms

M : HM ×HM → R, M(u,w) ≡ (Mu,w)HM×H′M ,

(u,w)M ≡M(u,w), ‖u‖2M ≡ (u, u)M, ∀u,w ∈ HM
and

A : V × V → R, A(u,w) ≡ (Au,w)V×V ′ ,

(u,w)V ≡ A(u,w), ‖u‖2V ≡ (u,w)V , ∀u,w ∈ V.

We assume that there exists some constant c > 0, such that

‖u‖2V ≥ c‖u‖2M, ∀u ∈ V.(3.1)

Also, we assume that the nonlinear term F : V ⊂ H → H, is a potential operator
with potential G : V → R, and

F(0) = 0, (F(u), u)− rG(u) ≥ 0, ∀u ∈ V,(3.2)

where r > 2 is a constant.

We consider solutions in the following functional framework.

For every initial data (u0, v0) ∈ H ≡ V ×HM, there exists T > 0, and a unique
local solution (u0, v0) 7→ (u, v) ∈ C([0, T );H), v(t) ≡ d

dtu(t), of the problem (PM) in
the following sense

d

dt
M(v(t), w) +A(u(t), w) = (F(u(t)), w),

a. e. in (0, T ) and for every w ∈ V . Furthermore, the following energy equation holds

E(u(t0), v(t0)) = E(u(t), v(t)) ≡ 1

2
‖v(t)‖2M + J(u(t)), t ∈ [t0, T ), t0 ≥ 0,

J(u(t)) ≡ 1

2
‖u(t)‖2V − G(u(t)).

We define

Φ(u, v) ≡ cΨ(u) + PM(u, v), Ψ(u) ≡ ‖u‖2M, PM(u, v) ≡ |M(v, u)|2
‖u‖2M

.

Then, we have the following result.

Theorem 3.1. (Esquivel-Avila [2]). Consider any solution of problem (PM).
Assume that

‖u0‖M > 0, M(u0, v0) > 0.(3.3)
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Then, there exists a nonempty open interval

IPM(u0,v0) ≡
(
αPM(u0,v0), βPM(u0,v0)

)
⊂
(

0,
1

2
Φ(u0, v0)

)
,

such that if E(u0, v0) ∈ IPM(u0,v0), then the solution is not global. Moreover, for fixed
Ψ(u0),

lim
PM(u0,v0)→∞

∣∣∣∣βPM(u0,v0) −
1

2
Φ(u0, v0)

∣∣∣∣ = 0 = lim
PM(u0,v0)→∞

αPM(u0,v0).

Here, βPM(u0,v0) = µλ∗(u0, v0), where λ∗ ∈ (0, 1) is uniquely defined by

λ∗ ≡
(
cΨ(u0)

Φ(u0, v0)

) r
2
(

r − 2

r − 2λ∗

) r−2
2

,

and

µλ(u0, v0) ≡ 1

2
Φ(u0, v0)− c

r
Ψ(u0, v0)

(
r − 2

r − 2λ

cΨ(u0)

Φ(u0, v0)

) r−2
2

.

Furthermore, given any positive value of the initial energy we can always find initial
data satisfying (3.3) with PM(u0, v0) sufficiently large so that E(u0, v0) ∈ IPM(u0,v0)

and hence the corresponding solution exists only up to a finite time.

We can apply Theorem 3.1 to several problems, in particular here we present the
following Cauchy problem associated to a generalized Boussinesq equation.

(PB)





utt(x, t)− β1∆u(x, t)− β2∆utt(x, t) + β3∆2u(x, t)
+mu(x, t) + ∆F(u(x, t)) = 0, (x, t) ∈ Rn × (0, T ),

u(x, 0) = u0(x), ut(x, 0) = v0(x), x ∈ Rn,

where βi > 0, i = 1, 2, 3, m > 0 are constants and the source term, that satisfies
(3.2), is

F(u) ≡ µ|u|r−2u, µ > 0, r > 2.

Applying (−∆)−1 to the equation above, we obtain the form of the problem (PM),
where we identify the operators

Mu = ((−∆)−1 + β2Id)u, Au = (−β3∆ +m(−∆)−1 + β1Id)u,

and the spaces

H = L2(Rn), HM = {u ∈ L2(Rn) : (−∆)−
1
2u ∈ L2(Rn)},

and

V = {u ∈ H1(Rn) : (−∆)−
1
2u ∈ L2(Rn)}.

If

(u,w)∗ ≡ ((−∆)−
1
2u, (−∆)−

1
2w)2, ‖u‖2∗ ≡ (u, u)∗,
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then the bilinear forms, inner products and norms are

(u,w)M ≡M(u,w) ≡ (u,w)∗ + β2(u,w)2, ‖u‖2M ≡ (u, u)M,

and

(u,w)V ≡ A(u,w) ≡ β3(∇u,∇w)2 +m(u,w)∗ + β1(u,w)2, ‖u‖2V ≡ (u, u)V .

Hence, (3.1) holds with c ≡ min{m, β1

β2
}. Fortunately, there exists an existence and

uniqueness result in our functional framework and nonexistence of global solutions is
due to blow up, see for instance [15, 16]. Then, by Theorem 3.1, if the initial data
satisfy

‖u0‖2∗ + β2‖u0‖22 > 0, (u0, v0)∗ + β2(u0, v0)2 > 0,(3.4)

and the initial energy is such that E(u0, v0) ∈ IPM(u0,v0), where

E(u, v) ≡ 1

2

(
‖v‖2∗ + β2‖v‖22 + β3‖∇u‖22 +m‖u‖2∗ + β1‖u‖22

)
− µ

r
‖u‖rr,

then the solution blows up in finite time in the norm of H and, by the energy equation,
also in the Lr(R

n) norm. This result improves the ones known in the literature in the
following sense. In [17, 18] blow up is proved by means of the analysis of a differential
inequality and by the construction of invariant sets, if (3.4) holds and the initial energy
is such that

E(u0, v0) ≤ η0(u0, v0) ≡ r − 2

2r
c
(
‖u0‖2∗ + β2‖u0‖22

)
+

1

2

|(u0, v0)∗ + β2(u0, v0)2|2
‖u0‖2∗ + β2‖u0‖22

.

We notice that η0(u0, v0) = 1
2Φ(u0, v0)− c

rΨ(u0, v0) ∈ IPM(u0,v0). Then, Theorem 3.1
agrees with the result in [17, 18] and states that blow up occur even for larger initial
energies, that is, if

η0(u0, v0) < E(u0, v0) < µλ∗(u0, v0).

Moreover, given any positive value of the initial energy there exist initial data satis-
fying (3.4) and with

PM(u0, v0) ≡ |(u0, v0)∗ + β2(u0, v0)2|2
‖u0‖2∗ + β2‖u0‖22

,

sufficiently large, so that E(u0, v0) ∈ IPM(u0,v0) holds and consequently the corre-
sponding solution blows up in finite time.

Remark 6. For each concrete example of (PM), if the potential well method is
applicable as it is in (P), then there are conditions to get blow up when E(u0, v0) < d.
Theorem 3.1 gives sufficient conditions for αPM(u0,v0) < E(u0, v0) < βPM(u0,v0). In
case that E(u0, v0) ≤ αPM(u0,v0) the blow up problem is resolved as follows. (i) If
E(u0, v0) < min{αPM(u0,v0), d}, by the potential well method. (ii) If d ≤ E(u0, v0) ≤
αPM(u0,v0), by the techniques in [17, 18].
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TWO APPROACHES FOR THE APPROXIMATION OF THE
NONLINEAR SMOOTHING TERM IN THE IMAGE

SEGMENTATION ∗

MATÚŠ TIBENSKÝ † AND ANGELA HANDLOVIČOVÁ ‡

Abstract. Purpose of the paper is to study nonlinear smoothing term initiated in [3], [4], [6]
and [7] for problems of image segmentation and missing boundaries completion. The generalization
of approach presented in [1] is proposed and applied in the field of image segmentation. So called
regularised Riemannian mean curvature flow equation is studied and the construction of the numerical
scheme based on the finite volume method approach is explained. The principle of the level set, for
the first time given in [2], is used. We mention two different approaches for the approximation of
the nonlinear smoothing term in the equation and known theoretical results for both of them. We
provide the numerical tests for both schemes. It the last section we discuss obtained results and
propose possibilities for the future research.

Key words. image segmentation, level set, regularised Riemannian mean curvature flow equa-
tion, finite volume method, approximation of the nonlinear smoothing term

1. Introduction. The main goal of the image segmentation is to divide given
image to the parts called regions, to identify the pixels segmented object contains of
or to add the boundary to the object, where it is missing. The errors we have to face
with are mainly missing boundaries and noise. The range of application areas is wide
and contains medicine, traffic control systems, recognition tasks and overall object
detection and computer vision.

There are lot of techniques used in segmentation based on the various principles
as statistical analysis, graph theory or machine learning. We are considering the
approach based on the partial differential equations and especially so called level set
methods based on the level set function introduced in [2].

2. Studied equation and assumptions on the data. We consider following
problem arising in image segmentation as a generalisation of the approach given in
[1], find an approximate solution to the equation

ut − f1(|∇u|)∇ ·
(
g(|∇GS ∗ I0|)

∇u
f(|∇u|)

)
= r, a.e. (x, t) ∈ Ω× (0, T ). (2.1)

Here the u(x, t) is an unknown (segmentation) function defined in QT ≡ [0, T ] × Ω,
where Ω is bounded rectangular domain, [0, T ] is a time interval and I0 is a given
image, typically on this image is an object we want to segment.

We consider zero Dirichlet boundary condition

u = 0, a.e. (x, t) ∈ ∂Ω× [0, T ] (2.2)

and initial condition

u(x, 0) = u0(x), a.e. x ∈ Ω. (2.3)
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The assumptions on the data in (2.1)-(2.3) are similar as in [1] and [3]. We can
summarize them into the following hypothesis:

Hypothesis H

• (H1) Ω is a finite connected open subset of Rd, d ∈ N, with boundary ∂Ω,
• (H2) u0 ∈ L∞(Ω),
• (H3) r ∈ L2(Ω× (0, T )) for all T > 0,
• (H4) f ∈ C0(R+; [a, b]) is a Lipschitz continuous (non-strictly) increasing

function, such that the function x 7→ x/f(x) is strictly increasing on R+. For
practical application we are using f(s) = min(

√
s2 + a2, b), where a and b are

given positive parameters,
• (H5) f1 ∈ C0(R+; [a1, b1]), in general a1 6= a, b1 6= b, but for now in our model

we consider the case a1 = a and b1 = b,
• (H6) g ∈ C0(R+; [0, 1]) is decreasing function, g(0) = 1, g(s) → 0 for s →
∞. For practical numerical computation we use g(s) = 1

1+Ks2 , where K is
constant of sensitivity of function g and we choose it,

• (H7) GS ∈ C∞(Rd) is a smoothing kernel (Gauss function), with width of the
convolution mask S and such that

∫
Rd GS(x)dx = 1,

∫
Rd |GS |dx ≤ CS , CS ∈

R, GS(x)→ δx for S → 0, where δx is Dirac measure at point x and

(∇GS ∗ I0)(x) =

∫

Rd
∇GS(x− ξ)Ĩ0(ξ)dξ, (2.4)

where Ĩ0 is extension of image I0 to Rd given by periodic reflection through
boundary of Ω and for which

1 ≥ gS(x) = g(|∇GS ∗ I0|)(x) ≥ νS > 0 (2.5)

for ∀x ∈ Ω due to properties of the convolution. The νS is a constant de-
pending only on width of the convolution mask S.

Definition of the numerical scheme and the space discretisation of the equation we are
generalising in this paper could be found in [1]. We apply method presented in [1] in
the field of image segmentation, but in addition we have function g and convolution of
the initial image with smoothing kernel in our approach (see [3] or [4]). For now just
remark that discretisation of Ω, denoted by D, is defined as the triplet D = (M, E ,P),
where M is a finite family of non-empty connected open disjoint subsets of Ω (the
“control volumes”) with measure marked by |p|, E is a finite family of disjoint subsets
of Ω (the “edges” of the mesh) with measure marked by |σ| and P is a family of points
of Ω indexed by M, denoted by P = (xp)p∈M, such that for all p ∈M, xp ∈ p and p
is assumed to be xp-star-shaped so for all x ∈ p the inclusion [xp, x] ⊂ p holds.

We say that (D, τ) is a space-time discretisation of Ω × (0, T ) if D is a space
discretisation of Ω in the sense we mentioned above and if there exists NT ∈ N with
T = (NT + 1)τ , where τ is a symbol for the time step.

Another important assumption on the discretisation we make is that

dpσnp,σ = xσ − xp, ∀p ∈M, ∀σ ∈ Ep, (2.6)

where Ep denotes the set of the edges of the control volume p, xσ ∈ σ, dpσ is a symbol
for the Euclidean distance between xp and hyperplane including σ (it is assumed that
dpσ > 0) and np,σ denotes the unit vector normal to σ outward to p.
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We define the set HD ⊂ R|M| × R|E| such that uσ = 0 for all σ ∈ Eext (the set of
boundary interfaces). We define the following functions on HD:

Np(u)2 =
1

|p|
∑

σ∈Ep

|σ|
dpσ

(uσ − up)2, ∀p ∈M, ∀u ∈ HD, (2.7)

where up is defined as up = u(xp) and uσ is defined as uσ = u(xσ).
Let us recall that

‖u‖21,D =
∑

p∈M
|p|Np(u)2 (2.8)

defines a norm on HD (see [1] and references there).
Under the above mentioned assumptions and notations the semi-implicit scheme

is defined by

u0p = u0(xp), ∀p ∈M, (2.9)

u0σ = u0(xσ), ∀σ ∈ E , (2.10)

rn+1
p =

∫ (n+1)τ

nτ

∫

p

r(x, t)dxdt, ∀p ∈M, ∀n ∈ N, (2.11)

un+1
σ = 0, ∀σ ∈ Eext, ∀n ∈ N, (2.12)

and

|p|
τ f1(Np(un))

(un+1
p − unp )− 1

f(Np(un))

∑

σ∈Ep
gSD
|σ|
dpσ

(un+1
σ − un+1

p ) =

=
rn+1
p

τ f1(Np(un))
,∀p ∈M, ∀n ∈ N,

(2.13)

where the following relation is given for the interior edges

un+1
σ − un+1

p

f(Np(un)) dpσ
+

un+1
σ − un+1

q

f(Nq(un)) dqσ
= 0, (2.14)

∀n ∈ N, ∀σ ∈ Eint (the set of interior interfaces) where σ is the edge between p and q.
For the explanation of the selection of u0p and u0σ, which impacts the assumptions

given on function u0 in (H2) see [8].
There are two options how to choose gSD (approximation of gS) in (2.13) considered

in this paper. First one, we will label it (APR1), is for ∀σ ∈ E defined by

gSσ := gS(xσ) = g(|
∫

Rd
∇GS(xσ − ξ)Ĩ0(ξ)dξ|). (2.15)

It means that the convolution of the initial image with Gaussian kernel is done in the
points xσ on the border of the control volume, which is exactly the point where it,
from (2.13), should be done.

The second one, labeled as (APR2), is ∀p ∈M defined by

gSp := gS(xp) = g(|
∫

Rd
∇GS(xp − ξ)Ĩ0(ξ)dξ|). (2.16)

This means that the convolution is done in the points xp inside the control volume,
so we are making an error. The problem we are interested in is the impact of this
approximation error on the final model and it segmentation ability.
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3. Theoretical results. Theoretical properties for the scheme (2.13) - (2.14)
with the approximation (APR2) as the stability estimates on the numerical solution,
the uniqueness of the numerical solution, the convergence of the numerical scheme to
the weak solution and the convergence of the approximation of the numerical gradient
were proven in [5].

For the approximation (APR1) the case is more complex and the stability of
the scheme is conditional, the time step and the space step have to be the same order
to guarantee the stability estimates on the numerical solution and all of the other
theoretical features mentioned above.

If we summarize, from the perspective of the theory the approximation (APR2) is
better as we are able to prove unconditional stability for the scheme (2.13) - (2.14). On
the other hand with this choice of approximation we are making bigger approximation
error than for (APR1). How big impact does this error have on the computations
we test in the next section.

4. Numerical experiments. For testing of the difference between (APR1)
and (APR2) we chose following benchmark example (see Figure 4.1) - noised square
with missing boundaries as an example of the object with both typical errors occuring
in the image segmentation - noise and missing boundaries. On the other hand with
square as an simple object we know the desired shape of the level function, so we
can test accuracy and speed of the approximations even without knowing the exact
solution of the problem.

Fig. 4.1. Object we want to segment.

The approach we are presenting in this paper is based on the idea of the level set
function. At the beginning of the segmentation process we construct initial level set
function (Figure 4.2), which is developing in the time by the mean curvature and the
constructed vector field tends the level set function to the border of the segmented
object. Instead of creating developing curve to segment the object, we create the
level set function and we monitor the development of the segmented area implicitly
by looking on its isolines. This type of approach is robust against topological changes.
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Fig. 4.2. Initial level set function.

4.1. Visual test. As the first comparison of the different choices of approxima-
tion of nonlinear smoothing term in (1) we chose the visual test.

We can take a look on the difference that made two different approximation on
the initial image (see Figure 4.3). The difference is defined as model with (APR2)
minus model with (APR1). One can see that (APR2) is better in presmoothing of
the noise in the image, but, on the other hand, the borders of the object are little bit
more blurry.

Fig. 4.3. Difference for the initial image.

This is the graphical impact of the choice of the approximation. Now take a look
on the difference between level set functions in the various time steps. On the Figure
4.4 we can see that the difference in the time very slightly increase, but even after
1000 time steps, when the object is segmented the difference is still less than 0.001
in absolute numbers. So from graphical perspective it seems that the (APR1) is
slightly better, but the difference is small. To make these initial observations more
precise we do the numerical tests as well.



234 M. TIBENSKÝ AND A. HANDLOVIČOVÁ

(a) Difference at the beginning. (b) Difference after 10 time steps.

(c) Difference after 100 time steps. (d) Difference after 1000 time steps.

Fig. 4.4. Difference between level set functions.

4.2. Numerical comparison. The second comparison of approximation of non-
linear smoothing term in (1) we are presenting in this paper are the absolute and
relative L1, L2 and L∞ norms of the difference between the segmentation level set
functions:

Table 4.1
Absolute and relative norms for sensitivity constant K = 1.

Absolute difference after 1 step 10 steps 100 steps 1000 steps
L1 norm 0.00612 0.13982 0.22316 0.29966
L2 norm 0.00001 0.00004 0.00013 0.00009
L∞ norm 0.00086 0.00244 0.00309 0.00098

Relative difference after 1 step 10 steps 100 steps 1000 steps
L1 norm 0.00039 0.00091 0.00151 0.00098
L2 norm 7.53e-08 2.78e-07 8.79e-07 7.20e-07
L∞ norm 5.53e-06 1.59e-05 2.09e-05 7.44e-06

From these numbers we are able to conclude the same result as from the visual
test - the difference between model with (APR1) and model with (APR2) is too
small to make any relevant impact on the final result of segmentation (biggest relative
error is less than 0.2 %).
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There is one more parameter that can make an impact - constant K, the constant
of sensitivity of the function g mentioned in (H6). In the first example above we set
K = 1, so lets increase this value and check if it has a significant impact.

In the next table we list L1, L2 and L∞ norms of the absolute and relative
difference between the segmentation level set functions for sensitivity constant K =
10:

Table 4.2
Absolute and relative norms for sensitivity constant K = 10.

Absolute difference after 1 step 10 steps 100 steps 1000 steps
L1 norm 0.03299 0.10126 0.18812 0.16514
L2 norm 0.00001 0.00001 0.00008 0.00002
L∞ norm 0.00082 0.00304 0.00158 0.00021

Relative difference after 1 step 10 steps 100 steps 1000 steps
L1 norm 0.00021 0.00067 0.00133 0.00161
L2 norm 5.22e-08 3.88e-07 5.88e-07 2.01e-07
L∞ norm 5.29e-06 2.01e-05 1.11e-05 2.06e-06

Comparing these numbers with the ones from Table 4.1 one can see that the
choice of the constant K do not play a big role in overall process of the segmentation
when looking on the difference between segmantation level set functions.

5. Conclusion. In this paper we pay attention on the options of approximation
of the nonlinear smoothing term in the image segmentation. We compared both
approaches from theoretical and numerical perspective.

In the Section 3 we mention that model with (APR2) has better theoretical
features, especially the stability of the scheme and convergence is unconditional com-
pared to conditional stability and convergence of the semi-implicit shceme for model
with (APR1), here the time step and the space step have to be the same order.

Section 4 was dedicated to numerical comparison of both models. Overall result is
that from numerical perspective is better the model with (APR1), but the difference
and impact of choice of the approximation is minimal and not significant.

Overall is seems more reasonable to use (APR2) as it is easier for implimentation,
there is a proof of all needed theoretical aspects of the model and the difference in
numerical computation is negligible.

For the future research we plan to study and evaluate the importance of the
nonlinear smoothing term in the image segmentation overall.
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STABILITY OF ALE SPACE-TIME DISCONTINUOUS GALERKIN
METHOD
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Abstract. We assume the heat equation in a time dependent domain, where the evolution
of the domain is described by a given mapping. The problem is discretized by the discontinuous
Galerkin (DG) method in space as well as in time with the aid of Arbitrary Lagrangian-Eulerian
(ALE) method. The sketch of the proof of the stability of the method is shown.

Key words. ALE formulation, discontinuous Galerkin method, discrete characteristic function,
stability
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1. Introduction. Although many theoretical results are devoted to the numer-
ical analysis of parabolic PDEs within a fixed domain, there are number of areas with
many important applications of parabolic PDEs with time dependent domain. We
can mention, for example, problems with moving boundaries, where the motion of the
boundary is either prescribed or given by the PDE itself.

There are several approaches how to deal with problems in time dependent do-
mains, e.g. fictitious domain method, see e.g. [21], or immersed boundary method, see
e.g. [4]. A very popular technique is Arbitrary Lagrangian-Eulerian (ALE) method
that is based on a one-to-one ALE mapping of the reference domain on the cur-
rent one. ALE method is often applied in connection with conforming finite element
method (FEM) in space and lower order time discretizations (backward Euler method,
Crank-Nicolson method, BDF2) in time, see e.g. [18] or [19].

The class of discontinuous Galerkin methods seems to be one of the most promis-
ing candidates to construct high order accurate schemes for solving convection-diffu-
sion problems, where narrow layers and steep gradients of the solution may appear.
For a survey about DG space discretization, see [1], [10], [11]. The discontinuous
Galerkin method could be applied for time discretization as well. For a survey about
DG time discretization, see e.g. [23]. The discontinuous Galerkin method in space
with BDF time discretization was applied with success to time dependent problems,
see e.g. [7] or [22]. Moreover, in [8] space-time DG discretization was applied to the
vibration of an airfoil problem and the results were compared with BDF time dis-
cretization. According to this comparison, DG time discretization seems to be more
robust and accurate than BDF.
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Numerical analysis of stability and a priori error estimates of time dependent
problems with divergence free domain velocity and discretized by the conforming
FEM in space and by DG in time could be found in [5] and [6]. Finally, the stability
analysis of space-time DG discretization of nonlinear convection-diffusion problems
is studied in [2] for lower degree polynomial approximations in time and in [3] for
general polynomial degree.

2. Continuous problem. Let T > 0. We consider the following initial–
–boundary value problem

∂u

∂t
−∆u = f in Ωt × (0, T ),(2.1)

u = 0 in ∂Ωt × (0, T ),

u = u0 in Ω0,

where Ωt ⊂ Rd (d = 1, 2, 3) is a bounded polyhedral time dependent domain with a
Lipschitz continuous boundary ∂Ωt. We assume that the initial condition u0 ∈ L2(Ω0)
and the right-hand side f ∈ L2(0, T, L2(Ωt)). We denote by (., .)t and ‖.‖t the L2(Ωt)
scalar product and norm, respectively.

The evolution of the domain Ωt in time is described by a given regular one-to-one
ALE mapping

A : Ω0 × [0, T ]→ Ωt,(2.2)

where Ω0 or Ωt are closures of Ω0 or Ωt, respectively. For the purpose of the proof of
the stability we introduce following regularity assumptions on the ALE mapping A:

A ∈W 1,∞(0, T,W 1,∞(Ω0)), A−1 ∈W 1,∞(0, T,W 1,∞(Ωt)).(2.3)

Moreover, we denote the Jacobi matrix of A by B = dA
dX , the corresponding determi-

nant by J = det(B) and the domain velocity by ω = ∂A
∂t ◦ A−1. From the regularity

assumptions (2.3) it is possible to show that B, B−1, J , J−1, ω and ∇·ω are bounded,
i.e. there exists a constant CA > 0 such that

max(‖B‖L∞(0,T,L∞(Ω0)), ‖B−1‖L∞(0,T,L∞(Ω0)), ‖J‖L∞(0,T,L∞(Ω0))(2.4)

‖J−1‖L∞(0,T,L∞(Ω0)), ‖ω‖L∞(0,T,L∞(Ωt)), ‖∇ · ω‖L∞(0,T,L∞(Ωt))) ≤ CA.

Problem (2.1) is usually transformed into the ALE formulation. To this end, we
introduce ALE derivative

Dtu =
∂u

∂t
+ ω · ∇u.(2.5)

Now we introduce the ALE formulation equivalent to problem (2.1)

Dtu−∆u− ω · ∇u = f in Ωt × (0, T ),(2.6)

u = 0 in ∂Ωt × (0, T ),

u = u0 in Ω0.
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3. Discretization. In this section, we describe the interior penalty discontinu-
ous Galerkin discretization in space variables together with the discontinuous Galerkin
time discretization in the ALE framework.

We consider a space partition Th,0 consisting of a finite number of closed, d -
dimensional simplices K with mutually disjoint interiors and covering Ω0. We assume
conforming properties, i.e. neighbouring elements share an entire edge or face. We
set hK = diam(K) and h = maxKhK . We assume that the mesh is quasi-uniform, i.e.
there exists a constant CQ > 0 such that hK ≤ CQhK̄ for all neighbouring elements
K and K̄. By ρK we denote the radius of the largest d-dimensional ball inscribed into
K. We assume shape regularity of elements, i.e. hK/ρK ≤ C for all K ∈ Th, where
the constant does not depend on Th,0 for h ∈ (0, h0). By Γh,0 we denote the set of
all edges of Th,0. We define a unit normal vector n to arbitrary edge from Γh,0. For
inner edges the direction is arbitrary, for outer edges we assume that n is the unit
outer normal vector.

Since the domain Ω0 evolves into Ωt = A(Ω0, t), we define similarly the evolution
of the mesh Th,t = A(Th,0, t), the evolution of the edges Γh,t = A(Γh,0, t) .

We introduce the space for the semidiscrete solution on Ω0

Vh = {v ∈ L2(Ω0) : v|K ∈ P p(K)},(3.1)

where P p(K) denotes the space of polynomials up to the degree p ≥ 1 on K. Functions
from the space Vh are discontinuous across the edges of Th,0. For this reason we define
one-sided limits

vL(x) = lim
s→0+

v(x− ns), vR(x) = lim
s→0+

v(x+ ns),(3.2)

jumps and mean values

[v] = vL − vR, 〈v〉 =
vL + vR

2
.(3.3)

For outer edges we define

[v] = 〈v〉 = vL = lim
s→0+

v(x− ns).(3.4)

In order to discretize problem (2.6) in time, we consider a time partition 0 = t0 <
t1 < . . . < tr = T with time intervals Im = (tm−1, tm), time steps τm = tm − tm−1

and τ = maxm=1,...,r τm. We define the solution space

V τh = {v ∈ L2(0, T, L2(Ωt)) : (v ◦ A)|Im ∈ P q(Im, Vh)}.(3.5)

For a function v ∈ V τh we define the one–sided limits

vm± = v(tm±) = lim
t→tm±

v(t)(3.6)

and the jumps

{v}m = vm+ − vm− , m ≥ 1 and {v}0 = v0
+ − u0.(3.7)

We approximate the diffusion term by the discontinuous Galerkin interior penalty
form

ah,t(u, v) =
∑

K∈Th,t

∫

K

∇u · ∇vdx−
∑

e∈Γh,t

∫

e

(〈∇u〉 · n[v] + θ〈∇v〉 · n[u])dS(3.8)

+
∑

e∈Γh,t

∫

e

σ[u][v]dS.
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The choice of parameter θ = 1, 0,−1 corresponds to SIPG, IIPG and NIPG formu-
lation, respectively. Parameter σ is defined on the inner edges between elements K
and K̄ by

σ =
CW

hK+hK̄
2

(3.9)

and on the boundary edges by

σ =
CW
hK

,(3.10)

where the constant CW > 0 needs to be chosen large enough to guarantee ellipticity
of ah,t. Lower bounds for CW will be briefly discussed later. For more informations
about different variants of discontinuous Galerkin method and their corresponding
formulations approximating (−∆u, v)t see e.g. [1].

Now, we are able to formulate the fully discrete space-time discontinuous Galerkin
scheme:

Definition 3.1. We say that a function U ∈ V τh is the discrete solution of
problem (2.6) obtained by space-time discontinuous Galerkin method, if the following
conditions are satisfied

∫

Im

(DtU, v)t + ah,t(U, v)− (ω · ∇U, v)tdt+ ({U}m−1, v
m−1
+ )tm−1

(3.11)

=

∫

Im

(f, v)tdt ∀m = 1, . . . , r, ∀v ∈ V τh .

The time discretization in (3.11) can be viewed as a generalization of some spe-
cific classical one–step methods for parabolic problems. It is possible to show that
setting q = 0, i.e. piecewise constant approximation in time, is equivalent (up to
suitable quadrature of the right–hand side) to backward Euler method in time and
discontinuous Galerkin method in space. Similarly, the higher polynomial degree ap-
proximations in time lead to methods that are equivalent (up to suitable quadrature
of the right–hand side) to Radau IIA Runge-Kutta methods. For details about the
relations between Galerkin methods and Runge-Kutta methods see e.g. [15] and [20].
For the descriptions of Radau IIA Runge-Kutta methods see e.g. [12] or [16] and [17].

4. Stability. The aim of this section is to show that the numerical scheme (3.11)
is stable, i.e. the approximate solution obtained from (3.11) can be bounded in terms
of the data f and u0 of the problem (2.1).

An important auxiliary tool for the analysis of problems in time-dependent do-
mains is the Reynolds transport formula:

d

dt

∫

Ωt

v(x, t)dx =

∫

Ωt

∂v

∂t
(x, t) +∇ · (ωv)(x, t)dx(4.1)

=

∫

Ωt

Dtv(x, t) +∇ · ω(x, t)v(x, t)dx.

For the purpose of the forthcoming estimates we define discontinuous Galerkin
energy norm

‖u‖2DG,t =
∑

K∈Th,t
‖∇u‖2L2(K) +

∑

e∈Γh,t

‖σ1/2[u]‖2L2(e).(4.2)
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Using this norm we can summarize the properties of ah,t in following lemma.
Lemma 4.1. Let U, v ∈ V τh . Then there exists a constant Ca > 0 such that

ah,t(U, v) ≤ Ca‖U‖DG,t ‖v‖DG,t.(4.3)

Moreover, let the constant CW satisfy

CW > 0, θ = −1, NIPG,(4.4)

CW ≥
1

2
CM (CI + 1)(CQ + 1), θ = 0, IIPG,

CW ≥ CM (CI + 1)(CQ + 1), θ = 1, SIPG,

where constant CM and CI come from the trace inequality and the inverse inequality,
respectively, see [11]. Then

ah,t(U,U) ≥ 1

2
‖U‖2DG,t.(4.5)

Proof. The ideas of the proof are well described in e.g. [11]. The generalization
to the problems in the time dependent domains can be found in [2].

We need the estimate of the ALE derivative term.
Lemma 4.2. Let U ∈ V τh . Then

∫

Im

(DtU,U)tdt+ ({U}m−1, U
m−1
+ )tm−1

(4.6)

≥ 1

2
‖Um− ‖2tm −

1

2
‖Um−1
− ‖2tm−1

− CA
2

∫

Im

‖U‖2tdt.

Proof. At first, we will study relation (4.6) elementwise for each element K ∈ Th,0.
Let us denote Kt = A(K, t). Applying Reynolds transport formula with v = U2 we
get

∫

Im

∫

Kt

U ·DtUdxdt+

∫

Ktm−1

{U}m−1U
m−1
+ dx(4.7)

=
1

2

∫

Im

∫

Kt

DtU
2dxdt+

∫

Ktm−1

{U}m−1U
m−1
+ dx

=
1

2

∫

Im

d

dt

∫

Kt

U2dxdt− 1

2

∫

Im

∫

Kt

(∇ · ω)U2dxdt+

∫

Ktm−1

{U}m−1U
m−1
+ dx

=
1

2
‖Um− ‖2L2(Ktm ) −

1

2
‖Um−1

+ ‖2L2(Ktm−1
) + ‖Um−1

+ ‖2L2(Ktm−1
)

−
∫

Ktm−1

Um−1
− Um−1

+ dx− 1

2

∫

Im

∫

Kt

(∇ · ω)U2dxdt

=
1

2
‖Um− ‖2L2(Ktm ) −

1

2
‖Um−1
− ‖2L2(Ktm−1

) +
1

2
‖{U}m−1‖2L2(Ktm−1

)

−1

2

∫

Im

∫

Kt

(∇ · ω)U2dxdt

≥ 1

2
‖Um− ‖2L2(Ktm ) −

1

2
‖Um−1
− ‖2L2(Ktm−1

) −
CA
2

∫

Im

∫

Kt

U2dxdt.
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The lemma is proved by summing this relation over all Kt ∈ Th,t.

Setting v = U in (3.11) we get the basic identity

∫

Im

(DtU,U)t + ah,t(U,U)− (ω · ∇U,U)tdt+ ({U}m−1, U
m−1
+ )tm−1(4.8)

=

∫

Im

(f, U)tdt.

Since
∫

Im

(ω · ∇U,U)tdt ≤ CA
∫

Im

‖U‖DG,t ‖U‖tdt(4.9)

≤ C2
A

∫

Im

‖U‖2tdt+
1

4

∫

Im

‖U‖2DG,tdt,

applying Lemma 4.1 and Lemma 4.2 we get

1

2
‖Um− ‖2tm −

1

2
‖Um−1
− ‖2tm−1

+
1

2

∫

Im

‖U‖2DG,tdt(4.10)

≤ ‖f‖L2(Im,L2(Ωt))‖U‖L2(Im,L2(Ωt)) + C2
A

∫

Im

‖U‖2tdt+
1

4

∫

Im

‖U‖2DG,tdt

+
CA
2

∫

Im

‖U‖2tdt

≤ ‖f‖2L2(Im,L2(Ωt))
+

1

4

∫

Im

‖U‖2DG,tdt+ τmC1 sup
t∈Im

‖U‖2t ,

where the constant C1 = 1/4 + CA/2 + C2
A.

To be able to get rid of the last supremum term, we need to derive a technique
for estimating the values of the discrete solution inside of intervals Im.

4.1. Discrete characteristic function. The concept of the discrete charac-
teristic function comes from [9]. As we have seen in (4.10), application of the test
function v = U naturally leads to the nodal estimate. Setting v = χ(tm−1,s)U , where
χ(tm−1,s) is characteristic function of the interval (tm−1, s) for s ∈ [tm−1, tm], will lead
to a similar estimate for ‖U(s)‖s instead of ‖Um− ‖tm . Unfortunately, it is not possible
to do it, since χ(tm−1,s)U /∈ V τh . The idea of the discrete characteristic function is
based on the construction of Us ∈ V τh for given U ∈ V τh and s ∈ [tm−1, tm] such
that Us will preserve similar properties to the classical characteristic function. For
applications of the discrete characteristic function see, e.g. [11] or [24].

We will use a notation ṽ = v ◦A for transformation of functions from the evolving
space-time cylinder to the reference space-time cylinder. From the assumptions on
the ALE mapping A and according to the definition of space V τh it is possible to see

that this transformation is bijection between V τh and Ṽ τh , where

Ṽ τh = {v ∈ L2(0, T, L2(Ω0)) : v|K×Im ∈ P q(Im, P p(K))},(4.11)

i.e. Ṽ τh represents the space of classical piecewise polynomial functions.
We define the discrete characteristic function for time dependent domains in three

steps. At first, the given function U ∈ V τh is transformed onto the reference domain,
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i.e. Ũ = U ◦A ∈ Ṽ τh . Second step is the construction of discrete characteristic function

in fixed domains, i.e. Ũs ∈ Ṽ τh such that

Ũm−1
s+ = Ũm−1

+ ,(4.12)
∫

Im

(
Ũs,

∂v

∂t

)

0

dt =

∫ s

tm−1

(
Ũ ,

∂v

∂t

)

0

dt ∀v ∈ Ṽ τh .

The last step is the transformation back to the current domain, i.e. Us = Ũs ◦ A−1 ∈
V τh .

Now, we want to show a similar relation to the relation from Lemma 4.2 that will
also describe the contraction property of the discrete characteristic function.

Lemma 4.3. Let U ∈ V τh and Us ∈ V τh be its discrete characteristic function
associated with s ∈ Im. Then there exists a constant CD > 0 depending only on the
polynomial degree q and on the regularity of the ALE mapping (2.3) such that

∫

Im

(DtU,Us)tdt+ ({U}m−1, U
m−1
s+ )tm−1

(4.13)

≥ 1

2
sup
Im

‖U(t)‖2t −
1

2
‖Um−1
− ‖2tm−1

− CDτm sup
t∈Im

‖U‖2t

Proof. Since the proof is long and technical, it is skipped in this paper. The proof
will be contained in [3].

Using Lemma 4.3, it is possible to deal with the ALE derivative term. For all the
other terms we need to show that the process of creating the discrete characteristic
function is stable with a constant independent of the parameter s ∈ Im.

Lemma 4.4. Let U ∈ V τh and Us ∈ V τh be its discrete characteristic function
associated with s ∈ Im. Then there exists a constant CST > 0 depending only on the
polynomial degree q and on the regularity of ALE mapping (2.3) such that

∫

Im

‖Us(t)‖2tdt ≤ CST
∫

Im

‖U(t)‖2tdt,(4.14)

∫

Im

‖Us(t)‖2DG,tdt ≤ CST
∫

Im

‖U(t)‖2DG,tdt.(4.15)

Proof. Since the proof is long and technical, it is skipped in this paper. The proof
will be contained in [3].

4.2. Main result. Now, we are ready to formulate the main result.
Theorem 4.5. Let the parameter CW satisfy (4.4) and let U ∈ V τh be an ap-

proximate solution obtained by scheme (3.11). Then there exist constants C > 0 and
C∗ > 0 such that τ ≤ C∗ implies

sup
Im

‖U‖2t ≤ C(‖f‖2L2(0,T,L2(Ωt))
+ ‖u0‖20).(4.16)

Proof. Setting v = Us in the left-hand side of (3.11), where s ∈ [tm−1, tm] such
that ‖U(s)‖s = supt∈Im ‖U‖t, and using Lemma 4.1, Lemma 4.3 and Lemma 4.4 we
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get
∫

Im

(DtU,Us)t + ah,t(U,Us)t − (ω · ∇U,Us)tdt+ ({U}m−1, U
m−1
+ )tm−1

(4.17)

≥ 1

2
‖U(s)‖2s −

1

2
‖Um−1
− ‖2tm−1

− CDτm sup
t∈Im

‖U‖2t

−
∫

Im

Ca‖U‖DG,t ‖Us‖DG,tdt− CA
∫

Im

‖U‖DG,t ‖Us‖tdt

≥ 1

2
sup
Im

‖U‖2t −
1

2
sup
Im−1

‖U‖2t − CDτm sup
t∈Im

‖U‖2t −
Ca
2

∫

Im

‖U‖2DG,tdt

−CaCST
2

∫

Im

‖U‖2DG,tdt−
1

2

∫

Im

‖U‖2DG,tdt−
C2
ACST

2

∫

Im

‖U‖2tdt,

where we use the notation supI0 ‖U‖2t = ‖u0‖20. Similarly, setting v = Us in the
right-hand side of (3.11) we get

∫

Im

(f, Us)tdt ≤
1

2
‖f‖2L2(Im,L2(Ωt))

+
CST

2

∫

Im

‖U‖2t .(4.18)

Using these relations we get

1

2
sup
Im

‖U‖2t −
1

2
sup
Im−1

‖U‖2t ≤
1

2
‖f‖2L2(Im,L2(Ωt))

(4.19)

+C2τm sup
t∈Im

‖U‖2t + C3

∫

Im

‖U‖2DG,tdt,

where C2 = CD + (C2
A + 1)CST /2 and C3 = (1 + Ca + CaCST )/2.

Multiplying (4.10) by 4C3 and summing with (4.19) we get

1

2

(
4C3‖Um− ‖2tm + sup

Im

‖U‖2t
)
− 1

2

(
4C3‖Um−1

− ‖2tm + sup
Im−1

‖U‖2t

)
(4.20)

≤ 8C3 + 1

2
‖f‖2L2(Im,L2(Ωt))

+ (4C1C3 + C2)τm sup
t∈Im

‖U‖2t .

Setting C∗ = 8C1C3 + 2C2 we get we get (4C1C3 + C2)τm < 1/2 and the statement
of the theorem follows from the application of the discrete Gronwall lemma.

5. Conclusion. We presented a higher order method for the heat equation in a
time dependent domain based on the space-time discontinuous Galerkin method. For
this problem, the idea of the proof of the unconditional stability for any polynomial
degree is shown. There are several items for the future work.

• The extension of the discontinuous Galerkin discretization and the stability
analysis to nonlinear problems.

• Deriving a priori error estimates.
• Investigating other suitable higher order time discretizations for problems

with a time dependent domain, e.g. continuous Galerkin method, DIRK, etc.
• The numerical analysis of coupled problems, where the ALE mapping depends

on the solution of the problem.
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UPPER HAUSDORFF DIMENSION ESTIMATES FOR INVARIANT
SETS OF EVOLUTIONARY SYSTEMS ON HILBERT MANIFOLDS

AMINA KRUCK AND VOLKER REITMANN

Abstract. We prove a generalization of the Douady-Oesterlé theorem on the upper bound of
the Hausdorff dimension of an invariant set of a smooth map on an infinite dimensional manifold. It
is assumed that the linearization of this map is a noncompact linear operator. A similar estimate is
given for the Hausdorff dimension of an invariant set of a dynamical system generated by a differential
equation on a Hilbert manifold.

Key words. Hilbert manifold, Hausdorff dimension, singular value
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1. Basic notation of manifold theory. Let us shortly introduce some defini-
tions and properties for manifolds over a Hilbert space ([1, 8]). Suppose H is a Hilbert
space andM is a set. A chart onM is a bijection x : D(x) ⊂M→ R(x) ⊂ H, where
R(x) is an open set. An atlas A of class Ck(k ≥ 1) onM is a set of charts, such that:
(AT1) ∪x∈AD(x) =M;
(AT2) For arbitrary x, y ∈ A, such that D(y) ∩ D(x) 6= ∅, the set x(D(x) ∩ D(y)) is
an open subset in H;
(AT3) For arbitrary x, y ∈ A the map y ◦ x−1 : x(D(x) ∩D(y))→ y(D(x) ∩D(y)) is
a Ck diffeomorphism.

A pair (M, A) whereM is a set and A is a Ck-atlas onM, is called Ck -manifold
over the Hilbert space H.

Let x and y be two arbitrary charts onM around the point u ∈M. Let ξ, η ∈ H
be arbitrary. Introduce the equivalence relation

(u, x, ξ) ∼ (u, y, η)⇔ η = (y ◦ x−1)′(x(u))ξ.

The equivalence class

[u, x, ξ] = {(u, y, η)|u ∈ D(x) ∩ D(y), (u, y, η) ∼ (u, x, ξ)},

is called tangent vector at u. The tangent space of M at u is the set TuM of all
equivalence classes [u, x, ξ] such that x is a chart, u ∈ D(x) and ξ ∈ H. It is equipped
with a vector space structure on TuM given by:

[u, x, ξ] + [u, x, η] = [u, x, ξ + η],∀ξ ∈ H, η ∈ H
λ[u, x, ξ] = [u, x, λξ], ∀λ ∈ R, ξ ∈ H.

The tangent bundel TM of M is defined by TM = ∪u∈MTuM.
Suppose that M is a Ck-manifold over the Hilbert space H. The map ϕ : U ⊂

M→M is said to be Cr -differentiable (r ≤ k) at u ∈M if there are charts x around
u and y around ϕ(u) such that the map y ◦ϕ ◦ x−1 is Cr-differentiable in x(u) in the
sense of Fréchet.

The differential of ϕ at u ∈ U is the linear map duϕ : TuM→ Tϕ(u)M, given by

duϕ([u, x, ξ]) = [ϕ(u), y, (y ◦ ϕ ◦ x−1)′(x(u))ξ], (1.1)

247
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where x, y are charts around u and ϕ(u), respectively, and ξ ∈ H is arbitrary.
Let a Riemannian metric of class Ck−1 be defined on the connected Ck-manifold

M(k ≥ 2) over the Hilbert space H. Suppose that at every point u ∈M and for every
chart x around u there is given a symmetric positive definite operator Gx : H → H
with the following properties
(RM1) The map Gx : D(x)→ L(H) is Ck-smooth.
(RM2) [(y ◦ x−1)′(x(u))]∗Gy(u)[(y ◦ x−1)′(x(u))] = Gx(u) for any two charts x, y
around u.

Let (M, g) be a Riemannian Cr-manifold (r ≥ 3) over the Hilbert space H.
For any u ∈ M and any v ∈ TuM there exists a unique geodesic ϕ(·, u, v) with
ϕ(0, u, v) = u, ϕ̇(0, u, v) = v. Then (t, u, v) 7→ ϕ(t, u, v) is a Cr−2-map.

Definition 1.1. The map v 7→ expu v = ϕ(1, u, v) is called exponential map of
class Cr−2 around 0 ∈ TuM.

Let V be a sufficiently small neighborhood of 0 ∈ TuM. Then the map expu :
V → expu V is a Cr−2 - diffeomorphism.

It follows for any u ∈ M and any sufficiently small number ε > 0 the map expu
is a Cr−2 -diffeomorphism on Bε(0u) ⊂ TuM.

For any v ∈ Bε(0u) the map t 7→ c(t) = expu(t, v) with t ∈ [0, 1] is a geodesic on
M.

Let us define a dynamical system and an associated global attractor on the Rie-
mannian manifold ([1, 8]). Let (M, ρ) be the metric space generated on the Rieman-
nian manifold (M, G) and let {ϕt}t∈J be a family of maps ϕt : M → M, where
J ∈ {R,R+,Z,Z+}. The pair ({ϕt}t∈J , (M, ρ)) is called a dynamical system on the
metric space (M, ρ) if the following holds:

1. ϕ0 = idM;
2. ϕt+s = ϕt ◦ ϕs for all s, t ∈ J ;
3. ϕ(·)(·) : J ×M→M is smooth if J ∈ {R,R+}. The family ϕt :M→M of

maps with t ∈ J is smooth if J ∈ {Z,Z+}
Let ({ϕt}t∈J , (M, ρ)) be a dynamical system. A set A ⊂ M is called a global

B-attractor for the dynamical system if the following conditions are satisfied:
(CM1) A is compact;
(CM2) A is an invariant set in the sense that ϕt(A) = A,∀t ∈ J ;
(CM3) A attracts any bounded set B ⊂M under {ϕt}t∈J , i.e.

dist(ϕt(B),A)→ 0 for t→∞ (1.2)

where dist(Z1,Z2) = sup
u∈Z1

inf
v∈Z2

ρ(u, v) (1.3)

for any nonempty subsets Z1,Z2 ⊂M is the Hausdorff semidistance.

2. Hausdorff dimension and singular values. In the following we introduce
some basic definitions and propositions of singular values for noncompact linear op-
erators. Consider the linear not compact operator T : K→ K′, where (K, (·, ·)K) and
(K′, (·, ·)K′) are Hilbert spaces. (The case when K = K′ is considered in [[10]].) The
adjoint operator T [∗] : K′ → K, is defined by the relation (Tξ, η)K′ = (ξ, T [∗]η)K,
∀ξ ∈ K,∀η ∈ K′.

The singular values of T , denoted by αi(T ), are given by

αk(T ) = sup
L ⊂ K

dimL = k

inf
ξ ∈ L
|ξ|K = 1

|Tξ|K′ , k = 1, 2, . . . . (2.1)
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Let T∧k : K∧k → K′∧k and let consider ωk(T ) = α(T∧k). The function

ωd(T ) =

{
ω1−s
d0

(T ) · ωsd0+1(T ), d > 0
1, d = 0

is called the singular value function of T . Here d ≥ 0 is written in the form d = d0 +s,
d0 ∈ N0, s ∈ (0, 1].

Let {ξi}i∈I be an orthonormal basis of K such that ξi is an eigenvector of T [∗]T
corresponding to the eigenvalue αi(T ), i ∈ I. Then there exists an orthonormal basis
{ηi}i∈I in K′ with ηi = 1

αi
Tξi for any i ∈ I and αi > 0. The image of the unit ball

B1(0) ⊂ K under the map T is the set





∑

i∈I,αi(T )6=0

ciηi ∈ K′|
∑

i∈I,αi(T ) 6=0

(
ci

αi(T )

)2

≤ 1



 .

The operator T̃ = T [∗]T is positive, self-adjoint, and continuous but no longer
compact. We introduce the sequence of numbers βn(T̃ ), n ≥ 1, defined by

βn(T̃ ) = inf
L ⊂ K

dimL = k

sup
ξ ∈ L
|ξ|K = 1

(T̃ ξ, ξ)K. (2.2)

The sequence {βn(T̃ )} is nonincreasing and we can easily see that the definition of
βn(T̃ ) is unchanged if we replace the infimum in (2.2) by the infimum for L ⊂ K. If
T̃ is compact then, according to the well known min-max principle βn(T̃ ) would be
the eigenvalues of T̃ .

We set

β∞(T̃ ) = lim
n→∞

βn(T̃ ) = inf
n≥1

βn(T̃ ). (2.3)

The sequence is stationary at some stage:

β1(T̃ ) ≥ . . . ≥ βn0
(T̃ ) > βn0+1(T̃ ) = βm(T̃ ) = β∞(T̃ ), ∀m ≥ n0 + 1 (2.4)

or

βm(T̃ ) > β∞(T̃ ), ∀m ∈ N. (2.5)

In the first case it follows from the above result that β1, . . . βn0
, are eigenvalues of

T̃ , while in the second case each βm is an eigenvalue of T̃ . In both cases we decompose
K into the direct sum Kv ⊕ K⊥v , where Kv is the space spanned by the eigenvectors
of T̃ , ei, i ∈ I, which we suppose orthonormalized (I = (1, ..., no) when (2.3) occurs,
I = N when (2.4) holds). Of course, it may happen that Kv = {O} or Kv = K.

Let K = Kv⊕K⊥v denote the decomposition of K, where Kv and K⊥v are orthogo-

nal. In the same way let us introduce the decomposition K′ = K′v ⊕K′v
⊥

. Let {ξi}i∈I
be an orthonormal basis of Kv such that ξi is an eigenvector of T [∗]T corresponding
to the eigenvalue αi(T ), i ∈ I. Then there exists an orthonormal basis {ηi}i∈I in K′
with ηi = 1

αi
Tξi for any i ∈ I and αi 6= 0. We observe that the vectors Tei, i ∈ I are

orthogonal, i. e.

(Tei, T ej)K′ = (T [∗]Tei, ej)K = βi(ei, ej)K = βiδij ∀i, j ∈ I, (2.6)
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where δij = (ei, ej),∀i, j ∈ I.
The image of the unit ball B1(0) ⊂ K under the map T is included in the sum

of the ellipsoid
∑
i∈I

1
α2
i

(
ξ, Teiαi

)2
≤ 1 of K′v and of the ball of K′v

⊥
centered at 0 of

radius α∞(T ).
The next proposition is a generalization of a result of [10]
Proposition 2.1. Let K be a Hilbert space and B its unit ball. Let T : K→ K′

be a linear continuous operator and, if T is not compact, let Kv be defined as above.
Then T (B) is included in an ellipsoid E:
(i) If T is not compact, but K′v = K′, the axes of E are directed along the vectors Tei
and their length is αi(T ), the ei being the eigenvectors of T [∗]T .
(ii) If T is not compact and K′v 6= K′, E is the product of the ball centered at 0 of

radius α∞ in K′v
⊥

, and of the ellipsoid of K′v whose axes are directed along the vectors
Tei with lengths αi(T ), the ei being the eigenvectors of T spanning K′v.

Let E be an ellipsoid in the Hilbert space H′ and let a1(E) ≥ a2(E) ≥ . . . denote
the lengths of the half-axes. For any j ∈ N0 we define

ωj(E) =

{
a1(E) · . . . · aj(E)), j ∈ N
1, j = 0

.

For any d > 0 of the form d = d0 + s with d0 ∈ N0 and s ∈ (0, 1] we define

ωd(E) = ω1−s
d0

(E) · ωsd0(E).

Let (M, G) be a Riemannian manifold over the Hilbert space H and K ⊂ M be
a subset.

For arbitrary real numbers ε > 0 and d ≥ 0 we consider the d-dimensional Haus-
dorff outer premeasure at level ε of K given by

µH(K, d, ε) := inf
∑

i

rdi , (2.7)

where the infimum is taken over all countable covers of K by balls Bri(ui) = {v ∈
M|ρ(ui, v) ≤ ri} of radius ri ≤ ε and outer ui ∈ M. For fixed d and K the function
µH(K, d, ε) is monotone decreasing in E .

Hence the limit

µH(K, d) = lim
ε→0+0

µH(K, d, ε) (2.8)

exists and is called d-dimensional Hausdorff outer measure of K.
For every subset K ⊂M there exists a critical number d∗ with

µH(K, d) =

{
∞ for any 0 ≤ d < d∗,
0 for any d > d∗.

(2.9)

This critical number can be characterized as

d∗ = sup{d ≥ 0| µ(K, d) =∞}. (2.10)

It is called Hausdorff dimension of K and denoted by dimHK.
Introduce the global Lyapunov exponents νu1 ≥ νu2 ≥ . . . by

νu1 + νu2 + . . .+ νum = lim
t→∞

1

t
log max

p∈K
ωm(dpϕ

t), m = 1, 2, . . . .
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The upper Lyapunov dimension of ϕt on K with respect to the global Lyapunov
exponents is

dimu
L(ϕt,K) ≤ N +

νu1 + · · · νuN
νuN+1

,

where N ≥ 0 denotes the smallest number satisfying νu1 + νu2 + · · ·+ νuN + νuN+1 < 0

3. Hausdorff dimension bounds for invariant sets of maps on Hilbert
manifolds. Let (M, G) be a Riemannian manifold, let U ⊂ M be an open subset
and let us consider the map ϕ : U →M of class C1. The tangent map of ϕ at a point
u ∈ U is denoted by duϕ : TuM→ Tϕ(u)M.

Let u ∈ U be an arbitrary point and consider charts x and x′ at u and ϕ(u),
respectively. We introduce the operators Gx(u) : H → H and G′x′(ϕ(u)) that real-
izes the metric fundamental tensor G in the canonical bases of TuM and Tϕ(u)M,
respectively. The tangent map of ϕ at u written in coordinates of the charts x and
x′ is given by the operator Φ = D(x′ ◦ ϕ ◦ x−1)(x(u)). The singular values of the
tangent map duϕ : TuM→ Tϕ(u)M coincide with the singular values of the operator√
G′Φ
√
G−1.

Let K ⊂ U is a compact set and the tangent map duϕ be uniformly differentiable
in the sense of Fréchet on the open set U .

Let us consider the exponential map expu : TuM→M.
By τuv we denote the isometry between TuM and TvM defined by parallel trans-

port along the geodesic for points lying sufficiently near to each other.
Let us fix a finite cover with balls B(ui, ri)i of radius ri ≤ ε of K. The Taylor

formula for differentiable maps provides that for every v ∈ B(ui, ri)

|| exp−1ϕ(ui) ϕ(v)− duiϕ(exp−1ui (v))|| ≤

sup
w∈B(ui,ri)

||τϕ(ui)ϕ(w) dwϕτ
w
ui − duiϕ|| · || exp−1ui (w)||. (3.1)

Theorem 3.1. Let d > 0 be a real number and K ⊂ U a compact set which is
negatively invariant with respect to ϕ, i.e. ϕ(K) ⊃ K. If the inequality

sup
u∈K

ωd(duϕ) < 1 (3.2)

holds, then dimHK < d.
In difference to the paper [7] we consider here the case when the linearization of

the map ϕ may be a noncompact linear operator.
Corollary 3.2. Let K ⊂ U ⊂ M be a compact set satisfying ϕ(K) ⊃ K. If for

some continuous function κ : U → R+ and for some number d > 0 the inequality

sup
u∈K

(
κ(ϕ(u))

κ(u)
ωd(duϕ)

)
< 1 (3.3)

holds, then dimHK < d.
Let us describe the main ideas which are used in the proof of Theorem 3.1.

Consider the exponential map

expu : TuM→M, (3.4)
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where u ∈M is an arbitrary point. Then the set expu(E) is the image of an ellipsoid
E in the tangent space TuM centered at 0 under the map expu. Let K ⊂ U be a
compact set, let ε > 0 be a sufficiently small number and let us fix a number d > 0.
The outer ellipsoid premeasure at level ε and of order d of K is given by

µ̃H(K, d, ε) = inf

{∑

i

ωd(Ei)
}
, (3.5)

where the infimum is taken over all finite covers ∪i expui(Ei) ⊂ K, where ui ∈ M,

Ei ⊂ TuiM are ellipsoids satisfying ωd(Ei)1/d ≤ ε.
The following two lemmas for the compact case of the differentional are proved

in [1]. The proof for the noncompact case can be done using Proposition 2.1. The
use of the two lemmas is an essential part in the proof of Theorem 3.1.

Lemma 3.3. For an arbitrary number d > 0, d = d0 + s, s ∈ (0, 1], d0 ∈ N0 we
define the numbers λ =

√
d0 + 1 and Cd ≥ 2d0(d0 + 1)d/2. Then for a compact set

K ⊂ U and for every sufficiently small ε > 0 the inequality

µH(K, d, ε) ≥ µ̃H(K, d, ε) ≥ C−1d µH(K, d, λε) holds. (3.6)

Lemma 3.4. Let K ⊂ U be a compact set and consider a map ϕ : U → M of
class C1. For a number d > 0, we assume that supu∈K ωd(duϕ) ≤ k. Then, for every
l > k there exists a number ε0 > 0 such that for every ε ∈ (0, ε0]

µH(ϕ(K), d, λl1/dε) ≤ CdlµH(K, d, ε) (3.7)

holds, where λ =
√
d0 + 1, Cd ≥ 2d0(d0 + 1)d/2, d = d0 + s, s ∈ (0, 1], d0 ∈ N0.

4. Hausdorff dimension bounds for invariant sets of vector fields on
Hilbert manifolds. Let (M, G) be a Riemannian manifold, let U ⊂M be an open
subset and I1 ⊂ R be an open interval with 0. We consider a time-dependent vector
field F : I1 × U → TU of class C1 and the corresponding differential equation

u̇ = F (t, u). (4.1)

Suppose, that for a point (t, u) ∈ I1 × U the covariant derivative of the vector field
F is ∇F (t, u) : TuM→ TuM and ∇F is a compact operator. The case when ∇F is
noncompact can be also considered with the help of Section 3.

Let D ⊂ U be an open set and I ⊂ I1 be an open interval such that the solution
ϕ(·, u) with ϕ(0, u) = u, u ∈ D of equation (15) exists everywhere on I.

For every t ∈ I there exists the operator ϕt : D → U such that ϕt(u) = ϕ(t, u).

Since the vector field F is continuously differentiable, the same holds for the
operator {ϕt}t∈I . For an arbitrary point u ∈ D, the tangent map duϕ

t solves the
variation equation

y′ = ∇F (t, ϕt(u))y (4.2)

with initial condition duϕ
t|t=0 = idTuM.

Here the absolute derivative y′ is taken along the integral curve t 7→ ϕt(u) in the
direction of the vector field F .
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Let us denote the eigenvalues of the symmetric part of the covariant derivative
∇F , i.e., of the operator

S(t, u) =
1

2
[∇F (t, u) +∇F (t, u)[∗]], (4.3)

by λi(t, u), i = 1, 2, . . . and order them with respect to its size and multiplicity, i.e.,
λ1(t, u) ≥ λ2(t, u) ≥ . . ..

Let us introduce on U a new metric tensor g̃|u = κ2(u)g|u by means of a function
κ : U → R+ of class C1. Let u ∈ U be a fixed point and consider the chart x around
u. Let V : U → R be a differentiable function and the map V̇ : I ×U → R be defined
by V̇ (t, u) = 〈duV, F (t, u)〉. The symmetric part of the covariant derivative ∇̃F (t, u)
at u ∈ U with respect to the new metric is given by

1

2
[G−1ΦTG+ Φ] +

κ̇

κ
Id, (4.4)

where Φ = D(x̃ ◦ ϕ ◦ x−1)(x(u)) and the operator G represents g|u.
If

κ(u) = e
V (u)
d (u ∈ U) (4.5)

then κ̇(u) = κ(u) V̇ (u)
d implies that the eigenvalues λ̃i of (4.4) are related to the

eigenvalues with respect to the original metric g by λ̃i = λi + V̇
d , i = 1, 2, . . . .

The next theorems are corollaries of Theorem 3.1.
Theorem 4.1. Let d > 0, be a real number written in the form d = d0 + s with

d0 ∈ N0, s ∈ (0, 1] and let K ⊂ D be a compact set satisfying ϕτ (K) ⊃ K for a certain
τ ∈ I ∩ R+. If the condition

sup
u∈K

∫ τ

0

[λ1(t, ϕt(u)) + λ2(t, ϕt(u)) + . . .+ λd0(t, ϕt(u)) + sλd0+1(t, ϕt(u))]dt < 0

holds, then dimHK ≤ d.
Theorem 4.2. Let K ⊂ D be a compact set such that ϕτ (K) ⊃ K is true

for some τ ∈ I ∩ R+. Let V : U → R be a differentiable function and denote by
λ1(t, u) ≥ λ2(t, u) ≥ . . . the eigenvalues of S(t, u). If for a real number d > 0
d = d0 + s with d0 ∈ N0 and s ∈ (0, 1] the condition

sup
u∈K

∫ τ

0

[λ1(t, ϕt(u)) + λ2(t, ϕt(u)) + . . . (4.6)

+λd0(t, ϕt(u)) + sλd0+1(t, ϕt(u)) + V̇ (t, ϕt(u))]dt < 0

holds, then dimHK ≤ d.
The application of the Theorem 4.1 and Theorem 4.2 for the compact case to the

sine-Gordon equation given on the cylinder was considered in the paper [7]. The non-
compact version of these theorems can be applied to estimate the Hausdorff dimension
of an attractor for the Ginzburg-Landau equation [3] using a nontrivial metric tensor
instead of the Lyapunov function used in this paper. Thus it is possible to calculate
the Lyapunov dimension dimu

L(ϕt,K), introduced in Section 2, for this equation.
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GAUSSIAN CURVATURE BASED TANGENTIAL REDISTRIBUTION
OF POINTS ON EVOLVING SURFACES∗

MATEJ MEDL’A† AND KAROL MIKULA ‡

Abstract. There exist two main methods for computing a surface evolution, level-set method
and Lagrangian method. Redistribution of points is a crucial element in a Lagrangian approach. In
this paper we present a point redistribution that compress quads in the areas with a high Gaussian
curvature. Numerical method is presented for a mean curvature flow of a surface approximated by
quads.

Key words. surface evolution, point redistribution, finite volume method, mean curvature flow

AMS subject classifications. 53C44, 65M08, 65M50

1. Introduction. An important part in computing a surface evolution is a re-
distribution of points on a surface. An improper distribution of points could lead to
an unstable numerical method.

There are several papers dedicated to this problem. One of the approaches is
using the so-called Laplacian smoothing method [1]. A method that we build on
is controlling the so-called local area density [4]. In a paper [5] a method for a
redistribution of points on a curve by a curvature was presented. We generalize this
method for evolving surfaces. In a case of surfaces we redistribute points by Gaussian
curvature, since saddle point can have a zero mean curvature but it has non-zero
Gaussian curvature.

2. Surface evolution models. Let us have an open parametric surface E =
{x(t, u, v)|t ∈ [0, T ), (u, v) ∈ Ω = [0, 1] × [0, 1]} evolving in a time t by the following
partial differential equation

∂x

∂t
(t,u, v) = β(t, u, v)N(t, u, v) + VT(t, u, v), t ∈ (0, T ), (u, v) ∈ Ω \ ∂Ω,(2.1)

where N(t, u, v) is a unit normal vector and T > 0. The vector VT represents the
evolution in a tangential direction along the surface. An evolution in the tangen-
tial direction does not change the image of the surface. In a quad (quadrilateral)
approximation of a surface it only change the size and the shape of the quads.

In our numerical experiments we are focusing only on two special cases

β(t, u, v)N(t, u, v) = ∆xx(t, u, v),(2.2)

β(t, u, v)N(t, u, v) = ∆xx(t, u, v) + N(t, u, v),(2.3)

where ∆xx(t, u, v) is a Laplace-Beltrami operator applied on the position vector of
the parametrized surface E. This is known to be the mean curvature vector of the
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†Department of Mathematics, Slovak University of Technology in Bratislava, Slovakia

medla@math.sk.
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surface. We want to emphasize that ∆xx is normal to the surface E and does not
depend on the parametrization x. It depends only on the shape of E.

We want to have a surface evolution that does not change the boundary curve
but can change the distribution of points along the boundary. For this reason we have
the following boundary conditions

∂x

∂t
(t, u, v) = VT(t, u, v) t ∈ (0, T ), (u, v) ∈ ∂Ω,(2.4)

where the vector VT lies in a tangent direction of a boundary curve. Let us also have
the initial condition

x(0, u, v) = x0(u, v), (u, v) ∈ Ω \ ∂Ω.(2.5)

3. The tangential redistribution. The variable that we want to control by
the tangential redistribution is the local area density

g(t, u, v) = ||∂ux(t, u, v)× ∂vx(t, u, v)||.(3.1)

It can be understood as the area of the parallelogram with sides ∂ux(t, u, v) and
∂vx(t, u, v). In a quad approximation of a surface the area density g is proportional
to the area of the quads.

In the rest of this section we derive a formula for VT in the equation (2.1) that
provide us a desired area density.

3.1. Change of the area density in time. For the derivative of the area
density it applies [4]

∂tg = g∆xx · βN + g∇x ·VT.(3.2)

If we want the area density to converge to a prescribed local area density c(t, u, v),
one of the possibilities is to find an area density that satisfies the following ODE

∂t

( g
A

)
=
( c
A
− g

A

)
ω,(3.3)

where A is the area of the surface and ω is a parameter controlling the rate at which
g converges to c.

By rearranging the equation (3.3) and by substituting the equation (3.2) into it
we get

∇x ·VT = ∆xx · βN− 1

A

∫∫

E

∆xx · βN dx +

(
c

g
− 1

)
ω.(3.4)

The equation (3.4) does not have a unique solution. By taking a vector field VT that
is a gradient of some potential ϕ and a Neumann boundary condition we obtain a
PDR that has an infinity many solutions that differs only by a constant. By giving
a Dirichlet boundary condition in one arbitrary point we ensure uniqueness of the
solution. Since we are only interested in the gradient of ϕ it does not matter in which
point we prescribe the Dirichlet BC. The equation for the potential with the boundary
conditions is

∇x · ∇xϕ(·, u, v) = ∆xϕ(·, u, v) =
(3.5)

∆xx · βN − 1

A

∫∫

E

∆xx · βN dx +

(
c

g
− 1

)
ω, (u, v) ∈ Ω \ ∂Ω,

∇xϕ(·, u, v)· n (·, u, v) = 0, (u, v) ∈ ∂Ω \ {(0, 0)},(3.6)

ϕ(·, u, v) = 0, (u, v) = (0, 0).(3.7)
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A Neumann boundary condition provides a tangential vector field which has a zero
projection to the normal of the boundary. This ensures that points on the boundary
are moving only in the direction of the tangential vector of the boundary curve.

Then equations (2.1)-(2.4) acquires the form

∂x

∂t
(t, u, v) = ∆xx(t, u, v) +∇xϕ(t, u, v), t ∈ (0, T ), (u, v) ∈ Ω \ ∂Ω(3.8)

∂x

∂t
(t, u, v) = ∇xϕ(t, u, v), t ∈ (0, T ), (u, v) ∈ ∂Ω(3.9)

4. Choice of the function c. The choice of the function c is crucial for the
distribution of points on the surface. An appropriate choice of c can provide a quad
approximation of the surface with large quads in the areas with a small Gaussian
curvature G(t, u, v) and vice versa. There are two properties that the function c has
to satisfy,

c(t, u, v) > 0,

∫∫

Ω

c(t, u, v) dudv = A.(4.1)

The first property has to be satisfied since the size of the quad cannot be negative.
Numerical interpretation of the second property is that the sum of the quad sizes has
to be equal to the area of the surface.

If we choose c to be inverse proportional to the Gaussian curvature, we obtain a
surface approximation with smaller quads in areas of high Gaussian curvature. There
are multiple options for how to choose this dependence. First let us define an auxiliary
function ĉ that has the form

ĉ(t, u, v) =
(
pmin

(
|G(t, u, v)|/G̃, 1

)
+ 1
)−1

,(4.2)

where G̃ is a chosen value that is restricting the maximal value of a function nad p is
the chosen parameter. Then the function c is the function ĉ normalized

c(t, u, v) = A
ĉ(t, u, v)∫∫

Ω
ĉ(t, u, v) dudv

.(4.3)

This normalization ensures that the second property (4.1) is fulfilled.

5. Surface and PDEs approximation. Let us divide the surface E in the t-th
time step into quadrilaterals. Let us denote the vertices of the quads of the surface
xt,i, i ∈ {1, ..., N}. Let us have a Qi quads that has a vertex xt,i. Then let us

denote 4 vertices of the q-th quad of xt,i by xq,jt,i , j ∈ {0, 1, 2, 3}, q ∈ Qi. The vertex

xq,0t,i = xt,i and other vertices are numbered in an anticlockwise direction. For the

vertex xq,3t,i holds xq,3t,i = xq+1,1
t,i , where q + 1 is as a mod(q + 1, Qi). Let us have a

function k(i, q, j) that takes the local indexes of a vertex and return its global index.
For a better understanding see Fig. 7.1.

Let us interpolate values of x on quads using a bilinear interpolation

xqt,i(φ, ρ) = (1− φ)(1− ρ)xq,0t,i + φ(1− ρ)xq,1t,i + (1− φ)ρxq,3t,i + φρxq,2i .(5.1)

Every function defined on the surface E is also approximated using bilinear interpo-
lation

fqt,i(φ, ρ) = (1− φ)(1− ρ)fq,0t,i + φ(1− ρ)fq,1t,i + (1− φ)ρfq,3t,i + φρfq,2t,i ,(5.2)



258 M. MEDL’A AND K. MIKULA

where fq,jt,i is the value of the function f in the vertex xq,jt,i .
Let us have a finite volume Vt,i composed of quads defined by the centers of the

original quads and the centers of their edges. Let us denote the edges of Vt,i on the
q-th quad by

eq,1t,i = {xqt,i(1/2, ρ); ρ ∈ (0, 1/2)}, eq,3t,i = {xqt,i(φ, 1/2);φ ∈ (0, 1/2)}(5.3)

At last let us integrate the equation (3.5) over the finite volume

∫∫

Vt,i

∆xϕ dx =

∫∫

Vt,i

∆xx · βN dx

(5.4)

−
∫∫

Vt,i

1

A

∫∫

E

∆xx · βN dx dx +

∫∫

Vt,i

(
c

g
− 1

)
ω dx

and also the equation (3.8)

∫∫

Vt,i

∂x

∂t
dx =

∫∫

Vt,i

∆xx dx +

∫∫

Vt,i

∇xϕ dx(5.5)

For the boundary condition (3.9) it holds that the derivative of a potential ϕ on the
right side in the normal direction is zero. That means yhe direction of the gradient
of ϕ is the tangential direction to the boundary curve. For this reason we have 1D

finite volumes on the boundary. They are defined by the points
(
x1,0
t,i + xt,i

)/
2, xt,i,(

xQi,3t,i + xt,i

)/
2 and after integrating (3.9) on this finite volume we get

∫

Vt,i

∂x

∂t
dx =

∫

Vt,i

∇xϕ dx.(5.6)

The integral equations (5.4)-(5.6) form a basis for the finite volume method which
leads for (5.5)-(5.6) to a system of equations in a matrix form

T+
t Xt+1 + T−

t Xt = BtXt+1 +AtXt+1,(5.7)

Xt+1 = [xt+1,1,xt+1,2, . . . ,xt+1,N ]
T
, Xt = [xt,1,xt,2, . . . ,xt,N ]

T
.(5.8)

The matrices T+
t+1, T−

t are related to the time derivative, the matrix Bt is related to
the evolution in the normal direction and the matrix At is related to the evolution in
the tangential direction.

For the equation (5.4), it leads to a system of equations

DtΦt = bt, Φt = [ϕt,1, ϕt,2, . . . , ϕt,N ]
T
.(5.9)

The matrix Dt is related to the Laplace-Beltrami operator and bt is related to the
right hand side of the equation (5.4).

6. The computational algorithm. The algorithm to numerically solve the
equations (2.1)-(2.4) (or (3.8)-(3.9)) is as follows.

Let us have a known initial condition X0 and a number of time steps M .
For(t = 0; t < M ; t+ +)
• compute the matrices T+

t , T−
t , Bt
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x1,1
t,i = x5,3

t,i

x1,2
t,i

x1,3
t,i

Vi

t1,1t,i

v1,1
t,i

m1,1
t,i

q = 1
q = 2

q = 3

q = 4 q = 5

e5,3t,i
e5,1t,i

x5,2
t,i

x5,1
t,i

xt,i = x1,0
t,i = x5,0

t,i

Fig. 7.1. A sketch of the finite volume Vi composed of five quads. Local notation for quad
number 1 and 5 are labeled. For the quad 1, vectors m1,1

t,i , t1,1t,i , v1,1
t,i are labeled. For the quad 5,

edges e5,1t,i , e5,3t,i are labeled.

• use these matrices to explicitly compute (βN)t,i that is used in bt
• compute the matrix Dt and bt
• find Φt by solving DtΦt = bt
• use Φt to compute the matrix At
• find Xt+1 by solving (5.7)

7. The finite volume method. In this section we present the coefficients of the
matrices from the previous section derived by the finite volume method. A detailed
derivation of the coefficients can be found in a forthcoming paper [2].

7.1. The approximation of the time derivative. Let us assume a constant
time derivative on the finite volume and let us approximate the time derivative by a
finite difference. Then the first integral in the equation (5.5) becomes

m(Vt,i)
xt+1,i − xt,i

τ
,(7.1)

where

m(Vt,i) =

Qi∑

q=1

∣∣∣∣∣

∣∣∣∣∣
xq,1t,i − xq,0t,i

2
×
(

xq,0t,i + xq,1t,i + xq,2t,i + xq,3t,i
4

− xq,0t,i

)∣∣∣∣∣

∣∣∣∣∣

/
2

(7.2)

+

∣∣∣∣∣

∣∣∣∣∣
xq,3t,i − xq,0t,i

2
×
(

xq,0t,i + xq,1t,i + xq,2t,i + xq,3t,i
4

− xq,0t,i

)∣∣∣∣∣

∣∣∣∣∣

/
2

and τ is the time step. Then the only non-zero coefficients of the matrices T+
t and

T−
t are the diagonal coefficients

T+
t,i,i = m(Vt,i)/τ, T−

t,i,i = −m(Vt,i)/τ.(7.3)

7.2. The finite volume approximation of the Laplace-Beltrami oper-
ator. We are applying Laplace-Beltrami operator to the vector function x(t, u, v)
and to a scalar function ϕ(t, u, v). Using a bilinear approximation we can derive the
following vectors on the edges eq,1t,i , eq,3t,i (see Fig. 7.1)

tq,1t,i = −1

2
xq,0t,i −

1

2
xq,1t,i +

1

2
xq,3t,i +

1

2
xq,2t,i ,

(7.4)

tq,3t,i = −1

2
xq,0t,i +

1

2
xq,1t,i −

1

2
xq,3t,i +

1

2
xq,2t,i .
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vq,1t,i = −3

4
xq,0t,i +

3

4
xq,1t,i −

1

4
xq,3t,i +

1

4
xq,2t,i ,

(7.5)

vq,3t,i = −3

4
xq,0t,i −

1

4
xq,1t,i +

3

4
xq,3t,i +

1

4
xq,2t,i ,

mq,1
t,i = vq,1t,i −

vq,1t,i · tq,1t,i
tq,1t,i · tq,1t,i

tq,1t,i , mq,3
t,i = vq,3t,i −

vq,3t,i · tq,3t,i
tq,3t,i · tq,3t,i

tq,3t,i .(7.6)

If fq,jt,i is one of the coordinates of xq,jt,i then the q-th quad contributes to the
coefficients Bt,i,k(i,q,j) by the values

Bt,i,k(i,q,0) +=
m(eq,1t,i )

||mq,1
t,i ||

(
−3

4
+

1

2
aq,1i

)
+
m(eq,3t,i )

||mq,3
t,i ||

(
−3

4
+

1

2
aq,3i

)
,

Bt,i,k(i,q,1) +=
m(eq,1t,i )

||mq,1
t,i ||

(
3

4
+

1

2
aq,1i

)
+
m(eq,3t,i )

||mq,3
t,i ||

(
−1

4
− 1

2
aq,3i

)
,

(7.7)

Bt,i,k(i,q,2) +=
m(eq,1t,i )

||mq,1
t,i ||

(
1

4
− 1

2
aq,1i

)
+
m(eq,3t,i )

||mq,3
t,i ||

(
1

4
− 1

2
aq,3i

)
,

Bt,i,k(i,q,3) +=
m(eq,1t,i )

||mq,1
t,i ||

(
−1

4
− 1

2
aq,1i

)
+
m(eq,3t,i )

||mq,3
t,i ||

(
3

4
+

1

2
aq,3i

)
.

where

aq,1t,i =
vq,1t,i · tq,1t,i
tq,1t,i · tq,1t,i

, aq,3t,i =
vq,3t,i · tq,3t,i
tq,3t,i · tq,3t,i

.(7.8)

If fq,jt,i = ϕq,jt,i then the q-th quad contributes to the coefficients Φt,i,k(i,q,j) by the
same values.

7.3. The approximation of the right hand side in the equation (5.4). Let

us approximate the first integral in the equation (5.4) by assuming βN and
(
c
g − 1

)
ω

are constant on a finite volume. Let us denote this constant value on the finite
volume Vt,i by (βN)t,i and

(
ct,i
gt,i
− 1
)
ω. This vector can be approximated by explicitly

computing the movement in the normal direction

(βN)t,i =
(
(Bt,i − T−

t,i) ·Xt/T
+
t,i,i − xt,i

)
/τ.(7.9)

Then the right hand side has the form

bt,i = (βN)t,i ·
∫∫

Vt,i

∆xx dx

(7.10)

− m(Vt,i)
1

A
(βN)t,i ·

N∑

j=1

∫∫

Vj

∆xx dx +m(Vt,i)

(
ct,i
gt,i
− 1

)
ω

and
∫∫
Vt,i

∆xx dx is approximated as in section (7.2).

The local area density gt,i in (7.10) is dependent on the parametrization x(u, v).
In the numerical approximation of the surface we do not have any so we take such
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x(u, v) that projects a rectangle dudv with size 1 onto the quarter of quad. So gt,i is
approximated by

gt,i = m(Vt,i)/Qi(7.11)

and ct,i is approximated by

ct,i = 1
/(

pmin
(
|Gt,i|/G̃, 1

)
+ 1
)/ N∑

j=1

Qj

/(
pmin

(
|Gt,j |/G̃, 1

)
+ 1
)
.(7.12)

Finally the Gaussian curvature is approximated by [3]

Gt,i =
4

m(Vt,i)

(
2π −

Qi∑

q=1

arccos

(
(xq,1t,i − xq,0t,i ) · (xq,2t,i − xq,0t,i )

||xq,1t,i − xq,0t,i || ||xq,2t,i − xq,0t,i ||

)

+ arccos

(
(xq,3t,i − xq,0t,i ) · (xq,2t,i − xq,0t,i )

||xq,3t,i − xq,0t,i || ||xq,2t,i − xq,0t,i ||

)
(7.13)

+ arccos

(
(xq,3t,i − xq,0t,i ) · (xq,1t,i − xq,0t,i )

||xq,3t,i − xq,0t,i || ||xq,1t,i − xq,0t,i ||

))
.

7.4. The finite volume approximation of the surface gradient. In this
section we approximate the integral of the surface gradient in the equation (5.5). Let
us approximate the function ϕ using a bilinear interpolation. Let us define

φq,1t,i =
3

8
ϕq,0t,i +

3

8
ϕq,1t,i +

1

8
ϕq,2t,i +

1

8
ϕq,3t,i − ϕ̃t,i,

(7.14)

φq,3t,i =
3

8
ϕq,0t,i +

1

8
ϕq,1t,i +

1

8
ϕq,2t,i +

3

8
ϕq,3t,i − ϕ̃t,i,

where

ϕ̃t,i =
1

Qi

Qi∑

q=1

1

8
ϕq,0t,i +

2

8
ϕq,1t,i +

1

8
ϕq,2t,i +

2

8
ϕq,3t,i .(7.15)

Then the q-th quad contributes to the coefficients At,i,k(i,q,j) by the values

At,i,k(i,q,0) += φq,1t,i
m(eq,1t,i )

||mq,1
t,i ||
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+
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2
aq,1i

)
+ φq,3t,i

m(eq,3t,i )

||mq,3
t,i ||
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4
+

1

2
aq,3i

)
,

At,i,k(i,q,1) += φq,1t,i
m(eq,1t,i )

||mq,1
t,i ||

(
3

4
+

1

2
aq,1i

)
+ φq,3t,i

m(eq,3t,i )

||mq,3
t,i ||

(
−1

4
− 1

2
aq,3i

)
,

(7.16)

At,i,k(i,q,2) += φq,1t,i
m(eq,1t,i )

||mq,1
t,i ||

(
1

4
− 1

2
aq,1i

)
+ φq,3t,i

m(eq,3t,i )

||mq,3
t,i ||

(
1

4
− 1

2
aq,3i

)
,

At,i,k(i,q,3) += φq,1t,i
m(eq,1t,i )

||mq,1
t,i ||

(
−1

4
− 1

2
aq,1t,i

)
+ φq,3t,i

m(eq,3t,i )

||mq,3
t,i ||

(
3

4
+

1

2
aq,3t,i

)
.

For the special case of the boundary finite volumes (5.6) we have the coefficients

At,i,k(i,1,1) =

(
ϕ1,1
t,i + ϕt,i

2
−
ϕ1,1
t,i + 2ϕt,i + ϕQi,3t,i

4

)
1

||x1,1
t,i − xt,i||

,
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At,i,k(i,Qi,3) =

(
ϕQi,3t,i + ϕt,i

2
−
ϕ1,1
t,i + 2ϕt,i + ϕQi,3t,i

4

)
1

||xQi,3t,i − xt,i||
,(7.17)

At,i,i = −At,i,k(i,1,1) −At,i,k(i,Qi,3).

8. Numerical experiments. In this section we present three numerical exper-
iments. In first two experiments we present mean curvature flow (2.2) of an open
surface with redistribution of points by the Gaussian curvature. In the last experi-
ment we present an evolution of a closed surface by (2.3). A value of interest is the
difference between the area density g and the desired area density c. This norm is
numerically computed as

errort =

√√√√
∑N
i=1(gt,i − ct,i)2

∑N
i=1(gt,i)2

.(8.1)

For all the experiments we used the time step τ = 0.1 and the following parameters,
ω = 1, p = 10, G̃ = 2.4.

The first experiment has the initial condition in the shape of a cylinder with
radius 1 and height 1 with 1225 points; and 250 time steps were computed. The
surface in time steps 0, 5, 10, 250 can be seen on figure 8.2. A decreasing errort for
this evolution can be seen on figure 8.1, top. In time 0, there is constant g on the
surface and also a constant Gaussian curvature, hence error0 = 0. After some time,
points with a higher Gaussian curvature occur near the boundary. The redistribution
responds to this and decreases the area of the corresponding quads. After that, the
highest Gaussian curvature points move to the center of the cylinder. Then the surface
acquires a steady state and the local area density does not change in time although
it is not constant on the surface.

The second experiment has an initial condition in the shape of a hyperbolic
paraboloid z = x2 − y2 on a domain (x, y) ∈ (−1, 1) × (−1, 1) with 400 points and
250 time steps were computed. The surface in time steps 0, 20, 40, 60 can be seen
on figure 8.3. A decreasing errort for this evolution can be seen on figure 8.1, left.
In the beginning the points with a high Gaussian curvature are in the middle of the
surface. Thus the quads start to accumulate in this area. After some time, the mean
curvature evolution causes a decrease of the Gaussian curvature in this area. This
results in an enlarging of quads.

Special case of an evolving surface is presented in the last experiment. The surface
is closed, therefore there are no boundary conditions (2.4), (3.6). The initial condition
is a dumbbell like surface with 2168 points and 500 time steps were computed. The
surface in time steps 0, 20, 60, 300 can be seen on figure 8.4. A decreasing errort for
this evolution can be seen on figure 8.1, right. In the beginning there are points with
a higher curvature in the corners and on the edges of the surface. Then the surface
starts to smooth out. In the steady state there is a constant Gaussian curvature on
the surface, hence constant c and g.

9. Conclusion. We presented a method for a redistribution of points by Gaus-
sian curvature. We have shown 3 experiments presenting the performance of this
method. We checked that the local area density converges to the prescribed local are
density resulting in refinement of the surface approximation in areas of high Gaussian
curvature. The method can be generalized to triangular meshes and a mean curvature
dependent redistribution, which can be an objective of our further research.
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Fig. 8.1. A graph of errort for the experiments. Top: the evolving cylinder. Bottom left: the
evolving hyperbolic paraboloid. Bottom right: the evolving dumbbell like surface.

Fig. 8.2. An evolving surface at time steps 0, 5, 10, 250.
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Fig. 8.3. An evolving paraboloid at time steps 0, 20, 40, 60.

Fig. 8.4. An evolving dumbbell like surface at time steps 0, 20, 60, 300.
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COMPUTATIONAL DESIGN OPTIMIZATION
OF LOW-ENERGY BUILDINGS ∗

JIŘÍ VALA †

Abstract. European directives and related national technical standards force the substantial
reduction of energy consumption of all types of buildings. This can be done thanks to the massive
insulation and the improvement of quality of building enclosures, using the simple evaluation as-
suming the one-dimensional stationary heat conduction. However, recent applications of advanced
materials, structures and technologies force the proper physical, mathematical and computational
analysis coming from the thermodynamic principles.

This paper shows the non-expensive evaluation of energy consumption of buildings with con-
trolled indoor temperature, decomposing a building, considered as a thermal system, into particular
subsystems and elements, coupled by interface thermal fluxes. We come to a rather large parabolic
system of partial differential equations, containing the nonlinearities i) from the surface Stefan -
Boltzmann radiation and ii) from the heating control; this can be handled using some properties
of semilinear systems. The Fourier multiplicative decomposition together with the finite element
technique enables us to derive a sparse system of ordinary differential equations, appropriate for
the input of climatic data (temperature, beam and diffuse solar radiation). For the approximate
solutions the spectral analysis is helpful; all nonlinearities can be overcome thanks to quasi-Newton
iterations.

All above sketched simulations have been implemented in MATLAB. An example shows the
validation of this approach, utilizing the time series of measured energy consumption from the real
family house in Ostrov u Macochy (30 km northern from Brno). Additional procedures for the support
of design of low-energy buildings come namely from the Nelder - Mead optimization algorithm.

Key words. Low-energy buildings, heat transfer, computational modelling, optimization tech-
niques, MATLAB software tools.

AMS subject classifications. 35K05, 35K20, 65K10, 65M60, 65M70, 80A20.

1. Introduction. Knowledge of the position of Sun on the sky, used for natural
winter heating and summer shading, dates back to the antique architecture and to
the manuscripts by Aischylos and Socrates. However, the modern history of solar,
low-energy and similar houses starts from the global economical crisis in the 30ties
of 20th century, with the MIT “solar houses” (Massachusetts Institute of Technol-
ogy, USA), coupling the new trends in architecture and civil engineering with the
technological progress oriented to the reduction of energy requirements of buildings,
namely of the cost of artificial heating. The actual European concept of passive house,
forced by the directive [29] and national technical standards, is connected with the
project CEPHEUS (Cost Efficient Passive House as European Standard, 1998–2001),
whose ideas are explained in [8] in all details. All energy gains rely on the massive
insulation of the building enclosure, together with available technological equipments
(heat pumps, air recuperation, etc.) and certain exploitation of solar benefits; this is
reflected by the rather simple software tool [9].

The approach of [8] does not handle the thermal accumulation and available cli-
matic data properly, namely in the case of buildings with carefully controlled interior
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and Technologies), Ministry of Education, Youth and Sports of the Czech Republic, National Sus-
tainability Programme I).
†Institute of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Brno Univer-
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temperature in their particular zones and rooms, as in the freezing and cooling plants
where the substantial effect of decrease of energy consumption thanks to their optimal
design can be expected. Moreover, the inhabitants of family houses or block of flats
frequently prefer quite other criteria of well-being than the minimization of energy
cost, as reviewed in [4], to suppress (often intuitively) the “sick building syndrom”,
occurring just in advanced structures minimizing the heat loss without proper venti-
lation. Also some new experimental research outputs like [25] do not coincide with
traditional simplified calculation results. Software simulation packages for building
energy performance developed in the last 2 decades, introduced in [5], involve much
more physical processes than [9]; however, their complicated “black box” structure
with extensive direct computations is not very friendly to the design optimization
aims of architects and civil engineers.

In this paper we shall introduce a computational model of a building as a thermal
system, whose basic ideas come from [21] and [23]. The decomposition of a building
to building parts, as walls, roof, floor, ceilings, etc., as subsystems, with their own
interior structure, containing particular constructive, insulation and other layers, as
included subsystems, up to particular elements, incorporating selected physical pro-
cesses with necessary geometric and material characteristics, enables us to obtain a
compromise between model complexity and practically reliable, robust and inexpen-
sive computations, supporting the above mentioned optimization of various types.
The modular structure of the corresponding software in MATLAB respects such sys-
tem approach in our practical implementation. Unlike [12], referring to [15] and [24],
based on the analogy with the analysis of LC-electric circuits, coupling the finite dif-
ference approach with the Euler or similar time integration scheme, we shall work
with the finite element technique, the Fourier multiplicative decomposition and the
spectral properties of solutions, following some results of [13] (for direct computations)
and [14] (for optimization algorithms).

2. Physical and mathematical fundamentals. We shall demonstrate the ap-
proach sketched above on the rather simple case of non-stationary heat conduction in
the isotropic materials (at least macroscopically, not homogeneous in general), driven
by boundary heat transfer from external environment, as studied in [6], including
such interface transfer between adjacent subsystems, up to the level of particular el-
ements, occupying a domain Ω in the 3-dimensional Euclidean space R3. To avoid
technical difficulties, we assume certain regularity of Ω, sufficient for the validity of
standard Sobolev embedding and trace theorems in the sense of [20], p. 15; for possible
generalizations see [18], pp. 69, 160, 512. The development of similar considerations
with slightly stronger results in the Euclidean spaces of lower dimensions R1 and R2

are left to the patient reader. The following notations hold literally for constructive,
insulation, etc. elements of buildings, whereas their modification for empty rooms
(representing a majority of volume of a building) needs to set zero values of thermal
conductivity; potential generalizations will be mentioned later.

2.1. A simple model problem. Let R3 be supplied by some Cartesian coordi-
nate system x = (x1, x2, x3). Let the boundary ∂Ω of Ω in R3 having a local vector of
outward unit normal ν(x) = (ν1(x), ν2(x), ν3(x)) almost everywhere. The usual nota-
tion for the Hamilton operators ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3) will be used. Moreover,
let us consider a time interval J = [0, T ] with some real positive T (the limit passage
T →∞ is not prohibited); the upper dot symbol is reserved for partial derivatives with
respect to the time t ∈ J . The standard notation of Lebesgue, Sobolev, Bochner, etc.
(abstract) function spaces will be utilized in the following considerations, following
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[20], pp. 10, 22.
Let us introduce 2 basic material characteristics on Ω: the thermal conductivity

λ(x) (for the insulation ability) and the thermal capacity κ(x) (for the accumulation
ability, related to unit volume here). It is natural to suppose that λ and κ are functions
from L∞(Ω) (for homogeneous materials only constants), a. e. with values greater than
certain positive constant. The weak formulation of a heat transfer equation, using the
temperature ϑ(x, t) on Ω×J as the reference variable and working with some volume
sources f(x, t, ϑ(x, t)) on Ω× J and surface sources g(x, t, ϑ(x, t)) on ∂Ω× J , reads

(v, κϑ̇) + (∇v, λ∇ϑ) = (v, f) + 〈v, g〉 on J(2.1)

where (., .) denotes scalar products (for any fixed t) both in L2(Ω) and in L2(Ω)3,
〈., .〉 those in L2(∂Ω), v is an arbitrary test function from V and ϑ must be contained
in L2(J, V ), with certain ϑ̇ in L2(J,H); here we set H = L2(Ω), V will be specified
later due to the particular choice of f and g, crucial for the implementation of the
model. The Cauchy initial condition

ϑ(., 0) = ϑ0(2.2)

with a priori known ϑ0 ∈ V then completes the problem definition.
Let us notice that, regardless of (2.2), the formal application of the Green -

Ostrogradskij theorem (at least in the sense of distributions – cf. [28], p. 244), using
the central dots for the scalar products in R3, can convert (2.1) to its strong form

ε̇+∇ · q = f , ε = κϑ , q = −λ∇ϑ on Ω× J , q · ν = g on ∂Ω× J ,(2.3)

compatible with [1], pp. 5, 14: the 1st equation of (2.3) represents the principle of
conservation of energy ε related to unit volume, due to some thermal flux q, the 2nd
equation quantifies the thermal energy, the 3rd equation is the well-known empirical
Fourier constitutive relation between thermal fluxes and temperature gradients, finally
the 4th equation represents a general boundary (or interface) condition.

2.2. Fourier multiplicative decomposition. Following the approach of [3],
p. 346, let us consider the temperature ϑ on Ω × J in the form of multiplicative
decomposition

ϑ(x, t) = φi(x)θi(t)(2.4)

for any x ∈ Ω and t ∈ J where i denotes the Einstein summation index from {1, . . . , n}
for certain integer n, with the aim of the limit passage n→∞, and φ1(x), . . . , φn(x)
represents a basis of some finite-dimensional approximation Vn of V . For simplicity
let us assume Vn ⊂ V ; possible “variational crimes” violating such assumptions can be
handled by [27]. Consequently in (2.1) we are allowed to consider v = φj for arbitrary
j ∈ {1, . . . , n}, i. e.

(φj , κφi)θ̇i + (∇φj , λ∇φi)θi = (φj , f) + 〈φj , g〉 on J .(2.5)

The least squares minimization of (θkφk−ϑ0, κ(θiφi−ϑ0)), referring to (2.2), involving
also the Einstein summation over k ∈ {1, . . . , n}, yields

(φj , κφi)θi(0) = (φj , κϑ0) .(2.6)

The matrix form of (2.5), useful for an efficient software (e. g. MATLAB-based)
implementation, is

Mθ̇ +Kθ = F on J(2.7)

where M and K are positive definite symmetric square matrices from Rn×n, θ(t) =
(θ1(t), . . . , θn(t))T is a column vector from Rn for any fixed t, as well as F (t), covering
the whole right hand side of (2.5); however, its evaluation is not easy in general. (2.7)
forms a system of ordinary differential equations, which should by analysed analyti-
cally. Due to practical reasons for m equidistant time steps (where environmental data
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needed for the composition of F are measured usually) are introduced: θr = θ(rh)
with r ∈ {1, . . . ,m}, m being en integer number, h = T/m; this is compatible with
θ0 = θ(0) by (2.6). Also (2.6) can be rewritten as

Kθ0 = θ? ,(2.8)

with θ? (a column vector from Rn again) generated by the right hand side of (2.6).
Finite element approximations by [28], pp. 247, 427, work usually with some

continuous functions φi (i ∈ {1, . . . , n}) with values from [−1, 1] and small compact
support, not orthogonal exactly, unlike classical Fourier analysis. The Lebesgue mea-
sure of supports of such functions on Ω is not greater than c−1n−3 and their Hausdorff
measure on ∂Ω is not greater than c−1n−2 where c is a positive (sufficiently small)
constant independent of n. Moreover, we shall consider the integer upper bound
N for the number of functions φi supported on the same part of Ω or ∂Ω of non-
zero relevant measure. It is reasonable to suppose that this choice guarantees also
cn−3|a|2 ≤ a ·Ma ≤ c−1n−3|a|2, cn−1|a|2 ≤ a ·Ka ≤ c−1n−1|a|2, the last couple of
inequalities also for K constructed with λ = 1 everywhere instead of the correct λ
formally, for all a ∈ Rn (considered as column vectors) where |.| denotes the norm in
Rn (not only in R1); the central dots here are used for the scalar products also in Rn

(similarly to those in R3 by (2.3)).

2.3. Existence and uniqueness of solution. Let us start with the purely
linear (not very realistic) case f ∈ L2(J,H), g ∈ L2(J,X) where X = L4(∂Ω), with
f and g independent of ϑ; in this case we can take V = W 1,2(Ω). For any fixed t ∈ J
we can rewrite (2.7), supplied by θ0 from (2.8), as in two different forms as∫ t

0

θ′(τ) ·Mθ′(τ) dτ +
1

2
θ(t) ·Kθ(t) =

1

2
θ0 ·Kθ0 +

∫ t

0

θ′(τ) · F (τ) dτ ,(2.9)

with the prime symbol replacing the dot one for all time derivatives with respect to
τ instead of t. Utilizing the above introduced estimates, (2.9) yields

c

2n3

∫ t

0

|θ′(τ)|2 dτ+
c

2n
|θ(t)|2 ≤ 1

2cn
|θ0|2 +

c

4n3

∫ t

0

|θ′(τ)|2 dτ+
n3

c

∫ t

0

|F (τ)|2 dτ .(2.10)

For the last additive term of (2.10) we have∫ t

0

|F (τ)|2 dτ ≤
∫ t

0

∫

Ω

φi(x)f(x, τ) · φi(x)f(x, τ) dx dτ(2.11)

+

∫ t

0

∫

∂Ω

φi(x)g(x, τ) · φi(x)g(x, τ) ds(x) dτ ≤ µf‖f‖2L2(J,H) + µg‖g‖2L2(J,X) ,

utilizing the measures

µf = N

((
1

cn3

)1−1/2
)2

=
N

cn3
, µg = N

((
1

cn2

)1−1/4
)2

=
N

c3/2n3
.(2.12)

Combining (2.10), (2.11) and (2.12), we obtain the brief result∫ t

0

|θ′(τ)|2 dτ ≤ Cn3 , |θ(t)|2 ≤ Cn(2.13)

for some positive constant C independent of n. Thus, inserting (2.13) into (2.4), we
get

‖ϑ(., t)‖2H ≤
NCn3

cn3
=
NC
c
,

∫ t

0

‖∇ϑ(., τ)‖2H3 dτ ≤ NCn
cn

=
NC
c
.(2.14)

Let us notice that ϑ in (2.14) involves the dependence on n, inherited from (2.4),
generating certain sequences ϑ(n). Due to the reflexivity of both V and L2(J,H), the
Eberlein - Shmul’yan theorem (as introduced in [7], p. 66) yields, up to subsequences,
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the existence of a weak limit ϑ(., t) of ϑ(n)(t) in V for each t ∈ J , which is strong in
H (because of the existence of compact embedding of H into V ); simultaneously ϑ̇ is
a weak limit of ϑ̇(n) in L2(J,H). Such ϑ can be then identified with the solution of
(2.1) with (2.2).

Let ϑ̄ be the difference between 2 solutions of (2.1) with (2.2) and t an arbitrary
time from J . Then the choice v = ϑ̄(., t) gives

1

2
(ϑ̄(., t), κϑ̄(., t)) +

∫ t

0

(∇ϑ̄(., τ), λ∇ϑ̄(., τ)) dτ = 0 .(2.15)

Thanks to the positive-valued κ and λ, from (2.15) we receive ϑ̄ = 0 on J , which
implies the uniqueness of ϑ satisfying (2.1) with (2.2).

Similar arguments can be repeated also for the limit case λ→ 0: this is important
for the simplification of temperature development in empty rooms where no more
detailed information is available, unlike constructive and insulation building parts.
Consequently ϑ(., t) is constant for any fixed t ∈ J .

2.4. Realistic classes of thermal sources. More realistic cases for the choice
of f and g, needed in computational tools for thermal analysis of buildings, are:

i) g = β(ϑ∗ − ϑ) for the thermal transfer from external environment with some
prescribed external temperature ϑ∗ ∈ L2(J,X) and some known a. e. positive
transfer factor β ∈ L∞(∂Ω), taking the rigid body – air convection into ac-
count, later used also for the thermal transfer between two neighbour domain
through their interface analogously,

ii) f = α(ϑ∗−ϑ) for the obligatory ventilation by technical standards, similar to
i), but applied to the above mentioned case of constant ϑ(., t) for a fixed t ∈ J ,
with some known a. e. positive transfer factor α ∈ L∞(Ω): such simplified
“volumetric convection” is needed to include the heat exchange caused by
various installed equipments (without deeper analysis of their performance)
between rooms and external environment,

iii) g coming from the beam and diffuse components of solar radiation, occurring
just on the building envelope (not on internal interfaces) evaluable from the
climatic records of the so-called reference climatic year, due to the day and
year quasi-cycles, the mutual position of Sun and Earth, the geographical
location of our building object and on the slope and orientation of the rel-
evant building surface, under certain astronomical simplifications presented
(including numerous further references) in [13], with the resulting setting of
g ∈ L2(J,X),

iv) g = σ(ϑ4
∗ − ϑ4) for the thermal radiation on the building envelope due to

the physical Stefan - Boltzmann law and some known a. e. positive factor σ ∈
L∞(∂Ω), interpretable as the Stefan - Boltzmann constant (exact for the ideal
black body), modified by the empirical surface emissivity, which cannot be
incorporated to i) properly because of the presence of ϑ4,

v) f coming from the artificial heating (or air conditioning, too) in the case
similar to ii), but with the requirement of the type ϑ ≥ ϑ� for some prescribed
indoor temperature ϑ� ∈ V (depending on the room categories by technical
standards) at least in the least square sense, due to the real maximal power
of heating equipments and to their expected (summer, winter, etc.) different
regimes – for more details see [13] again.

All such volume sources f and surface sources g are able to generate additive contri-
butions to the right hand side of (2.1). However, it is useful to incorporate some their
parts to the left hand side of (2.1).
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Whereas i), ii) and iii) can be handled inside the theory of linear parabolic equa-
tions, iv) forces the redefinition of V and the inequalities in v) will be overcome using
some facts from the control theory. In i) and ii) g and f force 2 new additive terms
〈v, βϑ〉 and (v, αϑ) on the left hand side of (2.1); βϑ∗ and αϑ∗ can be then hidden
in g and f on the right hand side as above. Consequently K in (2.7) is replaced
by K + Kf + Kg formally with some sparse positive symmetrical matrices Kf from
ii) and Kg from i), even with certain regularizing effect. Due to the limited extent
of this paper, the detailed analysis can be performed by the patient reader without
substantial difficulties. Then iii) brings no new left hand side modification of (2.1)
unlike i) and ii); its significance lies in practical long evaluations, accounting for all
available environmental data: the temperature θ∗, needed in i) and ii), too, and both
relevant components of solar radiation. The repeated application of such data leads
to certain quasiperiodicity of the solution of (2.1), suppressing the effect of (2.2) for
increasing time.

For iv) the rough heuristic approximation (acceptable for the usual range of tem-
perature) ϑ4 − ϑ4

∗ = (ϑ2 + ϑ2
∗)(ϑ + ϑ∗)(ϑ − ϑ∗) ≈ 4ϑ3

∗(ϑ − ϑ∗) highlights certain
quasilinearity of the problem. Using the notation 〈., .〉 also for the duality between
L5(∂Ω) and L5/4(∂Ω), we are able to introduce V = {v ∈ W 1,2(Ω) : v ∈ L5(∂Ω)} (in
the sense of traces), supplied with the norm ‖v‖W 1,2(Ω) + ‖v‖L5(∂Ω) by [20], pp. 64,
253 (which generates a reflexive Banach space again), and, motivated by i), to add
〈v, σ|ϑ|3ϑ〉 to the left hand side and 〈v, σ|ϑ∗|3ϑ∗〉 to the right hand side of (2.1).
Consequently, in addition to the 2nd left-side additive term of (2.9), we have the
contribution of the type 1

5 |θ(t)|3/2θ(t) · S|θ(t)|3/2θ(t), containing certain sparse posi-
tive symmetrical matrix S; the enrichment of the right side of (2.9) is evident. The
existence and uniqueness of solution of (2.1) with (2.2) can be then verified as above.

To handle v), the best choice is seemingly to convert (2.1) to the form of a vari-
ational inequality. However, the above sketched technical specifications bring serious
complications to the design of an efficient computational algorithm, thus another
approach, avoiding general optimization strategies, based on the careful control of a
heating equipment, is considered: ϑ ≥ ϑ� is satisfied in every time step just during the
correct (a priori prescribed) heating season, thanks to the controlled heating source f
in a corresponding room; the maximum value for the heating power is still considered
if this is insufficient.

2.5. Building as a thermal system. All generalizations i) – v) are useful for
the development of a model of thermal behaviour of buildings. Understanding Ω
as a building element at the lowest (most detailed) level, we are able to compose
substructrues at the finite number of levels, using the transfer conditions by i) and ii),
up to the whole structure. If ϑ∗ and consequently θ∗ refer to the external environment,
this contributes both to the matrix K in (2.7) (using the matrices Kf and Kg from
the preceding discussion) and to the right hand side F . Usually such conditions
are applied only in the case when some interface to the room is present, otherwise
it is acceptable to take α → ∞, i. e. to force the continuity of temperature on the
interface in the normal direction. Clearly iii) and iv) occur only on the external
interfaces (building claddings). The existence and uniqueness considerations, handling
all possible interface types, can be repeated without substantial difficulties.

Such computational model is open to various generalizations. In particular, let us
remind that physical and mathematical homogenization approaches, trying to involve
(even incomplete) information on material microstructure, lead to effective anisotropic
material characteristics even in the case of composites with isotropic components,
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due to their location, orientation, etc. (as typically in fibre concrete). Removing the
isotropy assumption, we come to the direction-dependent material characteristics λ
and κ on Ω and α, β and σ on ∂Ω, generating certain square matrices from L∞(Ω)3×3

or L∞(∂Ω)3×3 (using the notation from an introductory simple problem for brevity
again). At least for the case that all such matrices are a. e. symmetrical and positive
definite, the above sketched existence and uniqueness considerations can be repeated
with slight technical modifications.

Even more general case with the material characteristics λ(., ϑ), κ(., ϑ) on Ω and
α(., ϑ, ϑ∗), β(., ϑ, ϑ∗) σ(., ϑ, ϑ∗) on ∂Ω, important in building practice, can be handled
as a quasilinear problem, using selected results on pseudomonotone or weakly con-
tinuous mappings by [20], p. 321. However, some additional growth assumptions are
needed and all proofs become much more complicated, thus they are not presentable
in this short conference paper.

Deeper generalizations cover both the 1st thermodynamic principle of conserva-
tion of mass, (linear and angular) momentum and energy (not only of thermal energy
as above) and the 2nd thermodynamic principle, handling the irreversibility of some
thermal processes, as [22], pp. 145 (for closed systems) and 231 (for open systems).
Unfortunately, there is a lot of open questions in the mathematical analysis of cor-
responding systems of equations of evolutions and related inequalities, as well as in
the suggestion of computational algorithms constructing some sequences of reasonable
approximate solutions; this is still true even in the particular case of Navier - Stokes
equations (cf. the “mysteriously difficult problem” of [20], p. 257).

Fortunately, some simplified approaches for the analysis of parallel physical pro-
cesses, as heat and moisture transfer in porous media, are available: instead of ϑ
we have the couple of unknown variables (ϑ, u) where u evaluates certain moisture
content (related to the mass or volume unit), considering the conservation of mass
(moisture in pores) and (thermal) energy. The Fick constitutive relation between u
and some moisture flux η can be written in the similar way as the Fourier one between
ϑ and q in (2.3); however, in the complete system of 2 equations of evolution we need
(and must be able to identify in practice) additional material characteristics to handle
the Dufour effect (time redistribution of ϑ depends not only on q, but also on η) and
the Soret effect (time redistribution of u depends not only on η, but also on q). The
proper mathematical and numerical analysis is based on generalization of the results
sketched above to the system of 2 equations; practical computations must take the
slow moisture transfer in comparison with the thermal one into account.

3. Computational modelling and optimization. Computational tools, at
least for direct calculations, including those minimizing the energy consumption, can
be based on (2.7) with (2.8). Since some sources are frequently prescribed by their
time derivatives in practice, namely those by ii) and v), it is useful to consider the right
hand side of (2.7) as F (t) = Φ(t) + Ψ̇(t) for any t ∈ J , namely for t ∈ {h, 2h, . . . ,mh}
where h = T/m; the reliable construction of the limit passage m→∞ depends on the
environmental data by iii). To derive the semi-analytic formulae for the evaluation of
θ in time, the spectral decomposition MV Λ = KV with the generalized real diagonal
eigenvalue matrix Λ and the matrix of eigenvectors V is then helpful.

3.1. Direct calculations with heating control. For the brevity, let us con-
sider θ1, . . . θm instead of θ(h), . . . θ(mh) (a priori unknown temperatures) and also
Φ1, . . . ,Φm and Ψ1, . . . ,Ψm (characterizing all prescribed thermal sources) in the sim-
ilar sense. For the beginning, let us neglect all nonlinear thermal sources by iv) and v).
Applying the classical integral calculus, namely the method of variations of constants,
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for any time step index s ∈ {1, . . . ,m} we come to the direct evaluation formula

θs − V exp(−Λh)V TMθs−1 = V Λ−1V TΦs − V Λ−1 exp(−Λh)V TΦs−1(3.1)

+ V (I − exp(−Λh))

(
Λ−1V T

Ψs −Ψs−1

h
− Λ−2V T

Φs − Φs−1

h

)
,

exact for any Φ(t) and Ψ(t) with t ∈ J considered as a Lagrangian linear spline using
the nodes {0, h, 2h, . . . , T}. This holds for an arbitrary positive h, unlike the Euler
explicit or implicit, Crank - Nicholson, etc. discretization schemes.

To adopt (3.1) to handle iv), at least for sufficiently small h, we can add some
|θ|3/2S|θ|3/2 to K, inserting some reasonable estimate of θ, and apply the quasi-
Newton iterations inside each s-th time step; the exploitation of the inexact Newton
method is expected to reduce the number of algebraic operations. The same is true for
v) where, using the least squares approach, some G must be added to Ψ̇, to minimize
(if possible and required, due to technical specifications) |θ−θ�|2; this can be modified
by some prescribed weights for particular rooms if needed. Since G is just a vector of
constants Gs ∈ Rn for (s− 1)h < t ≤ sh, the total consumption of energy for heating
can be evaluated easily as

Q = h
m∑

s=1

Gs .(3.2)

Fortunately, both corrections iv) and v) can be unified in one iteration procedure;
its details (together with the instructive example), distinguishing between 4 typical
heating regimes, are discussed in [12].

The validation of this approach here works with the real living house and atelier
in Ostrov u Macochy (30 km northern from Brno), presented (as an example of low-
energy house from ecological materials) in [11], p. 146. This small experimental house,
designed by architect M. Hudec, built from wood and straw balls, contains 2 floors
and 4 rooms, whose 26 mutual interfaces, including those to external environment,
are assumed to consist of finite numbers of homogeneous isotropic layers. The design
temperature for all rooms is ϑ� = 20o C; θ� can be then set analogously to θ0 in (2.8).
The annual climatic records for h = 1 hour from the international airport Brno -
Tuřany need improvements using the incomplete data from the (colder and wetter)
Moravian Karst. The original software code implementing (3.1) and its iterative
generalizations has been written in MATLAB. Certain type of optimization is built
even in the seemingly direct computational algorithm, thanks to the least squares
technique in v). The 1st block of results in the following table documents the process
of validation of the algorithm; the comparative variable is Q by (3.2) everywhere.

3.2. Selection of design parameters. The work of architects and civil engi-
neers is far from the optimization of one physically transparent goal function under
some simple set of additional conditions: it contains aesthetic, artistic, ecological
and other criteria, whose deterministic quantification would be very complicated or
quite impossible. The resulting project is typically a result of discussion based on
comparison of a finite number of variants, supported by some auxiliary calculations.

As an example, we consider the principal motivation by the economy of heating
here, e. g. we are seeking for a sub-optimal (sufficiently small) value of Q, correspond-
ing to some of the prepared variants. The 2nd block in the table demonstrates the
effect of the installation of particular heating devices on every floor, or even in every
room, instead of one central device, as well as the effect of 2 types of possible replace-
ment of materials in walls. The computation works just with h = 1 hour, assuming
ϑ0 = 20o C everywhere, repeating the same climatic data for all considered years; it
finishes in the case of quasi-periodicity of results, here after 3 years in all cases.
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Table 3.1
Consumption of energy for heating by various methods including design optimization.

Q [MWh] evaluation method
1.881 new software, correction for building location
1.419 new software, original climatic data from Brno - Tuřany
1.897 software Energie 2009 (related to Czech technical specifications)
1.710 qualified estimate from time series of user payments for energy
1.915 heating on both floors: 2 devices, total power preserved
1.900 heating in all rooms: 4 devices, total power preserved
1.849 partial replacement of glass garden frontage by non-transparent one
3.039 replacement of straw balls in walls by clay blocks
1.841 Nelder - Mead optimization, 1 parameter: vertical rotation 20.81◦

1.769 Nelder - Mead optimization, 2 parameters: vertical rotation 21.37◦,
glass transparency factor 0.1

3.3. Nelder -Mead simplex algorithm. In the case of proper mathematical
optimization, no simple numerical evaluation of gradients like [2] is available, which
justifies the choice of the Nelder - Mead downhill simplex method, coming from [19]
originally. In the formulation of [26] this method works, in general, with the 5-step
algorithm, involving (after sorting simplex vertices) 1) reflection, 2) expansion, 3)
outer contraction, 4) inner contraction and 5) shrinkage. Theoretical convergence
results for this method are not quite satisfactory: namely by [16], assuming Q (in our
notation) as a strictly convex function of 1 or 2 parameters with bounded level sets,
the convergence is guaranteed just for 1 parameter, whereas for 2 parameters only the
simplex diameter tends to 0 (but need not converge to any minimizer); [17] presents
the computer-supported 25-page convergence proof for 2 parameters by contradiction,
but only for the restricted algorithm with missing step 2). However, some unpleasant
cases of total divergence or numerical stagnation of the algorithm, even for more
parameters, can be overcome using some ad hoc adaptive strategies, following [10].

The 3rd block in the table shows the application of this method, making use of
the MATLAB function fminsearch from the optimization toolbox (in addition to the
above sketched software code for direct calculations) for 1 and 2 parameters with
respect to their lower and upper bounds, included via simple penalty functions: the
1st parameter is the hypothetical vertical rotation of the house, the 2nd one is certain
glass transparency factor. More practical considerations and recommendations of this
type, including graphs, figures and further references, have been recently published
in [14].

4. Conclusion. The computer-supported design of high-performance buildings,
accenting their thermal behaviour, motivated by the development of new structures,
materials and technologies, as well as by the requirements of sustainable environmental
solutions for buildings, contributing to the health and well-being of their inhabitants,
reflected by [29], brings new challenges also for physicists, mathematicians, hardware
and software developers and other experts. Existing modelling and simulation tools,
even those declared as multi-physical, frequently predict other results then those ob-
served in situ; to identify all substantial sources of such differences is not easy.

The system approach, presented in this paper, can be helpful to meet the require-
ments of reliable and robust optimization with the work style of architects and civil
engineers, as well as with investors’ money, time and patience. Nevertheless, the need
of deeper interdisciplinary discussion is evident.
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2014, pp. 92–99, Institute of Mathematics AS CR, Prague, 2015.
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A GENERALIZATION OF THE KELLER–SEGEL SYSTEM TO
HIGHER DIMENSIONS FROM A STRUCTURAL VIEWPOINT∗

KENTAROU FUJIE† AND TAKASI SENBA‡

Abstract. We consider initial boundary problems of a two-chemical substances chemotaxis
system. In the four-dimensional setting, it was shown that solutions exist globally in time and
remain bounded if the total mass is less than (8π)2, whereas the solution emanating from some
initial data of large magnitude may blows up.

This result can be regarded as a generalization of the well-known 8π problem in the Keller–Segel
system to higher dimensions. We will compare mathematical structures of the Keller–Segel system
and our system and discuss the difference.

Key words. chemotaxis; global existence; Lyapunov functional; Adams’ inequality
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1. Problem. Consider the following fully parabolic system:




ut = ∆u− χ∇ · (u∇v) in Ω× (0,∞),

τ1vt = ∆v − v + w in Ω× (0,∞),

τ2wt = ∆w − w + u in Ω× (0,∞),

(1.1)

in a bounded domain Ω ⊂ Rn (n ∈ N) with smooth boundary ∂Ω, where the param-
eters τ1, τ2, and χ are positive. Suppose that the boundary condition:

∂u

∂ν
− χu∂v

∂ν
= v = w = 0 on ∂Ω× (0,∞). (1.2)

Moreover assume that

u(·, 0) = u0, v(·, 0) = v0, w(·, 0) = w0 in Ω, (1.3)

where the initial data (u0, v0, w0) satisfies




u0 ∈ C0(Ω), u0 ≥ 0 in Ω,

v0 ∈ C2(Ω), v0 ≥ 0 in Ω,

w0 ∈ C2(Ω) u0 ≥ 0 in Ω

(1.4)

and the boundary condition

v0 = w0 = 0 on ∂Ω× (0,∞). (1.5)
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2. Background and motivation. In 1970 Keller and Segel ([17]) proposed a
mathematical model describing a movement of cells, which is the following reaction-
diffusion system:

{
ut = ∆u− χ∇ · (u∇v),

vt = ∆v − v + u.
(2.1)

Here functions u and v represent the population of cells and the density of a chemical
substance, respectively. The term −χ∇ · (u∇v) represents the chemotaxis effect.

From a mathematical view point, the type of (2.1) has been studied well (see
surveys [14, 12, 1]). Under suitable boundary conditions, smooth solutions of (2.1)
conserve the total mass, i.e., ‖u(t)‖L1(Ω) = ‖u0‖L1(Ω) for all t > 0. Considering the
simplified system of (2.1) such as

{
ut = ∆u− χ∇ · (u∇v),

vt = ∆v + u

in Rn, we can confirm that the above system is invariant by the standard scaling
uλ(x, t) = λ2u(λx, λ2t) and vλ(x, t) = v(λx, λ2t) with λ > 0 and

‖uλ(·, t)‖L1(Rn) = λ2−n‖u(·, t)‖L1(Rn) t > 0.

Hence in the above sense, the two-dimensional setting is the critical case. Moreover, in
[10, 19], it is shown that the system (2.1) has the particular mathematical structure,
the Lyapunov functional:

d

dt
F(u(t), v(t)) +D(u(t), v(t)) = 0 for all t ∈ (0, T ),

where

F(u, v) =

∫

Ω

(u log u− χuv) +
χ

2

∫

Ω

|∇v|2 +
χ

2

∫

Ω

v2,

D(u, v) =

∫

Ω

u|∇(log u− χv)|2.

This Lyapunov functional is the key ingredient in the study of behaviors of solutions
to the Keller–Segel system (2.1) ([19, 15, 25]). The Trudinger–Moser inequality ([5]):
for all ε > 0 there exists some Cε > 0 such that for all u ∈ H1(Ω),

log

(∫

Ω

e|u(x)| dx

)
≤
(

1

2 · 8π + ε

)
‖∇u‖2L2(Ω) + Cε‖u‖L1(Ω),

plays a role of judgement of the balance of terms in the Lyapunov functional in the
critical case n = 2. This combination implies “8π-problem”, which seems to be one
of the main topic in the study of the Keller–Segel system ([16, 3, 18, 2]). Precisely, in
the two-dimensional and radially symmetric setting, the behavior of radial solutions
to the Neumann problem of (2.1) is classified as follows:

• if ‖u0‖L1Ω < 8π/χ then the solution exists globally and remains bounded
([19]).
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• there exists some initial data with ‖u0‖L1Ω > 8π/χ such that the correspond-
ing solution blows up in finite [11, 13].

As to nonradial solutions, the critical constant changed to 4π/χ ([19, 15]). Here the
critical constants 8π/χ and 4π/χ come from the critical constants in the Trudinger–
Moser inequality. As to the subcritical case, in [20] it was established that for all reg-
ular initial data the system (2.1) has global bounded solution in the one-dimensional
setting. As to the supercritical case, that is, the higher dimensional case n ≥ 3,
solutions of (2.1) exist globally in time and converge to the constant steady state
provided that ‖u0‖Ln2 (Ω)

+ ‖∇v0‖Ln(Ω) is sufficiently small ([4]). Moreover there are

many finite time blowup radial solutions with ‖u0‖L1(Ω) = m for all m > 0 ([25]).

Motivation. The motivation of this study is to give a generalization of the
Keller–Segel system (2.1) to higher dimensions in the sense of a mathematical struc-
ture. Indeed, the system (1.1) has a similar structural properties as the Keller–
Segel system. Smooth solutions of (1.1) conserve the total mass, i.e., ‖u(t)‖L1(Ω) =
‖u0‖L1(Ω) for all t > 0. We confirm that the simplified system of (1.1) such as





ut = ∆u− χ∇ · (u∇v),

τ1vt = ∆v + w,

τ2wt = ∆w + u

in Rn is invariant by the following standard scaling




uλ(x, t) = λ4u(λx, λ2t),

vλ(x, t) = v(λx, λ2t),

wλ(x, t) = λ2w(λx, λ2t) (λ > 0).

Moreover we have

‖uλ(·, t)‖L1(Rn) = λ4−n‖u(·, t)‖L1(Rn) t > 0.

Hence the four-dimensional setting is the critical case in the above sense. Moreover the
system (1.1) has a Lyapunov functional, which seems to be a natural generalization
of one of the Keller–Segel system (2.1):

d

dt
F(u(t), v(t)) +D(u(t), v(t)) = 0 for all t ∈ (0, T ),

where

F(u, v) =

∫

Ω

(u log u− χuv) +
τ1τ2χ

2

∫

Ω

|vt|2 +
χ

2

∫

Ω

|(−∆ + 1)v|2,

D(u, v) = χ(τ1 + τ2)

∫

Ω

(
|∇vt|2 + |vt|2

)
+

∫

Ω

u|∇(log u− χv)|2.

Now, in the critical case n = 4, an Adams type inequality, which is a generalization
of the Trudinger–Moser inequality to higher derivatives, plays a key role to decide
the balance of the Lyapunov functional in the same way that the Trudinger–Moser
inequality does in the study of the Keller–Segel system. Hence the system (1.1) has
a generalized mathematical structure of the Keller–Segel system.
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3. Main results. Our main results read as follows.
Theorem 3.1 ([8]). Let n ≤ 3. Suppose that (u0, v0, w0) satisfies (1.4) and

(1.5). Then the problem (1.1)–(1.2)–(1.3) has a unique classical positive solution,
which exists globally in time. Moreover the solution is uniformly bounded in time in
the sense that

sup
t∈[0,∞)

(
‖u(t)‖L∞(Ω) + ‖v(t)‖W 2,∞(Ω) + ‖w(t)‖W 1,∞(Ω)

)
<∞.

Remark 3.2. This result corresponds to the study of the Keller–Segel system
in the one-dimensional case. In [20] it is shown that for all regular initial data the
Keller–Segel system (2.1) has global and bounded solution.

Theorem 3.3 ([8]). Let n = 4. Suppose that the initial data (u0, v0, w0) satisfies
(1.4), (1.5) and

∫

Ω

u0 <
(8π)

2

χ
.

Then the problem (1.1)–(1.2)–(1.3) has a unique classical positive solution, which
exists globally in time. Moreover the solution is uniformly bounded in time in the
sense that

sup
t∈[0,∞)

(
‖u(t)‖L∞(Ω) + ‖v(t)‖W 2,∞(Ω) + ‖w(t)‖W 1,∞(Ω)

)
<∞.

Remark 3.4. As to the initial-boundary problem of the Keller–Segel system with
the mixed boundary condition, nonradial solutions exist globally in time and remain
bounded if ‖u0‖L1(Ω) < 8π/χ. Hence the above theorem is regarded as a generalization
of the study of the Keller–Segel system.

Remark 3.5. By the standard compactness methods, we can show asymptotic
behavior of the globally bounded solutions in Theorem 3.1 and Theorem 3.3. Precisely,
there exists some increasing sequence Tk ∈ (0,∞) such that (u(Tk), v(Tk), w(Tk))
converges to a solution of the stationary problem.

We consider blowup solutions to (1.1)–(1.2)–(1.3). The following is the definition
of blowup of solutions.

Definition 3.6. We say that a solution (u, v, w) to (1.1) blows up, if the solution
satisfies

lim sup
t↗Tmax

(‖u(t)‖L∞(Ω) + ‖v(t)‖L∞(Ω) + ‖w(t)‖L∞(Ω)) =∞,

where Tmax is the maximal existence time of the classical solution (u, v, w).
Theorem 3.7 ([9]). Suppose n = 4, Ω be a convex bounded domain and Λ ∈

((8π)2/χ,∞)\{(8π)2/χ}N. Then there exist blowup solutions (u, v, w) to (1.1)–(1.2)–
(1.3) satisfying ‖u(t)‖L1(Ω) = Λ.

Remark 3.8. By Theorem 3.3 and Theorem 3.7, we established that the case
where n = 4 and

∫
Ω
u0 = (8π)2/χ is critical and that this case is corresponding to the

case n = 2 and
∫

Ω
u0 = 8π/χ of the Keller–Segel system.
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4. Strategy and mathematical challenge. As compared with the Keller–
Segel system, we should control the power balance between the terms

∫
Ω
u log u +

(χ/2)
∫

Ω
|(−∆+1)v|2 and χ

∫
Ω
uv. Instead of the Trudinger–Moser inequality, we will

apply the Adams type inequality ([21, 24]): for all ε > 0 there exists some Cε > 0
such that for all u ∈ H2(Ω),

log

(∫

Ω

e|u(x)| dx

)
≤
(

1

2(8π)2
+ ε

)
‖(−∆ + 1)v‖2L2(Ω) + Cε.

We remark that the critical constant of the Adams type inequality implies the constant
(8π)2/χ. Invoking the smallness of the mass, we can combine these estimates and
deduce the lower estimate for the Lyapunov functional.

The mathematical challenge is also in regularity estimates. After deriving the
energy estimate from the lower estimate for the Lyapunov functional, we will proceed
to deduce Lp estimate for u. We cannot adopt the approach in the study of the
Keller–Segel system to our system (1.1) because the four-dimensional setting disturbs
the relationships of exponents in the Sobolev inequality. Moreover the particular
structure of (1.1), i.e., the system (1.1) consists of three parabolic equations, causes
a difficulty. From this reason, we use the localizing method, which is introduced in
[22, 23, 6, 7].

As to the blowup result, our method has the same spirit in [13, 15]. We first
consider a blowing up sequence of stationary solutions. Stationary solutions (u, v, w)
to (1.1)–(1.2)–(1.3) satisfy that





0 = ∆u− χ∇ · (u∇v) in Ω,

0 = ∆v − v + w in Ω,

0 = ∆w − w + u in Ω,

u ≥ 0, v ≥ 0, w ≥ 0 in Ω,
∂u

∂ν
− χu∂v

∂ν
= v = w = 0 on ∂Ω.

(4.1)

Put Λ = ‖u‖L1(Ω) ∈ (0,∞). The system (4.1) can be rewritten as the following:





(−∆ + 1)2v =
Λ∫

Ω
eχv

eχv in Ω,

u =
Λ∫

Ω
eχv

eχv, w = −∆v + v in Ω,

v = ∆v = 0 on ∂Ω.

(4.2)

Here and henceforth, we say that (u, v, w,Λ) is a solution to (4.2), if the function
(u, v, w) and the positive constant Λ satisfies (4.2). The following proposition plays a
key role in our analysis. This claim is about a quantization property of solutions to
(4.2).

Proposition 4.1 ([9]). Let Λ > 0. Suppose that solutions {(uk, vk, wk,Λ)}k to
(4.2) satisfy that limk→∞ ‖vk‖L∞(Ω) = ∞. Then J = Λχ/(8π)2 is a positive integer
and there is a set of points {Q(j)}Jj=1 ⊂ Ω satisfying that

uk →
J∑

j=1

(8π)2

χ
δQ(j) in M(Ω) as k →∞,
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where δQ(j) is the delta function whose support is the point Q(j) and M(Ω) is a set

of Radon measures on Ω.
For Λ > 0 put the set S(Λ) as

{
(u, v, w) ∈ C2(Ω) : (u, v, w) is a stationary solution to (1.1)–(1.2)–(1.3)

with ‖u‖L1(Ω) = Λ
}
.

The following lemma is an immediate consequence of Proposition 4.1.
Lemma 4.2 ([9]). For Λ ∈ (0,∞) \ {(8π)2/χ}N, there exists a constant C > 0

satisfying

sup{‖(u, v, w)‖L∞(Ω) : (u, v, w) ∈ S(Λ)} ≤ C

and

F∗(Λ) := inf{F(u, v, w) : (u, v, w) ∈ S(Λ)} ≥ −C.

In order to find a blowup solution, we construct a triplet of nonnegative functions
(u0, v0, w0) satisfying

F(u0, v0, w0) < F∗(Λ) for Λ > (8π)2/χ with Λ 6∈ {(8π)2/χ}N.

5. Further comments and conjectures. Let us first give some comments on
Neumann boundary case. Suppose that the following boundary conditions:

∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
= 0 on ∂Ω× (0,∞) (5.1)

and the initial data satisfies the boundary condition

∂v0

∂ν
=
∂w0

∂ν
= 0 on ∂Ω× (0,∞). (5.2)

Moreover we assume the radial symmetry:

Ω = B(R) = {x ∈ R4 | |x| ≤ R} with R > 0 and

(u0, v0, w0) : radial symmetry.

Theorem 5.1 ([8]). Let n = 4, Ω = B(R) = {x ∈ R4 | |x| ≤ R} (R > 0).
Suppose that (u0, v0, w0) is radially symmetric and satisfies (1.4), (5.2) and

∫

Ω

u0 <
(8π)

2

χ
.

Then the problem (1.1)–(5.1)–(1.3) has a unique classical positive solution, which
exists globally in time. Moreover the solution is uniformly bounded in time in the
sense that

sup
t∈[0,∞)

(
‖u(t)‖L∞(Ω) + ‖v(t)‖W 2,∞(Ω) + ‖w(t)‖W 1,∞(Ω)

)
<∞.
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Remark 5.2. Comparing with the study of the two-dimensional Keller–Segel
system, the critical constant is changed from 8π/χ to (8π)2/χ.

Remark 5.3. We used the assumption of radial symmetry to deduce an Adams
type inequality in [8]. We conjecture that without this assumption the threshold con-
stant seems to be (8π)2/2χ.

As to blowup of solution, at least, the following questions have been left as an
open (especially, the second one is related to the result [25]):

• does the blowup in Theorem 3.3 occur at finite time or infinite time?;
• does the solution blows up independently of the size of the initial data in the

super critical case (n ≥ 5)?
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A NOTE ON THE UNIQUENESS AND STRUCTURE OF SOLUTIONS
TO THE DIRICHLET PROBLEM FOR SOME ELLIPTIC SYSTEMS∗
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Abstract. In this note, we consider some elliptic systems on a smooth domain of Rn. By using
the maximum principle, we can get a more general and complete results of the identical property
of positive solution pair, and thus classify the structure of all positive solutions depending on the
nonlinarities easily.
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1. Introduction. In this paper, we consider the smooth positive solutions of
the following elliptic system

{
∆u+ φ(x)upvq = 0
∆v + φ(x)uqvp = 0

(1.1)

in Ω with boundary condition

(u, v) = (0, 0) on ∂Ω,(1.2)

where ∆ =
n∑
i=1

∂2

∂x2
i

, n ≥ 3, p > 0, q > 0,Ω ⊂ Rn is a domain with the maximum

principle holds true, and φ is a positive and continuous function in Ω. If n = 3, φ ≡ 1
and (p, q) = (2, 3), system (1.1) arises from the stationary Schrödinger system with
critical exponent for Bose-Einstein condensate. We refer the readers to [5], [8], [11],
[12], and the references therein. If φ = 1

1+|x|2 then system (1.1) is called a Matukuma-

type system. Recently, if φ ≡ 1, 1 ≤ p, q ≤ n+2
n−2 and p + q = n+2

n−2 , i.e., the critical
exponent case, Li-Ma[10] used the Hardy-Littlewood-Sobolev inequality to prove that

any L
2n
n−2 (Rn)×L 2n

n−2 (Rn) positive solution (u, v) to system (1.1) is radial symmetric.

Furthermore, they also showed that any L
2n
n−2 (Rn) × L

2n
n−2 (Rn) radial symmetric

solution (u, v) is unique and u ≡ v. In this note, we consider the general case,
p > 0, q > 0, and, by using the maximum principle to get a more general and complete
result.

Our first theorem is the following.

Theorem 1.1. Let φ > 0 in Ω, and p, q > 0. Then if q ≥ p then any positive
smooth solution (u, v) of (1.1)-(1.2) satisfies u ≡ v.
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By Theorem 1.1 we easily obtain the following results about the symmetry, exis-
tence and uniqueness results.

Corollary 1.2. Let φ ≡ 1. Then the following properties are valid.
(i) If 0 < p ≤ q ≤ n+2

n−2 , 1 ≤ p+ q < n+2
n−2 and Ω is bounded, then (1.1)-(1.2) possesses

one and only one positive solution (u, v) and u ≡ v in Ω. In addition, if Ω
is symmetric with respect to some xi − axis, then (u, v) is symmetric with
respect to xi − axis.

(ii) If 0 < p ≤ q, p + q = n+2
n−2 and Ω = Rn, then every positive solution (u, v) of

(1.1) satisfies u ≡ v, and it is radial symmetric with one parameter family of
functions

φλ(x) =
( λ

√
n(n− 2)

λ2 + |x− x0|2
)n−2

2

,

where λ > 0 is a parameter and x0 ∈ Rn.
(iii) If p + q ≥ n+2

n−2 and Ω 6= Rn is a star-shape domain, then (1.1)-(1.2) does not
have any positive solution.

Remark 1.3
(A) If q < p and φ ≡ 1, then equations (1.1)-(1.2) may possess infinite many positive

solutions. The details can be found in [2]. For example, if q = p−1, 1 < 2p−
1 < n+2

n−2 and Ω is bounded, then for any λ > 0, (λv, v) is a positive solution of
equations (1.1)-(1.2), where v is the positive solutionof the following equation

{
∆u+ λp−1u2p−1 = 0 in Ω
v = 0 on ∂Ω.

(1.3)

(B) We note that Corollary 1.2-(ii) was proved by Li-Ma [10] if 1 ≤ p < q ≤ n+2
n−2 , p+

q = n+2
n−2 and (u, v) is in L

2n
n−2 (Rn)×L 2n

n−2 (Rn). In this case, system (1.1) will
reduce to one equation. Then, if Ω is a ball or Rn, and under the respective
condition in the parts (i) and (ii) of Corollary 1.2, by using the method of
moving plane, we can finally get that all positive solutions of (1.1)-(1.2) are
radially symmetry. By the way, from the Pohozaev identity, we can also get
the non-existence result of part (iii) in Corollary 1.2.

(C) By using the same ideas and proofs, some classes of systems, e.g., Schrödinger-
type system, Matukuma-type system, etc, have also their respective results of
Theorem 1.1 and Corollary 1.2. The details can be found in [2]. For example,
let φ(x) = 1

1+|x|2 , we can also consider the following Matukuma-type system

{
∆u+ 1

1+|x|2u
pvq = 0 in R3

∆v + 1
1+|x|2u

qvp = 0 in R3.
(1.4)

Then, from Theorem 1.1 and by using Theorems 1-2 in [13], we easily obtain
the following results

Theorem 1.3. Suppose 0 < p ≤ q and 1 < p + q < 5. Then the following
statements are valid.
(i) Every positive entire solution (u, v) of equation (1.4) satisfies u ≡ v in

R3, and it is radially symmetric about the origin with u′(r) < 0 ∀r > 0.
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(ii) Let TM(u) = 1
4π

∫
R3

up

1+|x|2 dx be the total mass of u. Then equation

(1.4) has an unique positive entire solution with finite total mass, and
has infinitely many positive entire solutions with infinite total mass.

In Section 2, based on the maximum principle, we can get the proof of Theorem
1.1. Applying Theorem 1.1 and by using the well-known results of Yamabe problem,
we also easily get Corollary 1.2.

2. Identical Property and Proof of Main Results. We prove Theorem 1.1
and Corollary 1.2 in this section.

Proof of Theorem 1.1. Let (u, v) be a positive solution of (1.1)-(1.2), and let
w = u− v. Then, by (1.1), w satisfies

∆w = φ(x)(−upvq + uqvp) in Ω, w = 0 on ∂Ω.(2.1)

We divide the proof into the following steps.

Step 1. If q > p > 0 then we want to show w ≡ 0, i.e., u ≡ v, in Ω.
First, we prove v(x) ≥ u(x) ∀x ∈ Ω. Suppose not, then there exists some x0 ∈ Ω

such that w(x0) = u(x0)− v(x0) > 0. Then there exists some x1 ∈ int(Ω) such that

w(x1) = max
x∈Ω

w(x) > 0 and ∆w(x1) ≤ 0.(2.2)

By φ > 0 and (2.1)-(2.2), we easily obtain

0 ≥ ∆w(x1) = −φ(x1)(up(x1)vq(x1)(1− (
u(x1)

v(x1)
)q−p)) > 0.

This contradiction shows v(x) ≥ u(x) ∀x ∈ Ω.
Now, suppose v 6≡ u in Ω. Then by (1.1)-(1.2), we easily deduce that

0 =

∫

Ω

(v∆u− u∆v)dx =

∫

Ω

−φ(x)upvq+1(1− (
u

v
)q+1−p)dx < 0.

This contradiction proves u ≡ v if q > p > 0.
Step 2.If p = q > 0. then by (2.1) we easily obtain

∆w = φ(x)(upvp − upvp) = 0 in Ω and w = 0 on ∂Ω.

This shows u ≡ v in Ω.
By Steps 1 and 2 we complete the proof of Theorem 1.1. q.e.d.

Now we are in a position to prove Corollary 1.2.

Proof of Corollary 1.2. Let φ ≡ 1 and (u, v) be a positive solution of (1.1). By
our main result, Theorem 1.1, we obtain that u ≡ v, and then system (1.1) reduces
to the following one equation

∆u+ up+q = 0 in Ω
u = 0 on ∂Ω.

(2.3)

Then by the well-known Yamabe problem and the prescribing scalar curvature prob-
lem, e.g., see [6], [1], [4], [3], [9] and the references therein, we easily obtain the results
(i)-(iii) of Corollary 1.2. We complete the proof. q.e.d
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ORTHOGONAL WITH DIFFERENT WEIGHT FUNCTIONS AND

DIFFERENTIAL EQUATIONS SATISFIED BY THESE
POLYNOMIALS ∗

MARIANA MARČOKOVÁ† AND VLADIMÍR GULDAN‡

Abstract. In this contribution we deal with classical Jacobi polynomials orthogonal with re-
spect to different weight functions, their special cases - classical Legendre polynomials and general-
ized brothers of them. We derive expressions of generalized Legendre polynomials and generalized
ultraspherical polynomials by means of classical Jacobi polynomials.

Key words. orthogonal polynomial, weight function, classical Jacobi polynomial, classical
Legendre polynomial, generalized orthogonal polynomial, differential equation

AMS subject classifications. 33C45, 42C05

1. Introduction. This paper presents relations of generalized Legendre poly-
nomials of a certain type to classical Jacobi polynomials with some different weight
functions. Also generalization to ultraspherical polynomials is given. Further, we deal
with influence to Jacobi polynomials, when their weight function is multiplied by even
function. In the conclusion we derive the differential equations satisfied by the intro-
duced generalized Legendre polynomials. The motivation for such investigation was
obtained when studying the book [2] dealing with physical geodesy and the papers
[3], [5], [7], [10], and [11] using Legendre polynomials in applications.

1.1. Definition and basic properties of orthogonal polynomials. We re-
call the definition and the basic properties of orthogonal polynomials that can be
found in the basic literature on orthogonal polynomials (cf. [1], [4], [8], and [9]).

Definition 1.1. Let (a, b) ⊂ R be a finite or infinite interval. A function v(x)
is called the weight function if at this interval it fulfills the following conditions:

(i) v(x) is nonnegative at (a, b), i.e.

v(x) ≥ 0,

(ii) v(x) is integrable at (a, b), i.e.

0 <

b∫

a

v(x)dx <∞

and
(iii) for every n = 0, 1, 2, . . .

0 <

b∫

a

|x|nv(x)dx <∞.
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Definition 1.2. Let {Pn(x)}∞n=0 be a system of polynomials, where every poly-
nomial Pn(x) has the degree n. If for all polynomials of this system

b∫

a

Pn(x)Pm(x)v(x)dx = 0, n 6= m,

then the polynomials {Pn(x)}∞n=0 are called orthogonal in (a, b) with respect to the
weight function v(x). If moreover

||Pn(x)||v(x) =




b∫

a

P 2
n(x)v(x)dx




1
2

= 1

for every n = 0, 1, 2, . . ., then the polynomials are called orthonormal in (a, b).

So the condition of the orthonormality of the system {Pn(x)}∞n=0 has the form

b∫

a

Pn(x)Pm(x)v(x)dx = δnm,

where δnm is Kronecker delta.

Theorem 1.3. For every weight function v(x) there exists one and only one
system of polynomials {Pn(x)}∞n=0 orthonormal in (a, b), where

Pn(x) =

n∑

k=0

a
(n)
k xn−k , a(n)0 > 0.

Theorem 1.4. A polynomial Pn(x) is orthogonal in (a, b) with respect to the
weight function v(x), if and only if for arbitrary polynomial Sm(x) of the degree m < n
the following condition is fulfilled

b∫

a

Pn(x)Sm(x)v(x)dx = 0.

Theorem 1.5. If the interval of orthogonality is symmetric according to the
origin of coordinate system and weight function v(x) is even function, then every
orthogonal polynomial Pn(x) fulfils the equality

Pn(−x) = (−1)nPn(x).
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1.2. Classical Jacobi polynomials, classical Legendre polynomials and
differential equations satisfied by them. It is well-known that Jacobi polyno-
mials {Pn(x;α, β)}∞n=0 are orthogonal in the interval I = (−1, 1) with respect to the
weight function

J(x) = (1− x)α(1 + x)β , x ∈ (−1, 1),(1.1)

where α > −1, β > −1. Very important special case of Jacobi polynomials are classical
Legendre polynomials {Pn(x; 0, 0)}∞n=0, for which α = β = 0 in the weight function
J(x). In the next we denote them by {Pn(x)}∞n=0. As it is seen the Legendre classical
polynomials {Pn(x)}∞n=0 are orthogonal in I = (−1, 1) with respect to the weight func-
tion L(x) = 1. If α = β, then polynomials {Pn(x;α, α)}∞n=0 are called ultraspherical
polynomials.

Classical orthogonal polynomials are solutions of the second order linear homo-
geneous differential equations of the form (cf. e.g. [4], [8], and [9]):

a(x)y′′n(x) + b(x)y′n(x) + λnyn(x) = 0,

where a(x) is a polynomial of the degree at most 2 , b(x) is a polynomial of the degree
1 and λn does not depend of x . For the classical Jacobi polynomials this equation
has the form

(1− x2)y′′n(x) + [β − α− (α+ β + 2)x] y′n(x) + n(n+ α+ β + 1)yn(x) = 0,

which in the case of the classical Legendre polynomials is reduced to the equation

(1− x2)y′′n(x)− 2xy′n(x) + n(n+ 1)yn(x) = 0.(1.2)

2. Generalized Legendre polynomials of a certain type and classical
Jacobi polynomials with different weight functions. In [6] we introduced the
system of polynomials {Qn(x)}∞n=0 which are the polynomials orthonormal in I with
respect to the weight function

Q(x) =
(
x2
)γ
,

where γ > 0 and Qn(+∞) > 0. It is clear that these polynomials are generalization
of the classical Legendre polynomials, which can be obtained by substituting γ = 0
in the weight function Q(x).

Further in [6] we introduced two classes of orthonormal polynomials:

1. polynomials {Pn(x; 0, γ− 1
2 )}∞n=0 orthonormal in I with respect to the weight

function

J1(x) = (1 + x)γ−
1
2

and
2. polynomials {Pn(x; 0, γ)}∞n=0 orthonormal in I with respect to the weight

function

J2(x) = (1 + x)γ .
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In both these cases we have classical Jacobi polynomials orthogonal with the
weight function (1.1) for α = 0, β = γ − 1

2 and α = 0, β = γ, respectively. In the
next theorem we proved relations between them and the polynomials {Qn(x)}∞n=0 (cf.
[6]). Here we give this theorem with its proof because it is essential for our further
investigation.

Theorem 2.1. In the notations introduced in the previous sections we have

Q2n(x) = 2
γ
2− 1

4Pn

(
2x2 − 1; 0, γ − 1

2

)
(2.1)

and

Q2n+1(x) = 2
γ
2 xPn

(
2x2 − 1; 0, γ

)
.(2.2)

Proof. According to the Theorem 1.5, the function Q2n(x) is even function.
Putting t = x2 we denote Wn(t) = Q2n(x). The orthogonality of the polynomials
{Qn(x)}∞n=0 for r = 0, 1, . . . , n− 1 and n > 0 yields

0 =

1∫

0

x2rQ2n(x)x2γdx =
1

2

1∫

0

trWn(t)tγ−
1
2 dt =

=
1

22

1∫

−1

(
τ + 1

2

)r
Wn

(
τ + 1

2

)(
τ + 1

2

)γ− 1
2

dτ =

=
1

2γ+
3
2

1∫

−1

(
τ + 1

2

)r
Wn

(
τ + 1

2

)
(τ + 1)γ−

1
2 dτ .

From that it is clear that the polynomials Wn

(
x+1
2

)
are orthogonal in I with respect

to the weight function J1(x). According to the Theorem 1.3, taking into account the
uniqueness of these polynomials, we have

Wn

(
x+ 1

2

)
= k Pn

(
x; 0, γ − 1

2

)
,

where k > 0 in consequence of the fact that Pn
(
∞; 0, γ − 1

2

)
> 0 and Wn(+∞) > 0.

From the orthonormality of the polynomials Wn(t) we derive

1

2
=

1∫

0

W 2
n(t) tγ−

1
2 dt = k2

1∫

−1

P 2
n

(
τ ; 0, γ − 1

2

)(
τ + 1

2

)γ− 1
2 1

2
dτ =

=
1

2γ+
1
2

k2
1∫

−1

P 2
n

(
τ ; 0, γ − 1

2

)
(τ + 1)γ−

1
2 dτ
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from where we have k = 2
γ
2− 1

4 and the relation (2.1), i.e.

Q2n(x) = 2
γ
2− 1

4Pn

(
2t− 1; 0, γ − 1

2

)
, t = x2.

Now we prove the relation (2.2). Putting t = x2 we have

Wn(t) = x−1Q2n+1(x),

where Wn(t) is the polynomial of the degree n and Q2n+1(x) is odd function. For r =
= 0, 1, . . . , n− 1 and n > 0 the orthogonality of the polynomials {Qn(x)}∞n=0 yields

0 =

1∫

0

x2r+1Q2n+1(x)x2γdx =
1

2

1∫

0

trWn(t) tγ+
1
2 dt =

=
1

22

1∫

−1

(
τ + 1

2

)r
Wn

(
τ + 1

2

)(
τ + 1

2

)γ+ 1
2

dτ =

=
1

2γ+
5
2

1∫

−1

(
τ + 1

2

)r (
τ + 1

2

) 1
2

Wn

(
τ + 1

2

)
(τ + 1)γdτ .

From there

(
x+ 1

2

) 1
2

Wn

(
x+ 1

2

)
= k Pn(x; 0, γ) ,

where k > 0 and from the orthonormality of the polynomials t
1
2 Wn(t) we derive

1

2
=

1∫

0

x−2Q2
2n+1(x)x2γdx =

1∫

0

tW
2

n(t) tγdt =

=
1

2

1∫

−1

(
τ + 1

2

)
W

2

n

(
τ + 1

2

)(
τ + 1

2

)γ
dτ =

1

2γ+1
k 2

1∫

−1

P 2
n(τ ; 0, γ)(τ + 1)γdτ .

Finally we get k = 2
γ
2 and the relation (2.2) of the theorem.

3. Generalized ultraspherical polynomials and their relation to certain
classical Jacobi polynomials. In the next theorem we generalize the relations
derived in the Theorem 2.1 for generalized ultraspherical polynomials taking into
account polynomials orthonormal in I with respect to the weight function

Q̃(x) =
(
1− x2

)α (
x2
)γ

instead of the weight function Q(x) =
(
x2
)γ

.
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Theorem 3.1. Let {Q̃n(x)}∞n=0 be the polynomials orthonormal in I = (−1, 1)
with the weight function

Q̃(x) =
(
1− x2

)α (
x2
)γ
,

where α > −1, γ > 0 and Q̃n(+∞) > 0. Let {Pn
(
x;α, γ − 1

2

)
}∞n=0 be the polynomials

orthonormal in I with the weight function

J̃1(x) = (1− x)α(1 + x)γ−
1
2

and {Pn(x;α, γ)}∞n=0 be the polynomials orthonormal in I with the weight function

J̃2(x) = (1− x)α(1 + x)γ .

Then

Q̃2n(x) = 2
α+γ

2 − 1
4Pn

(
2x2 − 1;α, γ − 1

2

)
(3.1)

and

Q̃2n+1(x) = 2
α+γ

2 xPn
(
2x2 − 1;α, γ

)
.(3.2)

Proof. Similarly to the proof of the Theorem 2.1 we put the appropriate substitu-
tions to the integrals proving the orthonormality of the polynomials {Q̃n(x)}∞n=0 . In
all the integrals the term

(
1−τ
2

)α
will appear and after some algebra and integration

the term 2
α
2 will appear in the relations (3.1) and (3.2).

4. Even multiple of the weight function of Jacobi polynomials. The
result of the following theorem is the analogy of the well-known relation for classical
Jacobi polynomials.

Theorem 4.1. Let {Qn(x;α, β, γ)}∞n=0 be the polynomials orthonormal in the
interval I = (−1, 1) with the weight function

Q(x;α, β, γ) = (1− x)α(1 + x)β
(
x2
)γ

where α > −1, β > −1, γ > 0. Then

Qn(−x;α, β, γ) = (−1)nQn(x;β, α, γ).(4.1)

Proof. According to the orthogonality criterion (Theorem 1.4) the necessary and
sufficient condition of the orthogonality of the polynomials {Qn(x;α, β, γ)}∞n=0 has
the form

1∫

−1

(1− x)α(1 + x)β
(
x2
)γ
Qn(x;α, β, γ)Fm(x)dx = 0,

where Fm(x) is an arbitrary polynomial of the degree m = 0, 1, . . . , n−1. Substituting
x = −t this condition will obtain the form

1∫

−1

(1 + t)α(1− t)β(t2)γQn(−t;α, β, γ)Fm(−t)dt = 0.
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Because Fm(t) is an arbitrary polynomial of the degree m, then also Fm(−t) is an
arbitrary polynomial of the degree m. So, in the consequence of the same theorem, the
polynomial Qn(−t;α, β, γ) is also orthogonal, but with the weight Q(t;β, α, γ) and it
may differ from the orthogonal polynomial Qn(t;β, α, γ) only by constant multiple.
So

Qn(−t;α, β, γ) ≡ c Qn(t;β, α, γ).

Because the polynomials are orthonormal, it yields |c| = 1. Comparing the coefficients
at the highest powers of these two polynomials, we get |c| = (−1)n and the relation
(4.1).

It is obvious that the result of this theorem can be generalized for polynomials
orthogonal in I with the weight function J(x)h(x), where the factor h(x) is an even
function on I.

Theorem 4.2. Let {P̃n(x;α, β)}∞n=0 be the polynomials orthonormal in the in-
terval I = (−1, 1) with the weight function

J̃(x;α, β) = (1− x)α(1 + x)βh(x),

where α > −1, β > −1, h(x) ≥ 0 in I and h(x) is an even function in I. Then

P̃n(x;α, β) = (−1)nP̃n(x;β, α).

Proof. Similar to the proof of the Theorem 4.1.

5. Consequences of differential equations with generalized Legendre
polynomials solutions. Differentiating both sides of (2.1) according to x, then
expressing Pn

(
2x2 − 1; 0, γ − 1

2

)
, P ′n

(
2x2 − 1; 0, γ − 1

2

)
, and P ′′n

(
2x2 − 1; 0, γ − 1

2

)
by

means of polynomials Q2n(x), Q′2n(x), and Q′′2n(x), then substituting the derivatives
Pn, P ′n, and P ′′n into the differential equation with these Jacobi polynomials solutions,
we have the following equation:

(1− x2)Q′′2n(x)− −2γ + 2x2 + 2γx2

x
Q′2n(x) = −2n(2n+ 2γ + 1)Q2n(x).

For γ = 0 it reduces to the equation

(1− x2)Q′′2n(x)− 2xQ′2n(x) = −2n(2n+ 1)Q2n(x).

Comparing it with (1.2) we observe the last equation to be the differential equation
for the (2n)-th degree Legendre polynomial.

By the similar way from (2.2) we derive the following equation:

(1− x2)Q′′2n+1(x) +
−1 + 2γ − x2 − 2γx2

x
Q′2n+1(x) +

1− 2γ + x2 + 2γx2

x2
Q2n+1(x) =

= −4n(n+ γ + 1)Q2n+1(x).

For γ = 1
2 it reduces to the equation

(1− x2)Q′′2n+1(x)− 2xQ′2n+1(x) + 2Q2n+1(x) = −4n

(
n+

3

2

)
Q2n+1(x).

The last equation is the differential equation for the (2n + 1)-st degree Legendre
polynomial.

In such a way we have proved the following theorem:
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Theorem 5.1.
1. The Jacobi polynomial Pn

(
2x2 − 1; 0,− 1

2

)
of the argument 2x2 − 1 ortho-

gonal with respect to the weight function (1 + x)−
1
2 is the Legendre polynomial of the

argument x and of the degree 2n.
2. The polynomial xPn

(
2x2 − 1; 0, 12

)
, where Pn

(
2x2 − 1; 0, 12

)
is the Jacobi

polynomial of the argument 2x2− 1, orthogonal with respect to the weight (1 +x)
1
2 , is

the Legendre polynomial of the argument x and of the degree 2n+ 1.
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STOCHASTIC MODULATION EQUATIONS ON UNBOUNDED
DOMAINS∗

LUIGI A. BIANCHI† AND DIRK BLÖMKER‡

Abstract. We study the impact of small additive space-time white noise on nonlinear stochastic
partial differential equations (SPDEs) on unbounded domains close to a bifurcation, where an infinite
band of eigenvalues changes stability due to the unboundedness of the underlying domain. Thus we
expect not only a slow motion in time, but also a slow spatial modulation of the dominant modes, and
we rely on the approximation via modulation or amplitude equations, which acts as a replacement
for the lack of random invariant manifolds on extended domains.

One technical problem for establishing error estimates in the stochastic case rises from the spa-
tially translation invariant nature of space-time white noise on unbounded domains, which implies
that at any time the error is always very large somewhere far out in space. Thus we have to work in
weighted spaces that allow for growth at infinity.

As a first example we study the stochastic one-dimensional Swift-Hohenberg equation on the
whole real line [1, 2]. In this setting, because of the weak regularity of solutions, the standard
methods for deterministic modulation equations fail, and we need to develop new tools to treat the
approximation. Using energy estimates we are only able to show that solutions of the Ginzburg-
Landau equation are Hölder continuous in spaces with a very weak weight, which provides just
enough regularity to proceed with the error estimates.

Key words. modulation equations, amplitude equations, convolution operator, regularity,
Rayleigh-Bénard, Swift-Hohenberg, Ginzburg-Landau

AMS subject classifications. 60H15,60H10

1. Experiments. A celebrated model in pattern formation is the Rayleigh-
Bénard convection, an experimental phenomenon where a fluid between two plates
is heated from below and kept at a constant temperature from above. Here the
full description would be a 3D-Navier-Stokes equation coupled to the heat equation, a
mathematical model that is yet too complicated for our analytical tools. In this article
we review the results of [1] and [2] and thus we consider the simpler Swift-Hohenberg
model [8] that is used as a reduced model for the convective instability.

Figure 1.1. Rayleigh-Bénard convection
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luigi-amedeo.bianchi@uni-konstanz.de
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1.1. Convective instability. The convective instability is the first bifurcation
in the Rayleigh-Bénard problem. Below a critical temperature Tc the fluid is at rest
and no pattern is formed. The heat is just transported by conduction through the
system.

Above the critical temperature Tc convection rolls start to form. Hot fluid is
going up and cold fluid is going down, and they cannot do that in the same place, so
we have areas where the motion is upwards and other areas where it is downwards.
In a view from above, a striped pattern starts to show up.

T < Tc

No pattern
heat transport

T > Tc

Dominant pattern
convection rolls

Figure 1.2. Bifurcation at the convective instability, the figure shows a cut through the fluid
with the plates above and below.

1.2. Pattern formation below criticality. Very close to the critical point,
stochastic effects were observed first in electro-convection (see Rehberg et al. [18])
and much later in Rayleigh-Bénard convection (see Oh, Ahlers et al. [16, 17]). In
both experiments, pattern formation slightly below the critical threshold (i.e., a crit-
ical temperature Tc in Rayleigh Bénard) was observed. Nevertheless the distance to
bifurcation had to be of the order of the noise’s strength, which made it extremely dif-
ficult to observe in experiments, as the source of noise in Rayleigh-Bénard are thermal
fluctuations. Similar observations in numerical experiments and using formal center
manifold approximations were done by Hutt et al. [10, 9].

Observation from experiments, [18]:
Below threshold (but close)

trivial solution is not stable
pattern is slowly modulated

Well above threshold
convection rolls are stable
pattern is almost periodic

2. Introduction. The typical setting in the following presentation of our re-
sults shows complicated systems given for example by (stochastic) partial differential
equations. Near a change of stability (or bifurcation) of the trivial solution, we have
a natural separation of time-scales. The (Fourier) modes similar to the bifurcating
pattern move on a slow time-scale given by the distance from bifurcation, while the
other modes move and disappear on an order one time-scale.

The typical results we are aiming at are the approximation of the full dynamics
by means of the amplitude of the bifurcating pattern, which is given by a (stochastic)
differential equation. On unbounded domains a full band of eigenfunctions changes
stability. In order to take this into account the amplitude of the dominating pattern
is slowly modulated in space.

This approximation by modulation (or amplitude) equations is well established
in the physics literature, but only on a formal level. From a mathematical point of
view, the deterministic problems are well studied. Starting from the first publications
[4, 11, 14, 13] there is a rich literature, featuring also recent contributions, for example
[20, 6], just to name two.
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Let us point out that the celebrated center manifold reduction, which works well
for deterministic PDEs on bounded domains, is not available for PDEs on unbounded
domains. Moreover, it is not useful in the stochastic setting: because of the inherent
non-autonomy of the system due to noise, the manifold itself would move through
the whole phase space, and thus any reduction to the manifold does not reduce the
complexity of the dynamics at all.

We finally give an outline of the paper. In Section 3 we state the setting of
the Swift-Hohenberg equation and discuss the spectrum of the linearized operator
together with modulated pattern. We then briefly recall the main results on large
domains in Section 4, while in Section 5 we state in detail the results available on
unbounded domains. In the final two sections we give a remark on pattern formation
below criticality and provide an outlook on several possible extensions of the result.

3. Swift-Hohenberg. For our results we consider for simplicity only a toy prob-
lem given by the Swift-Hohenberg equation. It can be derived via heuristic reduction
from the Rayleigh-Bénard problem close to the convective instability, as was originally
shown by Swift & Hohenberg [8]. See also [19] for a more rigorous approach. The
equation is given as:

∂tu = −(1 + ∂2x)2u+ νε2u− u3 + ε3/2ξ , (SH)

where we assume
• u(t, x) ∈ R, t > 0, x ∈ R
• periodic boundary conditions – or – unbounded domain
• ξ = ∂tW Gaussian space-time white noise.

Thus in the sense of generalized processes the mean of the noise is zero and it is
uncorrelated in space and time:

E ξ(t, x) = 0 , E ξ(t, x)ξ(s, y) = δ(t− s)δ(x− y) .

As a mathematical model, the noise is given as a derivative of a standard cylindrical
Wiener process {W (t)}t≥0 in L2(R), meaning that

W (t) =
∑

k

βk(t)ek

where {ek}k is any orthonormal basis in L2(R) and {βk}k is a sequence of i.i.d. real-
valued Brownian motions.

3.1. Eigenvalues – Spectral gap. In our example of the Swift-Hohenberg
operator we can calculate all eigenvalues of the linearized operator explicitly:

L = −(1 + ∂2x)2 and thus Leikx = λ(k) eikx ,

subject to periodic boundary conditions on an interval or on the whole real line.
Obviously,

λ(k) = −(1− k2)2 .

In Figure 3.1 we plotted the eigenvalues of L for those k ∈ R which lead to admissible
eigenfunctions that satisfy the boundary conditions. We see that the spectral gap
between the largest two eigenvalues shrinks as the domain gets larger: on an interval
of length O(ε−1) already many eigenvalues are O(ε2) away from the largest eigenvalue
0.
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2π-periodic

k ∈ Z

L
ε -periodic

k ∈ 1
2Lπ ε Z

on R
k ∈ R

Figure 3.1. Band of Eigenvalues for the example L = −(1 + ∂2x)2 on bounded, large, and
unbounded domains. We plot the wave-number k against the eigenvalue λ(k) = −(1 − k2)2 for the
corresponding eigenfunction eikx.

3.2. Modulated pattern. As many eigenvalues are close to the change of sta-
bility, we need to understand how many eigenfunctions with wave-number around
k = ±1 influence the pattern.

Let us compare a 2π-periodic pattern

u(x) = εAeix + c.c. with A ∈ C

with a modulated pattern

u(x) = εA(εx)eix + c.c. with A : R 7→ C

If we consider the amplitude A in polar coordinates, then its absolute value |A| de-
termines the size of the modulated pattern, while the angle is a phase shift of the
pattern. Both move slowly in space here.

We can calculate that

u(x) = εA(εx)eix + c.c.

has Fourier transform

Fu(k) = FA ( (k − 1)/ε ) + FA ( (k + 1)/ε ) .

For 2π-periodic pattern the function is in the span of eix and e−ix. Thus the Fourier
transform is only a Dirac at wave-numbers k ∈ {−1, 1}.

−1 1

|Fu|

For the slow modulation of a 2π-periodic pattern, the Fourier transform widens
up but it is still concentrated around k ∈ {−1, 1}. A whole band of infinitely many
Fourier modes defines the structure of the solution.
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−1 1

|Fu|

4. Large domains. Here we present the results of Blömker, Hairer & Pavlio-
tis [3] without stating the technical details.

Theorem 4.1 (Approximation [3]). Consider a 2L/ε-periodic solution u of (SH)
If u(0, x) = εA(0, εx) · eix + c.c. +O

(
ε2
)

is a modulated wave with admissible initial
condition A(0, ·) = O(1), then

∀t ∈ [0, T0ε
−2] u(t, x) = εA(ε2t, εx) · eix + c.c. +O

(
ε2−
)
,

where the amplitude A(T,X) ∈ C solves (GL).
The amplitude equation is a stochastic Ginzburg-Landau equation:

∂TA = (4∂2X + ν)A− 3|A|2A+ η (GL)

with
• 2L-periodic solutions
• C-valued space-time white noise η = ∂TW

The complex-valued standard cylindrical Wiener-process W arises from rescaling the
discrete Fourier transform of the real-valued Wiener process W for Fourier-modes
with wave-number k close to 1. See also Section 5.2.

Let us remark that even in the case of ξ in (SH) colored and regular in space, the
amplitude equation (GL) has space-time white noise, due to rescaling in space and
time.

The estimates in Theorem 4.1 above are given in C0-norms and the initial condi-
tion A(0) is called admissible if it splits into a more regular H1-part, and a Gaussian
part, which we can bound in C0. This is a quite natural assumption for SPDEs using
the standard transformation with the stochastic convolution.

5. Unbounded domains. The key technical problem for deriving an approxi-
mation result via amplitude equations for (SH) on unbounded domains is the regu-
larity of solutions. All previous results require too much regularity that we do not
have in the stochastic setting. The theory for deterministic PDEs always uses uniform
bounds in space on derivatives of the amplitude A. While the pioneering works [4, 11],
which needed a uniform bound on the fourth derivative, were much improved since
then, all results still need a uniform bound.

The previously stated Theorem 4.1 on large but still bounded domains needs a
split condition in space for a more regular H1-part and a Gaussian part only in C0.
Nevertheless, solutions are always uniformly bounded in space.

In two papers Klepel, Mohammed & Blömker [15, 12] discussed the case of
spatially constant noise. Also in this setting they need too much regularity, as the
solution of the amplitude equation (GL) has to be H1/2+ in space and thus it is
uniformly bounded.

We formulate the regularity that we expect for the amplitude A as a theorem:
Theorem 5.1 (Lack of regularity). With space-time white noise on the whole

real line and with sufficiently smooth initial conditions the amplitude A solving (GL)
is

• γ-Hölder-continuous in space and time only with γ < 1/2,
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• unbounded in space, i.e. ‖A(T, ·)‖∞ =∞ for all T > 0.
To address the lack of regularity we can on one hand consider mild solutions, that

take care of the problems with differentiability. On the other hand, we need weighted
Hölder spaces which are defined by the norm (for some small κ > 0)

‖u‖C0,α
κ

= sup
L>1
{L−κ‖u‖C0,α([−L,L])} .

5.1. Mild formulation. Recall the Swift-Hohenberg equation:

∂tu = Lu+ νε2u︸ ︷︷ ︸
=:Lνu

−u3 + ε3/2∂tW (SH)

Its mild solution (see [5]), also called variation of constants formula, is

u(t) = etLνu(0)−
t∫

0

e(t−s)Lνu3(s) ds+ ε3/2WLν (t)

with the stochastic convolution given by

WLν (t) =

∫ t

0

e(t−s)LνdW (s) .

Remark 1. Results for existence and uniqueness of mild solutions are usually
straightforward using fixed-point theorems. Unfortunately this is not the case in the
weighted spaces we are considering. The nonlinearity is unbounded and the semigroup
is only regularizing in terms of differentiability but not in terms of weights. Thus the
right-hand-side of the fixed-point equation is not a self-mapping.

So the existence and uniqueness is first established for weak solutions via an ap-
proximation with large but bounded domains, and then one can show that weak so-
lutions are sufficiently regular to be also mild. We will go not into details here, for
those see [2].

5.2. Results for the linearized equation. This is the key stochastic result
from Bianchi & Blömker [1]. It is one of the essential building blocks to prove a result
for the residuum of the nonlinear equation.

Theorem 5.2 (Approximation). Given the Wiener process W from (SH), there is
a complex-valued Wiener process W for (GL) such that for any κ > 0 with probability
almost 1

sup
[0,

T0
ε2

]

∥∥∥ε 3
2WLν (t, x)−

[
εW4∂2

x+ν
(ε2t, εx) · eix + c.c.

]∥∥∥
C0
κ

≤ Cε 3
2−

Definition 5.3. We say that an ε-dependent event Aε has probability almost
1, if for all p ≥ 1 there is a constant Cp > 0 such that P(Aε) ≥ 1− Cpεp.

Let us remark that, in order to control the cubic term in the nonlinear result
afterwards, we use the weighted supremum norm and not weaker (and actually much
simpler) weighted L2-norm.

Proof. We provide here only a brief sketch of the proof, for all the technical
details see [1]. We rescale the stochastic convolution to the slow time (T = ε2t)
and large space (X = εx). Then we split into Fourier-modes larger than 0 and the
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complex conjugate corresponding to Fourier-modes smaller than 0. This defines the
complex valued Wiener process, as there is one canonical processW such that we can
summarize the difference as a single stochastic integral w.r.t. W:

ε1/2WL(Tε−2, Xε−1)− [W4∂2
x
(T,X) · eiX/ε + c.c.] =

∫ T

0

HτdW(τ) · eiX/ε + c.c.

with a convolution operator Hτu = Hτ ? u that mainly contains rescaled differences
of the semigroups.

We use a technical estimate that allows to bound
∫ T
0
HτdW(τ) in weighted Hölder

spaces with small exponent and small weight in terms of bounds on the Fourier-
transform Ĥτ in spaces with slightly more regularity than L2([0, T0]× R).

The remaining and lengthy part of the proof shows the bounds for the norm of
Ĥτ in different areas of the Fourier-space.

5.3. Nonlinear result. The full nonlinear result for (SH) and (GL) was treated
in Bianchi, Blömker & Schneider [2]. It contains of two steps: first we bound the
residual of the Swift-Hohenberg equation, and then via standard energy-type estimates
we establish the approximation result.

5.3.1. Residual. Let A be a solution of (GL) with some conditions on A(0, ·).
It basically has to be in any W 1,p

ρ , p > 1 for an integrable weight ρ.
Definition 5.4 (Approximation). For A from above, we define the approxima-

tion

uA(t, x) = εA(ε2t, εx)eix + c.c.

The key step towards an approximation result is to bound the residual for uA.
Definition 5.5 (Residual). For uA from above we define

Res(t) = u(t)− etLνuA(0) +

t∫

0

e(t−s)Lνu3A(s) ds− ε3/2WLν (t)

We can prove the following result:
Theorem 5.6 (Residual). For every small κ > 0 with probability almost 1

sup
[0,T0ε−2]

‖Res ‖C0
κ
≤ Cε3/2−.

The proof can be found in [2, Theorem 5.9]. Its main strategy is as follows:
• use suitable exchange Lemmas to replace Swift-Hohenberg semigroups by

Ginzburg-Landau semigroups,
• take advantage of Theorem 5.2 for stochastic convolution WLν ,
• notice that all terms of order O(ε) cancel due to (GL).

The key problem is that for the exchange Lemmas some regularity (or Gaussianity)
is needed to estimate:

etL[D(εx)eix] ≈ [e4T∂
2
XD](εx) · eix and etL[D(εx)e3ix] ≈ 0

If D is very smooth the proofs are straightforward, but here D ∈ {A3, A|A|2} thus we
only have Hölder-regularity.
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5.3.2. Approximation. For a solution u of (SH) and the approximation uA we
define

R = u− uA −Res

which solves

∂tR = LνR− (R+ uA +Res)3 − uA3.

Use standard energy estimates in a weighted L2-norm (for ρ > 1)

‖R‖2L2
ρ,ε

=

∫

R
(1 + ε2x2)−ρ/2|R(x)|2dx

we obtain the following result.

Theorem 5.7. With probability almost 1

sup
[0,T0ε−2]

‖u− uA‖L2
ρ,ε
≤ C‖u(0)− uA(0)‖L2

ρ,ε
+ Cε1−.

Details of the proof can be found in [2, Theorem 6.3].

6. A comment on pattern formation below criticality. Using amplitude
equations, the question of pattern formation has a simple answer. Let us consider
(SH) below the bifurcation, but sufficiently close. To be more precise, if σ is the
noise-strength, then the distance from bifurcation should be O(σ4/3). In such scaling
the effective dynamic is described by the amplitude equation, which is independent
of σ. Thus the amplitude A is always O(1) and hence the pattern is visible.

7. Outlook. Let us conclude by commenting on some possible extensions of the
results above.

7.1. Other types of noise in (SH). In the result presented here we only treat
space-time white noise in both equations. But we could try more regular noise to
overcome regularity barriers.

For colored, spatially smooth and translation invariant noise, it seems straight-
forward that in the approximation result (GL) still has space-time white noise, due
to the rescaling both in space and time. Thus it does not help with the regularity.

If we consider trace class noise in L2(R) then we impose a decay-condition at
infinity for (SH). But in that case, due to the spatial rescaling, we expect point-
forcing in (GL).

In order to have noise that does not change under the space-time rescaling, one
could try to consider algebraic decay of correlations. Here we expect a similar algebraic
decay of correlations also for the noise in (GL). However, these types of noise seem to
yield poor regularity of solutions, too.

7.2. Quadratic non-linearities. A more accurate Swift-Hohenberg model of
the real Rayleigh-Bénard convection has a quadratic nonlinearity. In that setting
the analysis is much more involved, as one has much more complicated interaction
of Fourier-modes. But it is known from the deterministic results that even in the
Rayleigh-Bénard phenomenon the amplitude equation is of Ginzburg-Landau type.
Consequently, we expect a similar result to hold in the stochastic case, too.
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7.3. Higher-dimensional models. Considering higher dimensional models is
a difficult problem, as already in 2D the Ginzburg-Landau equation is no longer well-
defined. See Hairer, Ryser & Weber [7] for a result on Allen-Cahn, which should
generalize to (GL).

Consider for example Swift-Hohenberg in R2

∂tu = −(1 + ∆)2u+ 4∂2yu+ νε2u− u3 + ε∂tW (2D-SH)

subject to space-time white noise or even smoother spatially colored noise. This
formally has the amplitude equation

∂TA = −4∆A+ νA− 3A|A|2 + ∂TW (2D-GL)

also with space-time white noise, which is no longer well-defined, as noted in the
aforementioned [7]. Nevertheless, results like these are used in the applied literature.

Here in the spirit of [7], we can consider a smaller strength of the noise to obtain
a meaningful limit. In that case the amplitude equation has no longer an additive
noise, but additional deterministic terms should appear due to the presence of noise
in (SH-2D) and averaging effects in the nonlinearity.
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AN EFFICIENT LINEAR NUMERICAL SCHEME FOR THE STEFAN
PROBLEM, THE POROUS MEDIUM EQUATION AND NONLINEAR

CROSS-DIFFUSION SYSTEMS

MOTLATSI MOLATI∗ AND HIDEKI MURAKAWA†

Abstract. This paper deals with nonlinear diffusion problems which include the Stefan problem,
the porous medium equation and cross-diffusion systems. We provide a linear scheme for these
nonlinear diffusion problems. The proposed numerical scheme has many advantages. Namely, the
implementation is very easy and the ensuing linear algebraic systems are symmetric, which show
low computational cost. Moreover, this scheme has the accuracy comparable to that of the well-
studied nonlinear schemes and make it possible to realize the much faster computation rather than
the nonlinear schemes with the same level of accuracy. In this paper, numerical experiments are
carried out to demonstrate efficiency of the proposed scheme.

Key words. Stefan problem, Porous medium equation, Cross-diffusion system, Degenerate
convection-reaction-diffusion equation, Linear scheme, Error estimate, Numerical method
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1. Introduction. In this paper, we propose an efficient linear scheme for the
following nonlinear diffusion problem: Find z = (z1, . . . , zM ) : Ω × [0, T ) → RM
(M ∈ N) such that





∂z

∂t
= ∆β(z) + f(z) in Q := Ω× (0, T ),

β(z) = 0 on ∂Ω× (0, T ),

z(·, 0) = z0 in Ω.

(1.1)

Here, Ω ⊂ Rd (d ∈ N) is a bounded domain with smooth boundary ∂Ω, T is a positive
constant, β = (β1, . . . , βM ), f = (f1, . . . , fM ): RM → RM and z0 = (z0

1 , . . . , z
0
M ) ∈

L2(Ω)M are given functions. Let (βi)j denote the derivative of the ith component of
β with respect to the jth variable. If there is a point s where (βi)i(s) = 0 for some
i, then the diffusion vanishes at that point. In this case, (1.1) is called a degenerate
parabolic system. This type of problem with M = 1 includes the Stefan problem
and the porous medium equation, and such problems have been widely studied for
a long time. In Problem (1.1), the diffusivity βi of the ith component depends not
only on the ith variable but also on the jth (j 6= i) variables in general. This mixture
of diffusion terms is called cross-diffusion. This type of problems appears in many
fields of applications. A typical example is called the Shigesada-Kawasaki-Teramoto
cross-diffusion system [9].

In this paper, we propose an efficient numerical scheme to approximate the so-
lutions of Problem (1.1). Our scheme has many advantages, e.g., it is very easy-to-
implement and stable, computational costs are low, the discretization matrices are
symmetric, and the accuracy is comparable to that of the widely studied nonlinear
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†Faculty of Mathematics, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395,
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schemes. The contents of this paper are as follows. In the next section, we give a brief
introduction of numerical schemes for (1.1) which are covered in the literature. In
Section 3, we propose an efficient linear scheme, and give a brief summary of theoret-
ical results. In Section 4, the numerical experiments are carried out. The numerical
results illustrate the efficiency of the proposed scheme. Concluding remarks are made
in the final section of the paper.

2. Numerical schemes. Before proposing our scheme, let us summarize nu-
merical schemes in the literature (see references in [8]). We discuss discrete-time
approximations. They are simpler than fully discrete numerical schemes but play a
crucial role in developing numerical methods. Put τ = T/NT (NT ∈ N) be the time
step size. Let Z0 and Zn(n = 1, . . . , NT )denote the approximations of the initial
function z0 and the solution z(·, τn) at time t = τn, respectively. When we consider
the ‘equation’ (1.1), that is, the case where M = 1, we do not use boldfaced variables
and omit the subscript for the component. A lot of numerical schemes have been de-
veloped and analyzed for equation (1.1). Many researchers have considered nonlinear
schemes of the following type:





β−1
ε (Un)− β−1

ε (Un−1)

τ
= ∆Un + f(β−1

ε (Un)) in Ω,

Un = 0 on ∂Ω,

Zn := β−1
ε (Un) in Ω.

(2.1)

Here, the auxiliary functions Un represent approximations to β(z(·, τn)), and βε is a
smooth and strictly increasing function which regularizes the non-smooth and non-
strictly increasing function β. Nonlinear schemes of type (2.1) show better accuracy in
practice. For solving the corresponding nonlinear algebraic systems arising from fully
implicit schemes, some iterative methods such as the Newton method have to be used
to linearize the schemes. Therefore, it requires much time for numerical computation.
Incidentally, nonlinear schemes of type (2.3) stated below are also employed for the
degenerate parabolic equations. However, the algebraic systems arising in (2.3) are
non-symmetric, while those in (2.1) are symmetric. Thus, schemes of type (2.1) are
more convenient to handle than those of type (2.3), especially, in multi-dimensional
case.

Berger, Brezis and Rogers [2] proposed the following linear scheme for the degen-
erate parabolic equation:





µUn − τ∆Un = µβ(Zn−1) + τf(Zn−1) in Ω,

Un = 0 on ∂Ω,

Zn := Zn−1 + µ(Un − β(Zn−1)) in Ω.

(2.2)

Here, µ is a given positive constant. This is quite simple in that the scheme amounts
to solving linear elliptic equations in Un and then to performing explicit corrections
for Zn. After discretizing this scheme in space, we obtain an easy-to-implement
numerical method. Implementation and calculation time are almost the same as the
implicit method for the linear heat equation requires. However, the accuracy is low
compared with the nonlinear scheme because the nonlinear diffusion is approximated
by the linear diffusion with a constant diffusion coefficient.

The history of numerical analysis for the cross-diffusion systems is not long, and
the list of references is very short compared to the one for the degenerate parabolic
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...

∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗

∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗

· · ·
∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗




}NX

}

NX} } NXM

NXM

(a) (b)

Non-Symmetric
×(Iteration Number)

Symmetric
×M

Fig. 2.1. (a) Type of matrices arising in the nonlinear scheme (2.3) in one space dimension.
(b) Type of matrices arising in the linear schemes (2.4) and (3.1) in one space dimension. Here,
NX and M denote the numbers of spatial mesh points and components in (1.1), respectively.

equations. Most researchers have treated the following type of fully implicit nonlinear
schemes.





Zn −Zn−1

τ
= ∆β(Zn) + f(Zn) in Ω,

β(Zn) = 0 on ∂Ω.

(2.3)

The matrices generated by the discretization in space are large, sparse and non-
symmetric even in one space dimension (FIG 2.1(a)). The implementation is com-
plicated and the computational costs are high. In multi-component case and/or in
multi-dimensional space, this drawback becomes even bigger.

In references [5, 6, 7], the author proposed and analyzed the following linear
scheme for the cross-diffusion system (1.1):





µUn − τ∆Un = µβ(Zn−1) + τf(Zn−1) in Ω,

Un = 0 on ∂Ω,

Zn := Zn−1 + µ(Un − β(Zn−1)) in Ω.

(2.4)

This scheme is regarded as an extension of (2.2) to the system. Likewise, the scheme
amounts to solving M independent linear elliptic equations in Un and updating Zn

explicitly. The boundary condition becomes quite simple. The difficulty of imple-
mentation is almost the same as appears in the implicit method for the linear heat
equation. The computational cost is less than M times the computational cost of
the linear heat equation, because the ensuing linear algebraic system keeps the same
matrix for all time steps and for all i ∈ {1, . . . ,M}. The type of matrices is shown in
FIG 2.1(b).

3. Proposed linear scheme. Taking the advantages and disadvantages of the
nonlinear and the linear schemes into consideration, we modify the linear scheme
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(2.4), and then, propose an efficient linear scheme for Problem (1.1).
We rewrite equation (1.1) with M = 1 and the linear scheme (2.2) formally as

follows:





1

β′(z)
∂β(z)

∂t
= ∆β(z) + f(z),

∂z

∂t
=

1

β′(z)
∂β(z)

∂t
,





µ
Un − β(Zn−1)

τ
= ∆Un + f(Zn−1),

Zn − Zn−1

τ
= µ

Un − β(Zn−1)

τ
.

By comparing these expressions, the parameter µ can be regarded as an approxima-
tion to 1/β′(z). In practice, we usually choose µ = L−1

β , where Lβ is the Lipschitz
constant of β. But the accuracy of the numerical solutions is low, because of the
rough choice of µ. So, it is expected that a good approximation µ to 1/β′(z) gives
the numerical solution with high accuracy, for example, µ ≈ 1/β′(Zn−1). Along this
idea, Murakawa [8] proposed the following scheme for Problem (1.1).




µni U
n
i − τ∆Uni = µni βi(Z

n−1) + τfi(Z
n−1) in Ω,

Uni = 0 on ∂Ω,

Zni = Zn−1
i + µni (Uni − βi(Zn−1)) in Ω

(i = 1, . . . ,M). (3.1)

Here, µni = µni (x) (i = 1, . . . ,M) are given functions. Thus, we just change µ from
a constant to functions. This minor change makes the scheme more accurate. The
difficulty of implementation and computational costs do not greatly differ from those
of (2.2) and (2.4).

The shape of matrices arising in the scheme (3.1) is the same as in the implicit
scheme for the linear heat equation (FIG 2.1(b)). Since the matrices are symmetric, we
can employ efficient solver such as conjugate gradient method. On the other hand, the
matrices arising in the scheme (2.3) (FIG 2.1(a)) are large, sparse and non-symmetric
even in one space dimension. Moreover, computational costs are high.

Rates of convergence of (3.1) with respect to τ were derived theoretically in [8].
Since there is some difference between the handling of the degenerate-diffusion and
that of the cross-diffusion from mathematical points of view, it is difficult to treat
degenerate cross-diffusion systems in general settings. Therefore, we deal with each
case separately. The results can be summarized as follows. Let z be the weak solution
of (1.1), and U , Z be piecewise constant interpolations in time of a solution of (3.1).
We define the global error E by

E :=‖β(z)−U‖L2(Q)M +

∥∥∥∥
∫ t

0

(β (z)−U)

∥∥∥∥
L∞(0,T ;H1(Ω))M

+ ‖z −Z‖L∞(0,T ;H−1(Ω))M .

Then, the following orders were derived under some assumptions.
• For degenerate parabolic systems (without cross-diffusion),

z0 ∈ L2(Ω)M =⇒ E = O(τ1/4), (3.2)

z0 ∈ L∞(Ω)M , ∆β(z0) ∈ L1(Ω)M =⇒ E = O(τ1/2). (3.3)

• For (non-degenerate) cross-diffusion systems,

z0 ∈ L2(Ω)M =⇒ E + ‖z −Z‖L2(Q)M = O(τ1/2), (3.4)

z0 ∈ H1
0 (Ω)M =⇒ E + ‖z −Z‖L2(Q)M = O(τ). (3.5)
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The orders (3.3)–(3.5) are sharp on account of the global regularity in time. These
optimal error estimates (3.2)–(3.5) are the same as in the case where µ is a constant,
and were obtained by Magenes, Nochetto and Verdi [3] for the degenerate parabolic
equations and by Murakawa [6] for the cross-diffusion systems. However, actual errors
in numerical computation become significantly smaller if we choose µni (x) suitably.

4. Numerical experiments. In this section, we carry out numerical experi-
ments in one space dimension in order to demonstrate the performance of our scheme.
Both the nonlinear and the linear schemes are tried, and these schemes are discretized
in space by the standard finite difference method with a uniform mesh. All exper-
iments were performed on a Laptop equipped with Intel Core(TM) i7-3667U CPU
using a single thread. The C sources are complied by the GCC compiler with option
-O3.

We calculate the discrete relative L2(Q)M error Eβ(z), namely,

Eβ(z) =




∑

0≤j≤NX
1≤n≤NT

∣∣U j,n − β(z(xj , nτ))
∣∣2 /

∑

0≤j≤NX
1≤n≤NT

|β(z(xj , nτ))|2




1/2

.

Here, NX + 1 is the number of mesh points and xj (0 ≤ j ≤ NX) imply the spatial
grid points.

4.1. The porous medium equation. We deal with the following porous me-
dium equation, that describes the isentropic flow through a porous medium.

∂z

∂t
= ∆zm in Ω× (0, T ], (4.1)

where m > 1, Ω = (−L,L) = (−8, 8) and T = 10. With appropriately chosen initial
and boundary data, this problem has the following exact solution, which was derived
by Barenblatt [1]:

z(x, t) =
1

(t+ 1)m+1

[
1− (m− 1)x2

2m(m+ 1)(t+ 1)
2

m+1

] 1
m−1

+

.

Here, [·]+ implies the positive part. For the nonlinear scheme, the following approxi-
mate inverse function with ε = 10−4 is used:

β−1
ε (u) =




u

1
m if u ≥ ε m

m−1 ,

1

ε
u otherwise.

For the linear schemes, we set µ = 1/m in the fixed µ case, and choose µn as follows
in the case where µn are functions:

µn = 1/(10−3 + β′(Zn−1)).

The spatial mesh size is fixed as h = 2L/NX = 2−10 and we inquire into rates
of convergence with respect to the time step size τ . We consider the case where
m = 16. The Barenblatt solution is shown in FIG 4.1(a). FIG 4.1(b) illustrates errors
versus time step size with τ = 2−4, 2−5, . . . , 2−9. The errors in the proposed linear
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Fig. 4.1. (a) The Barenblatt solution of the porous medium equation (4.1) with m = 16 at
t = 0, 2, . . . , 10. (b), (c) Numerical results for the porous medium equation (4.1), where (i) repre-
sents the linear scheme (2.2), (ii) represents the linear scheme (3.1), (iii) represents the nonlinear
scheme (2.1).

scheme (3.1) and in the nonlinear scheme (2.1) are almost the same, and are quite
smaller than those in the linear scheme (2.2) with fixed µ. The errors are along a
straight line having slope 1, which implies that the numerical rate of convergence with
respect to τ is of order 1 for each scheme. This is much better than the theoretical
result (3.3). The proposed linear and the nonlinear schemes are compared in terms of
CPU time. The results are shown in FIG 4.1(c). The proposed linear scheme is about
50 times faster than the nonlinear scheme to achieve the same level of accuracy in
this experiment. These results indicate that the proposed linear scheme is superior in
speed to the nonlinear scheme even though the linear scheme is very easy-to-implement
and it is computationally less costly. These advantages become even more when we
deal with higher dimensional and/or multi-component problems.

4.2. The Shigesada-Kawasaki-Teramoto cross-diffusion system. We deal
with the following cross-diffusion system that was proposed by Shigesada, Kawasaki
and Teramoto [9] to understand temporal and spatial behaviours of two animal species
under the influence of the population pressure due to intra- and interspecific interfer-
ences:





∂z1

∂t
= ∆ [(a10 + a11z1 + a12z2)z1] + (c10 − c11z1 − c12z2)z1 + f1(x, t),

∂z2

∂t
= ∆ [(a20 + a21z1 + a22z2)z2] + (c20 − c21z1 − c22z2)z2 + f2(x, t).

(4.2)

Here, we set a10 = 1, a20 = 1/(3c12), c10 = 1, c11 = 1, c12 = 2.5, c20 = 1,
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c21 = 2 + 5c20/3− c20c12, c22 = 1, and

f1(x, t) =
1

32
sech

(
1

4
(t+
√
2x)

)4
(
− 4a11 + 2a12 + (2a11 − 5a12)tanh

(
1

4
(t+
√
2x)

)

+ cosh

(
1

2
(t+
√
2x)

)(
2a11 − a12 + (2a11 + a12)tanh

(
1

4
(t+
√
2x)

)))
,

f2(x, t) =
1

64
sech

(
1

4
(t+
√
2x)

)4(
−1 + tanh

(
1

4
(t+
√
2x)

))

×
(
− 7a21 + 10a22 + 3(a21 − 2a22)tanh

(
1

4
(t+
√
2x)

)

+ cosh

(
1

2
(t+
√
2x)

)(
5a21 − 4a22 + (3a21 + 4a22)tanh

(
1

4
(t+
√
2x)

)))
.

This problem has the following exact solution:

z1(x, t) =
1

2

(
1 + tanh

(
1

4
(t+
√

2x)

))
,

z2(x, t) =
1

4

(
1− tanh

(
1

4
(t+
√

2x)

))2

.

(4.3)

The functions f1 and f2 are determined so that (z1, z2) defined in (4.3) is a solution
of system (4.2).

We carry out numerical experiments with a11 = 0, a12 = 10, a21 = 10, a22 = 0
in space Ω = (0, 10) and in time interval (−10,−5). The spatial mesh size is fixed as
h = 2−8. The initial and the Dirichlet boundary data are given by the exact solution.
The solution is shown in FIG 4.2(a). Looking at the shapes of matrices arising in the
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Fig. 4.2. (a) The solution of (4.2) at t = −10,−9, . . . ,−5. (b) Numerical results for (4.2),
where (i) and (ii) represent the linear schemes (2.4) and (3.1), respectively.

schemes, which are shown in FIG 2.1, it is easy to imagine that the linear scheme (3.1)
is superior than the nonlinear scheme (2.3) in terms of simplicity of implementation
and computational costs. We treat only the linear schemes (2.4) and (3.1) in the case
where µ is fixed as µ = 0.1 and in the case where µni are functions, respectively. Using
Zn−1, we define µni as follows:

µni (x) = 1/(βi)i(Z
n−1(x)).
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In the fixed µ case, if we choose µi larger than 0.1, then the numerical solutions be-
come unstable. FIG 4.2(b) shows the numerical results with τ = 2−4, 2−5, . . . , 2−9.
Numerical convergence rate with respect to τ is observed to be of order 1, which cor-
responds to the theoretical result. The proposed scheme (3.1) shows higher accuracy
compared to the fixed µ case. The difference (about three times difference) is not so
large in this experiment. This difference becomes considerably large in the problem
of which solution shows the profile with sharp peaks (see Section 5.4 in [8]).

4.3. A degenerate convection-reaction-diffusion equation. We deal with
the following degenerate convection-reaction-diffusion equation in one space dimen-
sion:

∂z

∂t
=

∂

∂x2
β(z)− ∂

∂x
(b1z − b2β(z))− c(z − β(z)), (4.4)

where b1, b2, c ∈ R. The function β is defined as follows.

β(s) := [[s]]
m

:=

{
sm if s ≥ 0,

− (−s)m if s < 0.

This problem has the following exact solution [4].

z(x, t) = k1 exp

(
−ct− b2(x− b1t)

2m

)[[
cos

(
1

2
(x− b1t− k2)

√
4c− b22

)]]1/m

,

where k1 and k2 are arbitrary constants. Since cos(
√
−1x) = coshx, the value in the

bracket on the right hand side can be determined for arbitrary parameters.
The linear scheme (3.1) can be applied to this problem because (4.4) is linear in

z and β(z). Therefore, we have the following linear scheme for (4.4).



µn
Un − β(Zn−1)

τ
=

∂

∂x2
Un − ∂

∂x
(b1Z

n − b2Un)− c(Zn − Un),

Zn = Zn−1 + µn(Un − β(Zn−1)).

Substituting the second equation into the first one, we have




((1 + τc)µn − τc)Un − τ ∂

∂x2
Un + τ

∂

∂x
((b1µ

n − b2)Un)

= (1 + τc)µnβ(Zn−1)− τcZn−1 − τb1
∂

∂x
(Zn−1 − µnβ(Zn−1)),

Zn = Zn−1 + µn(Un − β(Zn−1)).

(4.5)

This scheme, which consists of solving the linear problem in Un and explicit correction
for Zn, is quite simpler than nonlinear schemes.

We carry out numerical simulations for (4.4). We set m = 10, b1 = 2mc/b2,
b2 = c = k2 = 1, k1 = 3π/4, Ω = (0, L) = (0, 10), (0, T ) = (0, 0.05). The exact
solution is presented in FIG 4.3(a). Because of the appearance of the convection
term, we set τ = h/(4L) and used the standard upwind technique. We deal with the
linear schemes with fixed µ and with varying µn(x). These parameters are chosen to
be the same as used in Subsection 4.1. FIG 4.3(b) shows the numerical results with
h = 2−6, 2−7, . . . , 2−10, which demonstrates numerical convergence of both linear
schemes. The numerical rates of convergence with respect to h (and/or τ) is slightly
less than 1. The scheme with varying µ shows higher accuracy than the linear scheme
with fixed µ.
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Fig. 4.3. (a) The solution of (4.4) at t = 0, 0.01, . . . , 0.05. (b) Numerical results for (4.4),
where (i) represents the linear scheme (4.5) with fixed µ, (ii) represents the linear scheme (4.5) with
varying µn(x).

5. Conclusion. The linear scheme with simple implementation has been pro-
posed instead of the widely used nonlinear schemes for the nonlinear diffusion prob-
lem (1.1). The motivation is based on the fact that the proposed linear scheme (3.1),
which is an improvement of the linear scheme (2.4), retains the same accuracy as
obtained from the nonlinear schemes (2.1) and (2.3) with less difficulty of the imple-
mentation. The difficulty is much the same as for the linear heat equation, whereas
the advantages are many. For instance, the type of linear algebraic systems in (3.1)
is the same as in the implicit method for the linear heat equation. Moreover, it is
easy to set the parameters appropriately and the computational costs are low. These
advantages and those mentioned earlier work as well even for multi-dimensional and
multi-component systems. On the other hand, in general, the nonlinear schemes are
complicated to implement and require high computational costs. Taking account of
accuracy, efficiency, stability and computational cost into consideration, we proposed
the linear scheme with simple implementation, of which advantages are proved in
complicated problem such as (4.4).
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CONTINUOUS DEPENDENCE FOR BV-ENTROPY SOLUTIONS
TO STRONGLY DEGENERATE PARABOLIC EQUATIONS

WITH VARIABLE COEFFICIENTS ∗

HIROSHI WATANABE†

Abstract. We consider the Cauchy problem for degenerate parabolic equations with variable
coefficients. The equation has nonlinear convective term and degenerate diffusion term which depends
on the spatial and time variables. In this paper, we prove the continuous dependence for entropy
solutions in the space BV to the problem not only initial function but also all coefficients.

Key words. strongly degenerate parabolic, continuous dependence, BV -entropy solution

AMS subject classifications. 35K65, 35K55, 35L65

1. Introduction. Let 0 < T < ∞ and N ∈ N be constants. We consider the
Cauchy problem for a degenerate parabolic equation of the form
{

∂tu+∇ ·A(x, t, u) +B(x, t, u) = ∆β(x, t, u), (x, t) ∈ RNT := RN × (0, T ),

u(x, 0) = u0(x), u0 ∈ L∞(RN ) ∩BV (RN ).
(P)

Here ∂t := ∂/∂t, ∇ := (∂/∂x1, . . . , ∂/∂xN ) and ∆ :=
∑N
i=1 ∂

2/∂x2i are the spatial
nabla and the laplacian in RN , respectively. A(x, t, ξ) = (A1, ..., AN )(x, t, ξ) is an RN -
valued function on RN × [0, T ]×R and B(x, t, ξ) and β(x, t, ξ) are R-valued functions
on RN × [0, T ]×R. The function β(x, t, ξ) is supposed to be monotone nondecreasing
and locally Lipschitz continuous with respect to ξ for any (x, t) ∈ RNT . Therefore, the
set of points ξ where ∂ξβ(x, t, ξ) = 0 may have a positive measure for any (x, t) ∈ RNT .
In this sense, we say that the equation posed as (P):

∂tu+∇ ·A(x, t, u) +B(x, t, u) = ∆β(x, t, u) (1.1)

is a strongly degenerate parabolic equation. The equation (1.1) can be applied to
several mathematical models; hyperbolic conservation laws, porous medium, Stefan
problem, filtration problem, sedimentation process, traffic flow, and so on. More-
over, (1.1) is regarded as a linear combination of the time dependent conservation
laws (quasilinear hyperbolic equation) and the porous medium equation (nonlinear
degenerate parabolic equation). Thus, (1.1) has both properties of hyperbolic equa-
tions and those of parabolic equations. In particular, up to the assumptions on β,
”parabolicity” of (1.1) and ”hyperbolicity” of it are not necessarily comparable.

Our mathematical treatment of the equation (1.1) is L1-framework. More specif-
ically, we consider (1.1) in the space L1(RN ) and construct solutions to (1.1) in the
space L1(RN ) ∩ L∞(RN ). Here, solutions to (1.1) should be defined in generalized
sense. To ensure the existence and uniqueness of it, it is necessitate to consider dis-
tributional solutions satisfying a special condition. This framework was first treated
by Vol’pert-Hudjaev [9]. In fact, it is well known that the Fréchet-Kolmogorov com-
pactness theorem in the space BV and the Kružkov’s doubling variable method [8]

∗This work was supported by Grant-in-Aid for Scientific Research (C) (No. 17K05294) JSPS
†Division of Mathematical Sciences, Faculty of Science and Technology, Oita University 700 Dan-

noharu, Oita, Japan, 870-1192 (hwatanabe@oita-u.ac.jp).
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are available. Under the above framework, the existence and uniqueness of entropy
solutions to (1.1) are given ([3, 4, 5, 7, 10, 11, 12, 13]). Here, entropy solutions are
weak solutions satisfying an entropy inequality which is derived by Kružkov [8]. In
particular, Watanabe [11] proved the existence and uniqueness of entropy solutions
to (P) in the space BV .

In this paper, we prove the continuous dependence of the BV -entropy solution
to (P) not only initial data but also coefficients A, B and β. Feature of the present
paper is to consider the equation (1.1) with variable coefficients. In particular, the
equation with variable diffusion coefficients is treated in few literatures. For example,
Chen-Karlsen [4] considered the equation with a separation variable type convective
term and a quasi-linear type diffusion term. Notice that, these coefficients do not
depend on time variable. In this article, we consider the time dependent nonlinear
type convection ∇ ·A(x, t, u) and diffusion ∆β(x, t, u). To prove desired estimate, we
modify the choice of entropy triplet and the calculation in [4].

Throughout this paper, we employ the following notations and terminologies. For
1 ≤ p ≤ ∞, the Lebesgue space of real-valued Lebesgue-measurable functions on RN
equipped with the usual norm || · ||p is denoted by Lp(RN ). The space of functions
of bounded variation in RN is denoted by BV (RN ) and the total variation on RN is
denoted by TV (·) (cf. [2, 6, 14]). The space C∞0 (RN )+ is the class of nonnegative
valued C∞0 (RN )-functions. The function sgn(ξ) means the usual signum function.

2. Assumptions and the main result. In this section, we present some as-
sumptions and the main result. Before that, we write the nabla of the function
A(x, t, u) and the laplacian of the function β(x, t, u) as follows:

∇ ·A(x, t, u) = [∇ ·A](x, t, u) + [∂ξA](x, t, u) · ∇u
and

∆β(x, t, u) = ∇ · ([∇β](x, t, u) + [∂ξβ](x, t, u) · ∇u)

= [∆β](x, t, u) + 2[∂ξ∇β](x, t, u) · ∇u+ [∂2ξβ](x, t, u)|∇u|2 + [∂ξβ](x, t, u)∆u

for (x, t) ∈ RNT and some regular function u. These are based on the chain rule
formulas in [1] (see also [2, Theorem 3.99], [14, Theorem 2.1.11]).

Throughout this paper, we impose the following assumptions on the functions
A, B, β and u0. Here, we write ∂xi := ∂/∂xi for i = 1, . . . , N , ∂xN+1

:= ∂t, ∇̂ :=
(∂x1

, ∂x2
, . . . , ∂xN , ∂xN+1

) and U := [−U,U ] for any U > 0. For any U > 0, the
following conditions hold:
{A0} u0(x) ∈ L∞(RN ) ∩BV (RN );

{A1}
{

A ∈ L1(RNT × U)N ∩ L∞(RNT × U)N ∩ L∞(U ;L2(RNT ))N ,

∂ξA ∈ L1(RNT × U)N ∩ L∞(RNT × U)N , ∇ ·A, ∂ξ∇ ·A ∈ L1(RNT × U);

{A2}
{

B ∈ L1(RNT × U) ∩ L∞(RNT × U) ∩ L∞(U ;L1(RNT )),

|∇̂B| ∈ L∞(U ;L1(RNT )), ∂ξB ∈ L∞(RNT × U);

{A3}





β ∈ L1(RNT × U) ∩ L∞(RNT × U),

∇β ∈ L1(RNT × U)N ∩ L∞(U ;L2(RNT ))N , ∂tβ ∈ L∞(U ;L1(RNT )),

∂ξβ ∈ L∞(RNT × U), ∂ξ∇β ∈ L1(RNT × U)N , ∆β, ∂ξ∆β ∈ L1(RNT × U);

{A4} B(x, t, 0) = 0 and ∇β(x, t, 0)−A(x, t, 0) = ~0 for (x, t) ∈ RNT ;
{A5} Let Ψ(x, t, ξ) := ∇·A(x, t, ξ)−∆β(x, t, ξ)+B(x, t, ξ). Then, there exist positive

constants c0, c1 such that

sup
(x,t)∈RNT

|Ψ(x, t, 0)| ≤ c0, sup
(x,t,ξ)∈RNT ×R

(−∂ξΨ(x, t, ξ)) ≤ c1;
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{A6} For i = 1, 2, . . . , N + 1,{
∂ξ∂xi(∇β −A) ∈ L∞(RNT × U)N ,

∇ · (∇β −A), |∇̂(∆β −∇ ·A)| ∈ L∞(U ;L1(RNT ));

{A7} For (x, t, ξ) ∈ RNT ×U and λ = (λ1, . . . , λN+1) ∈ RN+1, there exists a constant
κ > 0 such that

∑N+1
i,j=1(∂ξβ(x, t, ξ)λiλj − κ(∂xi∂ξβ(x, t, ξ)λj)

2) ≥ 0.

The conditions {A1}-{A3} are regularity assumptions for the functions A, B and β
with respect to x, t and ξ. {A4}-{A6} are used to prove L∞, L1 and BV -estimates
for approximate solutions. {A6} is also interpreted the regularity assumptions for the
flux A(x, t, ξ)−∇β(x, t, ξ) to (1.1). The condition {A7} fulfills to get a BV -estimate
with respect to x and t for approximate solutions to (P).

Remark 1. By the assumption {A7}, it is deduced that

∂ξβ(x, t, ξ) ≥ 0 for (x, t, ξ) ∈ RNT × U . (2.1)

More specifically, β(x, t, ξ) degenerate on nondegenerate intervals with respect to ξ.
In particular, if β(x, t, ξ) ≡ β(ξ), then {A7} is equivalent to (2.1).

We also impose an additional regularity assumption to prove the uniqueness of
BV -entropy solution: for any i, j = 1, . . . , N ,

{A8}
{

∂ξ∂xiA
j , ∂ξ∂xi∂xjβ ∈ L∞(RNT × U),

√
∂ξβ, ∂xi

√
∂ξβ ∈ L1(RNT × U),

∂xi∂ξβ, ∂xi
√
∂ξβ, ∂xi∂xj

√
∂ξβ ∈ L∞(RNT × U).

Next, we introduce generalized solutions to (P). Usually, the weak solution is in-
terpreted as a generalized solution to equations with divergence form. Then, the
existence and uniqueness of it may be shown. However, we can not prove the unique-
ness of weak solutions to (P) in general. Because, discontinuities break out from
the nonlinear convective term ∇ · A(x, t, u) and the uniqueness of weak solutions are
possibly broken because of it. Therefore, we formulate the weak solution satisfying a
special condition. It is called by the name entropy solution. To define it, we state the
concept of entropy:

Definition 2.1. Let η(ξ) ∈ C2(R) and q(x, t, ξ), r(x, t, ξ) ∈ L1(RNT × R)N ∩
L∞(RNT ×R)N satisfying q(x, t, ·), r(x, t, ·) ∈ C2(R)N for (x, t) ∈ RNT . A triplet (η, q, r)
is entropy triplet to (P) if it satisfies

∂ξq(x, t, ξ) = η′(ξ)∂ξA(x, t, ξ), ∂ξr(x, t, ξ) = η′(ξ)∂ξ∇β(x, t, ξ)

for a.e. (x, t, ξ) ∈ RNT ×R. Then, η is called entropy and (q, r) is called entropy flux.
Definition 2.2. Let u0 ∈ L∞(RN ) ∩ BV (RN ). A function u ∈ L∞(RNT ) ∩

BV (RNT ) is called an BV -entropy solution to (P), if it satisfies the two conditions
below:
(I) u ∈ C([0, T ];L1(RN )) and L1-limt↓0 u(t) = u0;
(II) β(x, t, u) ∈ L2(0, T ;H1(RN )), and for all ϕ ∈ C∞0 (RNT )+,

∫

RNT
{η(u)∂tϕ+ (q(x, t, u)− r(x, t, u)) · ∇ϕ+ ([∇ · q](x, t, u)− [∇ · r](x, t, u))ϕ

−η′(u)(∇β(x, t, u)− [∇β](x, t, u)) · ∇ϕ
−η′(u)([∇ ·A](x, t, u)− [∆β](x, t, u) +B(x, t, u))ϕ}dxdt

≥
∫

RNT
η′′(u)|

√
∂ξβ(x, t, u)Du|2ϕdxdt.
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The existence and uniqueness of the BV -entropy solution to (P) is given by
Watanabe [11] as follows:

Theorem 2.3 (Watanabe [11]). We assume the conditions {A0}-{A7}. Then,
the following statements hold:

(I) There exists a BV -entropy solution u to (P ). Moreover, if we take U > 0
satisfying (||u0||L∞(RN ) + c0T )ec1T < U for the positive constants c0 and c1
in {A5}, then it follows that u(x, t) ∈ U for (x, t) ∈ RNT . Additionally, there
exist positive constants C0 and C1 which depend on T such that TV (u(·, t)) ≤
eC0t(TV (u0) + C1) for t ∈ (0, T );

(II) We additionally impose the assumption {A8}. Let u, v be a pair of BV -
entropy solutions to (P ) with initial values u0 and v0, respectively. Then,
there exist a positive constant C2 which depend on T such that

∫

RN
|u(x, t)− v(x, t)|dx ≤ e(α+C2)t

∫

RN
|u0(x)− v0(x)|dx,

where α := ||∂ξB||L∞(RNT ×U) for t ∈ (0, T ). In particular, for each initial
value u0, a BV -entropy solution is uniquely determined.

In the above result, we give the assumptions {A0}-{A7} to prove the existence
of BV -entropy solutions. In this paper, we prove the continuous dependence of the
BV -entropy solution to the function u0, A, B and β under the additional assumption:
for any i, j = 1, . . . , N ,

{A8}’
{ √

∂ξβ, ∂xi
√
∂ξβ ∈ L1(RNT × U), ∂xi∂ξβ, ∂xi

√
∂ξβ ∈ L∞(RNT × U),

∂xiB, ∇ ·A, ∂xj∂xiAi, ∆β, ∂ξ∂xi∂xjβ, ∂xj∂2xiβ ∈ L∞(L1),

where L∞(L1) := L∞((0, T ) × U ;L1(RN )). Notice that, since we consider nonlinear
type coefficients, we need stronger regularity assumption than separation variable and
quasilinear diffusion case [4].

Theorem 2.4. Let ui be the BV -entropy solution to (P) with initial functions
ui,0 and coefficients Ai, Bi, βi satisfying the assumptions {A0}-{A7} and {A8}′ for
i = 1, 2, respectively. For any t ∈ (0, T ), the following inequality holds:

||u1(x, t)− u2(x, t)||L1(RN ) ≤ eα
′t||u1,0 − u2,0||L1(RN ) + eα

′t−1
α′ {||B1 −B2||L∞(L1)

+||[∇x ·A1]− [∇x ·A2]||L∞(L1) + ||[∆xβ1]− [∆xβ2]||L∞(L1)

+eC0t(TV (u0) + C1)(||[∂ξ∇xβ1]− [∂ξ∇xβ2]||(L∞)N + ||[∂ξA1]− [∂ξA2]||(L∞)N

+2
∣∣∣
∣∣∣∇x

√
[∂ξβ2]

∣∣∣
∣∣∣
(L∞)N

∣∣∣
∣∣∣
√

[∂ξβ1]−
√

[∂ξβ2]
∣∣∣
∣∣∣
L∞

)}

+Ĉ
√
teα

′t
∣∣∣
∣∣∣
√

[∂ξβ1]−
√

[∂ξβ2]
∣∣∣
∣∣∣
L∞

for some positive constants Ĉ and α′ := maxi=1,2{||∂ξBi||L∞}. Here, TV (u0) :=
maxi=1,2{TV (ui,0)}, L∞ := L∞(RN×(0, T )×U), L∞(L1) := L∞((0, T )×U ;L1(RN ))
and C0, C1 are positive constants in Theorem 2.3 (I).

3. Proof of Main Theorem. Step 0. Let ϕ ∈ C∞0 (RNT )+. In addition, we
introduce a symmetric function θ ∈ C∞0 (R)+ satisfying

∫
R θ(t)dt = 1 and supp[θ(t)] ⊂

{|t| ≤ 1}. Similarly, we use a spherically symmetric function ω ∈ C∞0 (RN )+ satisfying∫
RN ω(x)dx = 1 and supp[ω(x)] ⊂ {|x| ≤ 1}. Let δ0, δ > 0 and define θδ0(t) =

(1/δ0)θ(t/δ0) and ωδ(x) = (1/δN )ω(x/δ). These are smooth functions on R and RN ,
respectively, and satisfy

lim
δ0↓0

∫ T

0

θδ0(t)ϕ(x, t)dt = ϕ(x, 0), lim
δ↓0

∫

RN
ωδ(x)ϕ(x, t)dx = ϕ(0, t)
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for (x, t) ∈ RNT . Moreover, let ν, τ ∈ (0, T ) with ν < τ . For any α0 > 0, we define

ϕα0
(t) := Hα0

(t− ν)−Hα0
(t− τ), Hα0

(t) :=

∫ t

−∞
θα0

(σ)dσ.

Then, we now employ the test function φδ0,α0

δ defined by

φδ0,α0

δ (x, y, t, s) := ϕα0(t)ωδ(x− y)θδ0(t− s) (3.1)

for 0 < α0 < min(ν, T − τ) and (x, t, y, s) ∈ (RNT )2. Then, the following property
holds

lim
δ↓0

∫

(RN )2
|x− y|

∣∣ωδ
(
x−y
2

)∣∣ dxdy = 0

and there exists a constant C > 0 such that

lim
δ↓0

∫

RNT ×RN
|x− y|

∣∣∂xiωδ
(
x−y
2

)∣∣ϕ
(
x+y
2 , t

)
dxdydt ≤ C

∫

RNT
ϕ(x, t)dxdt,

lim
δ↓0

∫

RNT ×RN
|x− y|2

∣∣∂xi∂xjωδ
(
x−y
2

)∣∣ϕ
(
x+y
2 , t

)
dxdydt ≤ C

∫

RNT
ϕ(x, t)dxdt

for 1 ≤ i, j ≤ N . Moreover, it follows that

(∂t + ∂s)φ
δ0,α0

δ = (θα0
(t− ν)− θα0

(t− τ))θδ0(t− s)ωδ(x− y), (∇x +∇y)φδ0,α0

δ = 0.

In this section, the proof of Theorem 2.4 is presented. Hereafter, we give the entropy
triplet in the following concrete form:

η(u) = ηρ(u) :=

∫ u

k

sgnρ(ξ − k)dξ,

q(x, t, u) = qρ(x, t, u) :=

∫ u

k

sgnρ(ξ − k)[∂ξA](x, t, ξ)dξ,

r(x, t, u) = rρ(x, t, u) :=

∫ u

k

sgnρ(ξ − k)[∂ξ∇β](x, t, ξ)dξ

(3.2)

for k ∈ R. Here, we use the approximated signum function sgnρ(ξ) for ρ > 0 by

sgnρ(ξ) = sgn(ξ) for |ξ| ≥ ρ and sgnρ(ξ) = sin
(
π
2ρξ
)

for |ξ| < ρ. Then, it can be seen

that

ηρ(u)→ |u− k|, qρ(x, t, u)→ sgn(u− k)(A(x, t, u)−A(x, t, k)),

rρ(x, t, u)→ sgn(u− k)([∇β](x, t, u)− [∇β](x, t, k))
(3.3)

as ρ→ 0. Moreover, we set

[∇ · qρ](x, t, u) :=

∫ u

k

sgnρ(ξ − k)[∂ξ∇ ·A](x, t, ξ)dξ,

[∇ · rρ](x, t, u) :=

∫ u

k

sgnρ(ξ − k)[∂ξ∆β](x, t, ξ)dξ.

(3.4)

Then, it can be also seen that

[∇ · qρ](x, t, u)→ sgn(u− k)([∇ ·A](x, t, u)− [∇ ·A](x, t, k)),

[∇ · rρ](x, t, u)→ sgn(u− k)([∆β](x, t, u)− [∆β](x, t, k))
(3.5)
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as ρ → 0. Then, the entropy inequality in the definition of BV -entropy solutions
implies that
∫

RNT
{ηρ(u)∂tϕ+ (qρ(x, t, u)− rρ(x, t, u)) · ∇ϕ+ ([∇ · qρ](x, t, u)− [∇ · rρ](x, t, u))ϕ

− sgnρ(u− k)(∇β(x, t, u)− [∇β](x, t, u)) · ∇ϕ
− sgnρ(u− k)([∇ ·A](x, t, u)− [∆β](x, t, u) +B(x, t, u))ϕ}dxdt

≥
∫

RNT
sgn′ρ(u− k)|

√
[∂ξβ](x, t, u)Du|2ϕdxdt.

Step 1. Let ui be the BV -entropy solution to (P) with ui,0, Ai, Bi, βi satisfying

{A0}-{A7} and {A8}′. We put k = u2(y, s) and ϕ = φδ0,α0

δ (x, y, t, s) (see (3.1)) in the
definition of BV -entropy solution u1. Integrating the inequality on RNT with respect
to (y, s), then it follows that

∫

(RNT )2
{ηρ(u1)∂tφ

δ0,α0

δ + (qρ,1(x, t, u1)− rρ,1(x, t, u1)) · ∇xφδ0,α0

δ

+([∇x · qρ,1](x, t, u1)− [∇x · rρ,1](x, t, u1))φδ0,α0

δ

− sgnρ(u1(x, t)− u2(y, s))((∇xβ1(x, t, u1)− [∇xβ1](x, t, u1)) · ∇xφδ0,α0

δ

−([∇x ·A1](x, t, u1)− [∆xβ1](x, t, u1) +B1(x, t, u1))φδ0,α0

δ )}dxdy

≥
∫

(RNT )2
sgn′ρ(u1(x, t)− u2(y, s))|

√
[∂ξβ1](x, t, u1)Dxu1|2φδ0,α0

δ dxdy.

(3.6)

Here, we write that dx = dxdt and dy = dyds. Moreover, qρ,1, [∇x · qρ,1], rρ,1 and
[∇x · rρ,1] are defined in (3.2) and (3.4) using A1 and β1, respectively. Similarly, we
define the inequality (3.6)′ using the definition of another BV -entropy solution u2.
Moreover, we then set (EI) := (3.6) + (3.6)′ in what follows. The desired result is
obtained by combining the estimates for (EI). In fact, using the same way in [11,
Section 4] (see also [4, Section 4]), (EI) implies that

∫

(RNT )2
sgn(u1 − u2){(u1 − u2)(∂t + ∂s)φ

δ0,α0

δ + (B1(x, t, u1)−B2(y, s, u2))φδ0,α0

δ

+((A1(x, t, u1)−A1(x, t, u2)) + (A2(y, s, u2)−A2(y, s, u1))) · ∇xφδ0,α0

δ

−([∇x ·A1](x, t, u2)− [∇y ·A2](y, s, u1))φδ0,α0

δ

−([∇xβ1](x, t, u1)− [∇xβ1](x, t, u2)) · (∇xωδ)ϕα0
θδ0

+([∇yβ2](y, s, u1)− [∇yβ2](y, s, u2)) · (∇xωδ)ϕα0
θδ0

−([∆yβ2](y, s, u1)− [∆xβ1](x, t, u2))φδ0,α0

δ }dxdy

≥
∫

(RNT )2

(∫ u1

u2

sgn(ξ − u2)ε(x, t, y, s, ξ)dξ

)
ϕα0

θδ0(∇x · ∇yωδ)dxdy

+

∫

(RNT )2

(∫ u1

u2

sgn(ξ − u2)∇yε(x, t, y, s, ξ)dξ
)
· (∇xωδ)ϕα0θδ0dxdy

+

∫

(RNT ))2

(∫ u1

u2

sgn(ξ − u2)∇xε(x, t, y, s, ξ)dξ
)
· (∇yωδ)ϕα0

θδ0dxdy

+

∫

(RNT )2

(∫ u1

u2

sgn(ξ − u2)∇x · ∇yε(x, t, y, s, ξ)dξ
)
ϕα0

θδ0ωδdxdy

(3.7)



CONTINUOUS DEPENDENCE 321

by (3.2)-(3.5) and the properties of φδ0,α0

δ . Here, we set:

ε(x, t, y, s, ξ) := [∂ξβ1](x, t, ξ)− 2
√

[∂ξβ1](x, t, ξ)
√

[∂ξβ2](y, s, ξ) + [∂ξβ2](y, s, ξ).

To derive (3.7), we make the following terms:

{−(∇xβ1(x, t, u1)− [∇xβ1](x, t, u1))

+(∇yβ2(y, s, u2)− [∇yβ2](y, s, u2))} · (∇x +∇y)φδ0,α0

δ

+(∇xβ1(x, t, u1)− [∇xβ1](x, t, u1)) · ∇yφδ0,α0

δ

−(∇yβ2(y, s, u2)− [∇yβ2](y, s, u2)) · ∇xφδ0,α0

δ .

(3.8)

After that, we move the last two terms in (3.8) to the right-hand side in (EI) and use
the notation ε(x, t, y, s, ξ). Detailed calculation is referred to [4, 11].

Step 2. We investigate the diffusion terms in (3.7). First, the right-hand side of
(3.7) is equal to

−
∫

(RNT )2
sgn(u1 − u2)ε(x, t, y, s, u1)ϕα0

(t)θδ0(t− s)∇yωρ ·Du1dtdy

−
∫

(RNT )2
sgn(u1 − u2)ϕα0

(t)θδ0(t− s)ωρ∇yε(x, t, y, s, u1) ·Du1dtdy =: Rδ0,α0

δ ,

using the Gauss divergence theorem. Therefore, it is deduced that

lim
α0→0

lim
δ0→0

Rδ0,α0

δ ≥ −
∫ τ

ν

∫

(RN )2
|ε(x, t, y, s, u1)||∇yωδ(x− y)||Du1|dydt

−
∫ τ

ν

∫

(RN )2
|ωδ(x− y)||∇yε(x, t, y, s, u1)||Du1|dydt =: R1

δ +R2
δ .

By
∫
RN |∇yωδ(x− y)|dy ≤ C

δ for some constant C > 0 independent of δ, we have

R1
δ ≥ −2

∫ τ

ν

∫

(RN )2
{
(√

[∂ξβ1](x, t, u1)−
√

[∂ξβ2](x, t, u1)
)2

+
(√

[∂ξβ2](x, t, u1)−
√

[∂ξβ2](y, t, u1)
)2
}|∇yωδ(x− y)||Du1|dydt

≥ −2{C(τ−ν)
δ sup

t∈(ν,τ)
TV (u1(·, t))

∣∣∣
∣∣∣
√

[∂ξβ1]−
√

[∂ξβ2]
∣∣∣
∣∣∣
2

L∞(RN,U
(ν,τ)

)

+Cδ(τ − ν) sup
t∈(ν,τ)

TV (u1(·, t))∑N
i=1

∣∣∣
∣∣∣∂xi

√
[∂ξβ2]

∣∣∣
∣∣∣
2

L∞(RN,U
(ν,τ)

)
}.

Here, we set RN,U(ν,τ) ≡ RN × (ν, τ)× U . In addition, it follows that

R2
δ ≥ −2

∫ τ

ν

∫

(RN )2

∣∣∣∇y
√

[∂ξβ2](y, s, u1)
∣∣∣

×
∣∣∣
√

[∂ξβ1](x, t, u1)−
√

[∂ξβ2](y, t, u1)
∣∣∣ |ωδ(x− y)||Du1|dydt

≥ −2(τ − ν) sup
t∈(ν,τ)

TV (u1(·, t))
∣∣∣
∣∣∣∇y

√
[∂ξβ2]

∣∣∣
∣∣∣
L∞(RN,U

(ν,τ)
)N

×(
∣∣∣
∣∣∣
√

[∂ξβ1]−
√

[∂ξβ2]
∣∣∣
∣∣∣
L∞(RN,U

(ν,τ)
)

+ δ
∑N
i=1

∣∣∣
∣∣∣∂xi

√
[∂ξβ2]

∣∣∣
∣∣∣
L∞(RN,U

(ν,τ)
)
).
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On the other hand, the diffusion terms of the right-hand side in (3.7) are calculated
as follows:
∫

(RNT )2
sgn(u1 − u2)({−([∇xβ1](x, t, u1)− [∇xβ1](x, t, u2))

+([∇yβ2](y, s, u1)− [∇yβ2](y, s, u2))} · ∇xωδ(x− y)ϕα0
(t)θδ0(t− s)

−([∆yβ2](y, s, u1)− [∆xβ1](x, t, u2))φδ0,α0

δ )dxdy

=

∫

(RNT )2
sgn(u1 − u2)φδ0,α0

δ ([∂ξ∇xβ1](x, t, u1)− [∂ξ∇yβ2](y, s, u1)) ·Du1dtdy

−
∫

(RNT )2
sgn(u1 − u2){([∆yβ2](y, s, u1)− [∆yβ1](y, s, u1))

+([∆yβ1](y, s, u1)− [∆xβ1](x, t, u1))}φδ0,α0

δ dxdy =: Lδ0,α0

δ,β .

Then, we can see that

lim
α0→0

lim
δ0→0

Lδ0,α0

δ,β ≤ (τ − ν)||[∆yβ2]− [∆yβ1]||L∞((ν,τ)×U ;L1(RN ))

+δ(τ − ν)
∑N
i,j=1 ||[∂xj∂2xiβ1]||L∞((ν,τ)×U ;L1(RN ))

+(τ − ν) sup
t∈(ν,τ)

TV (u1(·, t))||[∂ξ∇xβ1]− [∂ξ∇xβ2]||L∞(RN,U
(ν,τ)

)N

+δ(τ − ν) sup
t∈(ν,τ)

TV (u1(·, t))∑N
i,j=1 ||[∂xi∂ξ∂xjβ2]||L∞(RN,U

(ν,τ)
).

Step 3. We investigate the convection terms in (3.7) as follows:

∫

(RNT )2
sgn(u1 − u2){((A1(x, t, u1)−A1(x, t, u2))

+(A2(y, s, u2)−A2(y, s, u1))) · ∇xφδ0,α0

δ

−([∇x ·A1](x, t, u2)− [∇yA2](y, s, u1))φδ0,α0

δ }dxdy

= −
∫

(RNT )2
sgn(u1 − u2)([∂ξA1](x, t, u1)− [∂ξA2](y, s, u1))φδ0,α0

δ Du1dtdy

+

∫

(RNT )2
sgn(u1 − u2){([∇y ·A2](y, s, u1)− [∇y ·A1](y, s, u1))

+([∇y ·A1](y, s, u1)− [∇x ·A1](x, t, u1))}φδ0,α0

δ dxdy =: Lδ0,α0

δ,A .

Hence, we deduce that

lim
α0→0

lim
δ0→0

Lδ0,α0

δ,A ≤ (τ − ν) sup
t∈(ν,τ)

TV (u1(·, t))||[∂ξA1]− [∂ξA2]||L∞(RN,U
(ν,τ)

)N

+(τ − ν)||[∇y ·A2]− [∇y ·A1]||L∞((ν,τ)×U ;L1(RN ))

+δ(τ − ν)
∑N
i,j=1 ||∂xj∂xiAi1||L∞((ν,τ)×U ;L1(RN )).

On the other hand, it can be seen that
∫

(RNT )2
|u1 − u2|(∂t + ∂s)φ

δ0,α0

δ dxdy

=

∫

(RNT )2
(|u1(x, t)− u1(y, t)|+ |u1(y, t)− u2(y, t)|+ |u2(y, t)− u2(y, s)|)

×(θα0
(t− ν)− θα0

(t− τ))θδ0(t− s)ωδ(x− y)dxdy =: Lδ0,α0

δ .
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Then, it is deduced that

lim
α0→0

lim
δ0→0

Lδ0,α0

δ

=

∫

(RN )2
(|u1(x, ν)− u1(y, ν)| − |u1(x, τ)− u1(y, τ)|)ωδ(x− y)dxdy

+

∫

(RN )2
(|u1(y, ν)− u2(y, ν)| − |u1(y, τ)− u2(y, τ)|)ωδ(x− y)dxdy

≤ 2δ sup
t∈(ν,τ)

TV (u1(·, t)) + ||u1(y, ν)− u2(y, ν)||L1(RN )

−||u1(y, τ)− u2(y, τ)||L1(RN ).

Finally, we obtain

lim
α0→0

lim
δ0→0

∫

(RNT )2
sgn(u1 − u2)(B1(x, t, u1)−B2(y, s, u2))φδ0,α0

δ dxdy

≤ (τ − ν)||B1 −B2||L∞((ν,τ)×U ;L1(RN )) + δ(τ − ν)
∑N
i=1 ||∂xiB2||L∞((ν,τ)×U ;L1(RN ))

+||∂ξB2||L∞(RN,U
(ν,τ)

)

∫ τ

ν

∫

RN
|u1 − u2|dx.

Step 4. According to the above estimates and Theorem 2.3 (I), we see that

||u1(y, τ)− u2(y, τ)||L1(RN ) ≤ ||u1(y, ν)− u2(y, ν)||L1(RN ) + (αν,τ1 + αν,τ2 δ)(τ − ν)

+||∂ξB2||L∞(RN,U
(ν,τ)

)

∫ τ

ν

∫

RN
|u1 − u2|dx + 2δeC0τ (TV (u1,0) + C1)

+C(τ−ν)
δ eC0τ (TV (u1,0) + C1)

∣∣∣∣
∣∣∣∣
√

[∂ξβ1]−
√

[∂ξβ2]

∣∣∣∣
∣∣∣∣
2

L∞(RN,U
(ν,τ)

)

,

where αν,τ1 and αν,τ2 are constants depending ν and τ which are defined as follows

αν,τ1 := ||B1 −B2||L∞((ν,τ)×U ;L1(RN )) + ||[∇y ·A1]− [∇y ·A2]||L∞((ν,τ)×U ;L1(RN ))

+||[∆yβ1]− [∆yβ2]||L∞((ν,τ)×U ;L1(RN )) + eC0τ (TV (u1,0) + C1)

×{||[∂ξ∇xβ1]− [∂ξ∇xβ2]||L∞(RN,U
(ν,τ)

)N + ||[∂ξA1]− [∂ξA2]||L∞(RN,U
(ν,τ)

)N

+2
∣∣∣
∣∣∣∇y

√
[∂ξβ2]

∣∣∣
∣∣∣
L∞(RN,U

(ν,τ)
)N

∣∣∣
∣∣∣
√

[∂ξβ1]−
√

[∂ξβ2]
∣∣∣
∣∣∣
L∞(RN,U

(ν,τ)
)
}

and

αν,τ2 :=
∑N
i=1 ||∂xiB2||L∞((ν,τ)×U ;L1(RN )) +

∑N
i,j=1 ||∂xj∂xiAi1||L∞((ν,τ)×U ;L1(RN ))

+
∑N
i,j=1 ||∂xj∂2xiβ1||L∞((ν,τ)×U ;L1(RN )) + eC0τ (TV (u1,0) + C1)

×{∑N
i,j=1 ||[∂xi∂ξ∂xjβ2]||L∞(RN,U

(ν,τ)
) +

∑N
i=1

∣∣∣
∣∣∣∂xi

√
[∂ξβ2]

∣∣∣
∣∣∣
L∞(RN,U

(ν,τ)
)

×(2
∣∣∣
∣∣∣∇y

√
[∂ξβ2]

∣∣∣
∣∣∣
L∞(RN,U

(ν,τ)
)N

+ C
∑N
i=1

∣∣∣
∣∣∣∂xi

√
[∂ξβ2]

∣∣∣
∣∣∣
L∞(RN,U

(ν,τ)
)
)}.
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Here, we set δ =
√
τ − ν

∣∣∣
∣∣∣
√

[∂ξβ1]−
√

[∂ξβ2]
∣∣∣
∣∣∣
L∞(RN,U

(ν,τ)
)
. Then, we obtain

||u1(y, τ)− u2(y, τ)||L1(RN ) ≤ ||u1(y, ν)− u2(y, ν)||L1(RN )

+||∂ξB2||L∞(RN,U
(ν,τ)

)

∫ τ

ν

∫

RN
|u1 − u2|dxdt+ αν,τ1 (τ − ν) +

√
τ − ν

×(αν,τ2 (τ − ν) + (C + 2)eC0τ (TV (u1,0) + C1))
∣∣∣
∣∣∣
√

[∂ξβ1]−
√

[∂ξβ2]
∣∣∣
∣∣∣
L∞(RN,U

(ν,τ)
)
.

Consequently, we conclude that

||u1(y, t)− u2(y, t)||L1(RN ) ≤ eα
′t||u1(y, 0)− u2(y, 0)||L1(RN ) + (eα

′t−1)
α′ α0,T

1

+Ĉ
√
teα

′t
∣∣∣
∣∣∣
√

[∂ξβ1]−
√

[∂ξβ2]
∣∣∣
∣∣∣
L∞(RN,U

(0,T )
)
,

where α′ := max
i=1,2
{||∂ξBi||L∞(RN,U

(0,T )
)} and Ĉ := α0,T

2 T + (C + 2)eC0T (TV (u1,0) + C1).
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Abstract. In this paper, we consider the blow-up solutions for a quasilinear parabolic partial
differential equation ut = u2(uxx+u). We numerically investigate the blow-up rates of these solutions
by using a numerical method which is recently proposed by the authors [3].

Key words. blow-up rate, type II blow-up, numerical estimate, scale invariance, rescaling
algorithm, curvature flow

AMS subject classifications. 35B44, 35K59, 65M99

1. Introduction. In this paper we consider the following quasilinear parabolic
partial differential equation:

ut = u2(uxx + u), x ∈ (−a, a) ⊂ R, t > 0. (1.1)

This equation describes the motion of curves by their curvature ([2, 5, 6]). For this
equation it was shown that there exist finite time blow-up solutions of so-called Type
II under the following initial and boundary conditions

{
u(t,±a) = 0, t > 0,
u(0, x) = u0(x), x ∈ [−a, a]

(1.2)

where a > π/2 ([1, 8]). Here, we call Type I the blow-up solutions with the blow-up
rate (T − t)−1/2 which is determined by the spatially uniform blow-up solution of the
equation (1.1). The non Type I blow-up solutions are called Type II. In [2] Anada &
Ishiwata proved that there exists a solution which blows up in a finite time T with
the blow-up rate

(
1

(T − t) log log
1

(T − t)

) 1
2

. (1.3)

In [2], they posed several assumptions on the initial function u0:

(K1) u0(x) > 0, x ∈ (−a, a),
(K2) there exists A > 0 such that (u0(x))2 + (u0x(x))2 < A2, x ∈ (−a, a),
(K3) u0(−x) = u0(x),
(K4) (u0x)(x) < 0, x ∈ (0, a),
(K5) Z

(
d
dx [u0(u0x + u0)] , (−a, a)

)
≤ 3.
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Here, Z(f(x), I) is the zero number of f on the interval I ⊂ R, namely, the number
of zeros of f in the interval I and u0x = d

dxu0. To our best knowledge, it is known
nothing about the blow-up rates of the Type II blow-up solutions whose initial data
do not satisfy the assumptions (K1)–(K5).

There are many evolution equations which has the scaling invariance:
(*) there exist α, β such that if u(t, ·) solves the equation then for
any λ > 0, uλ(t, ·) = λαu(λβt, ·) solves the same equation.

The equation (1.1) satisfies the scaling invariance (*) in the case of β = 2α. Recently,
we proposed a numerical method to estimate the blow-up rates of the blow-up solu-
tions for evolution equations which possess this scaling invariance ([3]). In this paper,
we numerically investigate the blow-up rates of the solutions of the problem (1.1) and
(1.2). For this purpose, we adopt our numerical method to this problem.

The organization of the paper is as follows: in section 2, we explain our numerical
method, in section 3 we exhibit several numerical examples, in the last section we will
give a conclusion at this moment and several remarks.

2. Algorithm using the scaling invariance. We consider the problems which
satisfy the following conditions:

• The solution u blows up in a finite time, say T , namely, there exists T < ∞
such that lim

t→T
‖u(t)‖ =∞.

• The equation has a scaling invariance (*)
Here and hereafter, we use the notation u(t) considering the solution u of the problem
as a function from time interval to a normed space X with a norm ‖ · ‖. For example,
the equation

du

dt
= up (2.1)

with a positive initial data satisfies the assumptions above. In fact, the equation
possesses blow-up solutions and for a solution u(t) of this equation and for any λ > 0
if we set

uλ(t) = λαu(λβt), α =
β

p− 1

then uλ is also a solution of (2.1). For this problem X = (R, | · |). As we already
noted, our problem (1.1) also satisfies the assumptions above. For (1.1) we choose
X = L∞(−a, a).

2.1. Rescaling algorithm. We explain our proposed method. First, we fix
constants M > 0 and λ (0 < λ < 1). Second, by using the scaling invariance (*) we
repeat to rescale the solution and construct {tm} and {τm} as follows:

t0 = 0, tm = min{ t | (λ)−α(m−1)M = ‖u(t)‖} (m = 1, 2, 3, . . . ),

λβ(m−1)τm = (tm − tm−1). (2.2)

Then we have

T =

∞∑

k=1

(λβ)k−1τk, (T − tm) = λβ(m−1)
∞∑

l=1

λβlτl+m,
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(T − tm)
α
β ‖u(tm)‖ =

( ∞∑

l=1

λβlτl+m

)α
β

M =: (f(m))
α
βM, (2.3)

(T − tm) = λβ(m−1)f(m). (2.4)

Using these equations we can prove a relation between the sequence {τm} and the
blow-up rate of the solution (Theorem 2.1). Third, using appropriate numerical ap-
proximation for the problem, we numerically construct the sequence {τm} for finite
ms and observe the behavior of it with respect to m. Such kind of numerical method
is called rescaling algorithm which is originally proposed by Berger & Kohn [7] for the
blow-up problem of Fujita type. At last, supposing the behavior of {τm} as m→∞
is same as the observed one we estimate the blow-up rate from the Theorem 2.1.

In [3], we examined the effectiveness of our method by applying our method to
several examples where the blow-up rates of the solutions are theoretically known.
For all of these examples, we could estimate the blow-up rates correctly, especially,
we could estimate not only the blow-up rates of simple power type (Type I) but also
the blow-up rates of complex forms with log or log log (Type II).

2.2. Relation between τm and the blow-up rate. We proved in [3] the
following relation between the sequence {τm} and the blow-up rate:

Theorem 2.1.
1. if τm = O(1) then the blow-up rate is O((T − tm)−

α
β ),

2. if τm = Cmk + o(mk) for some integer k then the blow-up rate is O((T −
tm)−

α
β (log(T − tm)−1)k

α
β ),

3. if τm = C logm+o(logm) then the blow-up rate is O((T − tm)−
α
β (log log(T −

tm)−1)
α
β ),

4. if τm = O(ekm) then the blow-up rate is O((T−tm)r(λ)), r(λ) =
α log 1

λ

k − β log 1
λ

.

Remark 2.1. Although it is not complete classification for the behavior of {τm},
it is still useful. We note that this relation holds for the exact solution of the problem
and the numerically constructed {τm} inevitably contains errors. We need to observe
the behavior of {τm} for finite m.

3. Numerical experiments. Now we exhibit several results of numerical ex-
periments where the initial condition does not satisfy at least one of (K1)–(K5). Here
we note that we use the standard finite difference scheme for numerical solutions of
(1.1) and we set the numerical parameters as λ = 0.5 and M = 2 for all examples
below.

In the figures 3.1 and 3.2 we plot the results which breaks the condition (K4) and
(K5). In these figures, the horizontal axis is the number of rescaling times m and the
vertical axis is exp(τm)/mα for several α. In the figure 3.1, we plot the case where
a = π and u0(x) = 0.5(cos(x/2) + sin2 x) with α = 1.1, 1.4, 1.5, 1.6. Here, we note
that we do not need to determine the precise value of α for evaluating the behavior
of τm. Indeed if we know that

exp(τm)

mα
∼ 1

then we have

τm ∼ logmα = α logm ∼ logm.
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Fig. 3.1. (a) exp(τm)/mα(α = 1.1, 1.4, 1.5, 1.6), (b) zoomed version of (a) for α = 1.4, 1.5, 1.6.

Here A ∼ B means c1A ≤ B ≤ c2A for some c1, c2 > 0. Hence we can apply the
third part of the Theorem 2.1 and we can conclude the blow-up rate is of log log type.
From the figure, we can see that in the case where α = 1.1, exp(τm)/mα increases
and from the figure 3.2 (b) we can suppose that exp(τm)/mα is bounded from both
bellow and above for some value of α between 1.4 and 1.6, namely we can suppose
τm = O(logm).

In the figures 3.2(a) and (b), we plot the case where a = π, u0(x) = 0.5(cos(x/2)+

sin2 2x), a = π, u0(x) = 0.5(cos(x/2) + sin2 4x) and a = 2π, u0(x) = sin
(
π
(
x
2π

)8)
+

0.01 cos(x/4). The initial data (a) and (b) have much undulation than the previous
one and initial data (c) has a peak near the boundary. From these figures, we can
also observe that τm = O(logm).

Thus, the blow-up rate of all these numerical solutions are estimated as (1.3).

4. Conclusion and remarks. In this paper we numerically estimate the blow-
up rate of type II solutions for the problem (1.1) and (1.2) as (1.3). Thus we conclude
that the estimate (1.3) may be valid for wider class of initial data. On the other
hand it is still open whether the other blow-up rates of type II blow-up solutions exist
or not. Moreover, there are no information on the blow-up rate of type II blow-up
solutions to ut = uδ(uxx + u) for the case δ > 2 and the higher dimensional problem:
ut = uδ(∆u+ u) with δ ≥ 2. These are challenging issues.
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Fig. 3.2. We plot m vs. exp(τm)/mα. (a) a = π, u0(x) = 0.5(cos(x/2) + sin2 2x) (α =
1.4, 1.5, 1.6), (b) a = π, u0(x) = 0.5(cos(x/2) + sin2 4x) (α = 1.3, 1.4, 1.5). (c) a = 2π, u0(x) =

sin
(
π
(
x
2π

)8)
+ 0.01 cos(x/4) (α = 0.5, 0.55, 0.6).
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TWO METHODS FOR OPTICAL FLOW ESTIMATION∗

PETER FROLKOVIČ† AND VIERA KLEINOVÁ.

Abstract. In this paper we describe two methods for optical flow estimation between two
images. Both methods are based on the backward tracking of characteristics for advection equation
and the difference is on the choice of advection vector field. We present numerical experiments on
2D data of cell nucleus.

Key words. optical flow, advection equation, level-set motion, characteristic curves

AMS subject classifications. 35L45, 65M25, 68U10

1. Introduction. Optical flow is an important topic in various fields including
computer vision and image processing. It is a technique that is based on estimating
a deformation between images of video sequence.

The most popular methods for optical flow estimation are so-called differential
methods [1, 2, 3, 4, 5, 9]. These methods are based on spatial derivatives of images.
We are interested in two approaches.

The first approach is based on the method created by Lucas and Kanade [5] where
it is assumed that the optical flow is constant locally within some neighborhood of
each pixel in images. This approach is extended to a nonlocal form by e.g. Horn and
Schunck [3] where the optical flow is estimated globally over entire image.

The second approach is based on level-set formulation [6] and it is directly moti-
vated by models described by Sapiro et al. [1] and Vemuri et al. [9]. The methods
are appropriate especially to estimate a non-rigid deformation when the objects in
images change their shape.

The main goal of this paper is to apply both approaches with the backward
tracking of characteristic curves for related advection equation to estimate the optical
flow together with their numerical implementation. Moreover we show the results
obtained by Lucas-Kanade method and the method based on level-set motion and we
suggest their combination for some type of images.

2. Formulation of optical flow. Let us represent two images F (x) ∈ R and
G(x) ∈ R by functions of intensity on a domain Ω ⊂ R2 for x ∈ Ω and x = (x, y).

The main goal of optical flow estimation is to find a deformation ~U(x) between F (x)

and G(x) such that F (x− ~U(x)) = G(x).
The basic idea of our approach is to search for a function f = f(x, t) that fulfils

the advection equation

∂tf(x, t) + ~u(x, t) · ∇f(x, t) = 0, f(x, 0) = F (x) ,(2.1)

for t ∈ [0, T ] where T > 0 and ~u = ~u(x, t) = (u(x, t), v(x, t)) has to be specified such
that f(x, T ) = G(x).
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Once the advection equation (2.1) is solved, the characteristic curves X(x, t̃; t)
generated by ~u can be used that are obtained as solutions of ordinary differential
equations

Ẋ(x, t̃; t) = ~u(X(x, t̃; t), t) , X(x, t̃; t̃) = x ,(2.2)

for t̃ ∈ [0, T ] and x ∈ Ω. The value X(x, t̃; t) is a position X of characteristic curve
at time t such that the position at time t̃ is x.

For the solution f(x, t) of advection equation (2.1) we see that the time derivative
of f(X(x, t̃; t), t) vanishes along X(x, t̃; t),

d

dt
f(X(x, t̃; t), t) = ∂tf(X(x, t̃; t), t) + Ẋ(x, t̃; t) · ∇f(X(x, t̃; t), t)

= ∂tf(X(x, t̃; t), t) + ~u(X(x, t̃; t), t) · ∇f(X(x, t̃; t), t) = 0 .

We can conclude that f(x, t) is constant along the characteristics.
In this paper we use the backward tracking of characteristics to compute the

solution f of (2.1) by

f(x, t̃) = F (X(x, t̃; 0))(2.3)

for t̃ > 0. Consequently, the deformation ~U(x) is defined for t̃ = T by

~U(x) = x−X(x, T ; 0) .(2.4)

Next we describe two methods how to obtain the vector field ~u.

2.1. Lucas-Kanade method. The method belongs to local methods and it
solves the advection equation (2.1) for unknowns ~u = (u, v) separately for each x ∈ Ω
and t = 0, 1, . . . . The solution is found starting with t = 0 by minimizing the function

H(u, v) = Wσ ∗ (∂xfu+ ∂yfv + ∂tf)2 ,(2.5)

where ∗ denotes the convolution. Here Wσ is a weight function and it is usually set
to a Gaussian of a standard deviation σ [5]. The minimum of H(u, v) is reached if
∂uH(u, v) = 0 and ∂vH(u, v) = 0

0 = Wσ ∗ [2(∂xfu+ ∂yfv + ∂tf)∂xf ] ,
0 = Wσ ∗ [2(∂xfu+ ∂yfv + ∂tf)∂yf ] .

The unknowns (u(x, t), v(x, t)) are obtained from the linear system in the form

(
Wσ ∗ (∂xf)2 Wσ ∗ (∂xf∂yf)
Wσ ∗ (∂yf∂xf) Wσ ∗ (∂yf)2

)(
u
v

)
=

(
−Wσ ∗ (∂xf∂tf)
−Wσ ∗ (∂yf∂tf)

)
.(2.6)

Once the vector field ~u is found for each x ∈ Ω, one can compute f(x, t+ 1) using
(2.3) and the method can return to (2.5) to compute ~u(x, t+ 1) and so on.

2.2. Method based on level-set motion. The method is motivated by Sapiro
et al. [1] and Vemuri et al. [9]. In this case we consider ~u in the advection equation
(2.1) of the form

~u(x, t) =

{
−S(x, t) ∇f(x,t)|∇f(x,t)| |∇f(x, t)| 6= 0
~0 |∇f(x, t)| = 0 ,

(2.7)
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where S(x, t) is a speed in normal direction, so the equation (2.1) can be rewritten in
the form

∂tf(x, t) = S(x, t)|∇f(x, t)| , f(x, 0) = F (x) .(2.8)

The natural choice for the speed S(x, t) is

S(x, t) = α(x, t)(G(x)− f(x, t)) ,(2.9)

where α(x, t) > 0 is a free parameter function that will be defined conveniently in
numerical method later. Using (2.7) the advection equation (2.1), resp. (2.8), is
solved directly for the unknown function f and ~u is determined from (2.7).

3. Numerical implementation. We assume 2D gray scale images with centers
xij = (i, j) of pixels for i = 0, . . . , I − 1 and j = 0, . . . , J − 1. The distance between
two centers xi+1j − xij and xij+1 − xij is 1 and the time points are chosen to be
tn = n for n = 0, 1, . . .. The images F (x) and G(x) for x ∈ Ω are represented
by bilinear interpolation of the discrete values of their intensities Fij = F (xij) and

Gij = G(xij). The main goal of this paper is to approximate the deformation ~U(x)

such that Gij ≈ F (xij − ~Uij), where ~Uij ≈ ~U(xij).
Once the vector field ~u is approximated by discrete values ~unij ≈ ~u(xij , t

n), see
later, the characteristic curves are approximated by Xn,m

ij ≈ X(xij , t
n; tm) at any

time tn by numerical approximation of (2.2) for m = n− 1, . . . , 0, namely

Xn,m
ij = Xn,m+1

ij − ~um(Xn,m+1
ij ) , Xn,n

ij = xij ,(3.1)

where ~um(x) is the bilinear interpolation of discrete values ~umij .
Consequently, we can approximate fnij ≈ f(xij , t

n) as in equation (2.3) by

fnij = F (Xn,0
ij ) ≈ F (X(xij , t

n; 0)) ,(3.2)

for n > 0 and for n = 0 we set f0ij = Fij .

When n = N the deformation ~U(x) between F (x) and G(x) is given by

~Uij = xij −XN,0
ij .(3.3)

The stopping time tn for some n = N is determined by estimating the distance
between fnij and Gij .

3.1. Numerical implementation of Lucas-Kanade method. The numeri-
cal approximation of the linear system (2.6) is obtained by solving

(
Wσ ∗ (∂xf

n
ij)

2 Wσ ∗ (∂xf
n
ij∂yf

n
ij)

Wσ ∗ (∂yf
n
ij∂xf

n
ij) Wσ ∗ (∂yf

n
ij)

2

)(
unij
vnij

)
=

(3.4)

=

( −Wσ ∗ (∂xf
n
ij∂tf

n
ij)

−Wσ ∗ (∂yf
n
ij∂xf

n
ij)

)
.

where unij ≈ u(xij , t
n) and vnij ≈ v(xij , t

n) and ∂tf
n
ij = (Gij − fnij). The spatial

derivatives ∂xf
n
ij and ∂yf

n
ij are approximated by central differences

∂xf
n
ij =

fni+1j − fni−1j
2

(3.5)

∂yf
n
ij =

fnij+1 − fnij−1
2

.
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The discrete convolution with Gaussian function Wσ is defined as follows

Wσ ∗ f(x, y, t) =
1∑
i,j wij

∑

i,j

wijf(x+ i, y + j, t) ,(3.6)

where −3σ < i < 3σ and −3σ < j < 3σ and

wij =
1

2πσ2
exp−

i2+j2

2σ2 ,(3.7)

where σ is a standard deviation that must be chosen by users. To do so we choose
a convolution matrix with the elements wij to have a size E × E where E is an odd
integer and σ = E/6. The dimension E determines the neighborhood of each pixel for
which the assumption about constant optical flow is considered. A proper choice of
E, respectively σ, is a nontrivial requirement of the original Lucas-Kanade method.
Later for some numerical experiments we discuss a proper guess of σ and an influence
of different choices on results.

Once the approximations ~unij are available, we can compute fn+1
ij by using (3.2)

and proceed to next time step.

3.2. Numerical implementation of the method based on level-set mo-
tion. Formally, we can approximate (2.8) by a numerical scheme

f̃n+1
ij = fnij + Snij |∇fnij |(3.8)

where Snij = αnij(Gij − fnij) ≈ S(xij , t
n). To do so we approximate firstly the gradient

∇fnij in (3.8) using the Rouy-Tourin scheme [8]

∂xf
n
ij =





fnij − fni−1j fni−1j = ext{fni−1j , fnij , fni+1j}
fni+1j − fnij fni+1j = ext{fni−1j , fnij , fni+1j}
0 fnij = ext{fni−1j , fnij , fni+1j}

(3.9)

∂yf
n
ij =





fnij − fnij−1 fnij−1 = ext{fnij−1, fnij , fnij+1}
fnij+1 − fnij fnij+1 = ext{fnij−1, fnij , fnij+1}
0 fnij = ext{fnij−1, fnij , fnij+1}

(3.10)

where ext denotes a minimum or maximum with the choice

ext =

{
min Snij < 0
max Snij > 0 .

(3.11)

Secondly we have to define the values αnij ≈ α(xij , t
n) > 0 to compute Snij in

(3.8). We propose to choose maximal values of αnij to speed up the computation such
that the so called CFL condition [7] and some stopping criteria are fulfilled, namely

αnij = min

(
1

|∇fnij |+ ε
,

|∇fnij |
|Gij − fnij |(|∂xfnij |+ |∂yfnij |+ ε)

)
,(3.12)

where ε > 0 is a small number to avoid a division by zero. The parameter ε is set
to 10−8 for all presented numerical experiments, and different choices, e.g. = 10−4 ≤
ε ≤= 10−8, have no visible influence on the results.
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Once the approximations in the right hand side of (3.8) are available then the
values ~unij are computed by approximation of (2.7)

~unij =

{
−Snij

∇fnij
|∇fn

ij
| |∇fnij | 6= 0

~0 |∇fnij | = 0 ,
(3.13)

and the scheme (3.2) can be used to compute fn+1
ij .

4. Experimental results. We present the results obtained from images of cell
nucleus of zebrafish, see Fig. 4.1, Fig. 4.5 and Fig. 4.8. The images were preprocessed
using a segmentation of the cell nucleus. The data are originally three dimensional, but
we consider only two dimensional images. Some images contain a large deformation
so they are quite challenging for the optical flow estimation.

Once an estimation of ~U(x) is obtained, we determine the approximation of image

F (x− ~U(x)) to check the approximation quality of numerical methods by comparing

it with the original image G(x). Namely the difference image |G(x) − F (x − ~U(x))|
is shown that should be white if there is no error in the approximation. The optical
flow is presented graphically as −~U(x), because we want to show from where does the

position x in the image G(x) comes from the image F (x − ~U(x)). For a clarity, we
present every fifth vector component of the optical flow in figures.

4.1. Cell movement. The first experiment includes the movement of cell nu-
cleus. The input images are shown in Fig. 4.1 and the cell simply moves from the left
to the right. The image size is 250× 250.

Fig. 4.1. The input images of cell movement. From the left to the right: the first image F (x),
the second image G(x), the difference image |G(x)− F (x)|.

Firstly, Lucas-Kanade method is used with the discrete convolution matrix of
dimension 201×201 using the standard deviation σ = 33.5. In Fig. 4.2 (right) we can
see a well resolved constant optical flow for this choice of σ. This size of convolution
matrix was guessed from the size of a deformation caused by the optical flow visible
in the difference image |G(x)− F (x)|.

We present computations also with a too small value of σ. In Fig. 4.3 the results
of Lucas-Kanade method with standard deviation σ = 16.83 are shown when the
discrete convolution matrix of the dimension 101 × 101 is used. From the visual
inspection of optical flow in Fig. 4.3 (right) and difference image in Fig. 4.3 (middle)
we can see that such convolution is not appropriate and the results are far away from
expected ones.

Next we estimate the optical flow based on the level set motion. The results are
presented in Fig. 4.4. The difference image in Fig. 4.4 (middle) shows that the result
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is satisfactory. In Fig. 4.4 (right) we can see the obtained optical flow in normal
direction that is not suitable for a visualization of movement by a constant vector
field.

Fig. 4.2. The results obtained by Lucas-Kanade method with σ = 33.5. From the left to the
right: the image F (x− ~U(x)), the difference image |G(x)− F (x− ~U(x))|, the optical flow −~U(x).

Fig. 4.3. The results obtained by Lucas-Kanade method with σ = 16.83. From the left to the
right: the image F (x− ~U(x)), the difference image |G(x)− F (x− ~U(x))|, the optical flow −~U(x).

Fig. 4.4. The results obtained by the method based on level set motion. From the left to the
right: the image F (x− ~U(x)), the difference image |G(x)− F (x− ~U(x))|, the optical flow −~U(x).

4.2. Cell deformation. In the second experiment the images in Fig. 4.5 repre-
sent a change of cell shape. The image size is 300× 300.

The results are shown in Fig. 4.6 for Lucas-Kanade method and in Fig. 4.7 for
method based on level set motion.

For Lucas-Kanade method the matrix of dimension 201 × 201 with σ = 33.5 is
used as in the previous example. The optical flow in Fig. 4.6 (right) is smooth, but
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Fig. 4.5. The input images of the deformation of cell. From the left to the right: the first image
F (x), the second image G(x), the difference image |G(x)− F (x)|.

from the visual inspection of difference image in Fig. 4.6 (middle) we can see that
this method can not change the shape of cell properly.

The difference image in Fig. 4.7 (middle) and the image after applying the optical
flow in Fig. 4.7 (left) show us that the results are satisfactory.

Fig. 4.6. The results obtained by Lucas-Kanade method with σ = 33.5. From the left to the
right: the image F (x− ~U(x)), the difference image |G(x)− F (x− ~U(x))|, the optical flow −~U(x).

Fig. 4.7. The results obtained by the method based on level-set motion. From the left to the
right: the image F (x− ~U(x)), the difference image |G(x)− F (x− ~U(x))|, the optical flow −~U(x).
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4.3. Movement and deformation of cells. The last experiment include the
motion and deformation of four cells. The input images are shown in Fig. 4.8. The
size of images is 640× 600.

In this case we present the results obtained by combining the Lucas-Kanade
method and the method based on level-set motion.

Fig. 4.8. The input images of movement and deformation of the cells. Form left to right: the
first image F (x), the second image G(x), the difference image |G(x)− F (x)|.

Firstly, we estimate the optical flow using the Lucas-Kanade method. The stan-
dard deviation is chosen σ = 8.5 as the deformation by the optical flow has a smaller
size than in the previous examples. The resulting optical flow is shown in Fig. 4.9
(right). For a better visualisation the zooms of the optical flow in Fig. 4.9 (right) are
presented for each cell in Fig. 4.10.

From the visual inspection of difference image |G(x) − F (x − ~U(x))| in Fig. 4.9
(middle) we can see that the results are not satisfactory as the method can move the
cells but it does not change their shapes properly. This can be seen from the difference
image and also from the obtained image in Fig. 4.9 (left).

Fig. 4.9. The results obtained by Lucas-Kanade method with σ = 8.5. From the left to the
right: the image F (x− ~U(x)), the difference image |G(x)− F (x− ~U(x))|, the optical flow −~U(x).

Fig. 4.10. Zooms of the optical flow obtained by Lucas-Kanade method.
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The next step is to apply the method based on level-set motion on the obtained
image from Lucas-Kanade method and to compute the total optical flow.

The results after applying two methods is shown in Fig. 4.11. Again we present
the zooms of optical flow for each cells in Fig. 4.12. From the visual inspection of
the difference image and image after applying optical flow in Fig. 4.11 we can see,
that the results of Lucas-Kanade method were improved by the correction of method
based on level set motion.

Fig. 4.11. The results obtained by method based on level-set motion after Lucas-Kanade method.
From the left to the right: the image F (x − ~U(x)), the difference image |G(x) − F (x − ~U(x))|, the

optical flow −~U(x).

Fig. 4.12. Zooms of the total optical flow.

5. Conclusions. In this work we present two methods to estimate the optical
flow using the backward tracking of characteristics based on two standard approaches.
To study which approach is more suitable for which type of optical flow estimation
we present numerical experiments and discuss the results. The Lucas-Kanade method
[5] assumes that the optical flow does not vary too much in a neighborhood of each
pixel when the size of such neighborhood must be set by the dimension of convolution
matrix. The method gives best results when the vector field of optical flow is almost
constant. The method based on the level set motion [1, 9] does not require such
assumption as it estimates only the deformation by optical flow in the normal direction
to isolines of image. It is appropriate when no translation is given by the optical flow
and only a shape deformation can be observed between two images. In this work
we present preliminary results when these two methods are combined to obtain more
appropriate optical flow estimation.
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MATHEMATICALLY MODELLING THE DISSOLUTION OF SOLID
DISPERSIONS

MARTIN MEERE∗, SEAN MCGINTY † , AND GIUSEPPE PONTRELLI ‡

Abstract. A solid dispersion is a dosage form in which an active ingredient (a drug) is mixed
with at least one inert solid component. The purpose of the inert component is usually to improve
the bioavailability of the drug. In particular, the inert component is frequently chosen to improve the
dissolution rate of a drug that is poorly soluble in water. The construction of reliable mathematical
models that accurately describe the dissolution of solid dispersions would clearly assist with their
rational design. However, the development of such models is challenging since a dissolving solid
dispersion constitutes a non-ideal mixture, and the selection of appropriate forms for the activity
coefficients that describe the interaction between the drug, the inert matrix, and the dissolution
medium is delicate. In this paper, we present some preliminary ideas for modelling the dissolution
of solid dispersions.

Key words. Solid Dispersion, Mathematical Model, Partial Differential Equations, Activity
Coefficients

AMS subject classifications. 74N25, 82C70, 82D60

1. Introduction.

1.1. Motivation: poorly soluble drugs. Drugs that are delivered orally via
a tablet should ideally be readily soluble in water. Drugs that are poorly water-
soluble tend to pass through the gastrointestinal tract before they can fully dissolve,
and this typically leads to poor bioavailability of the drug. Unfortunately, many
drugs currently on the market or in development are poorly water-soluble, and this
presents a serious challenge to the pharmaceutical industry. Many strategies have
been developed to improve the solubility of drugs, such as the use of surfactants,
cocrystals, lipid-based formulations, and particle size reduction. The literature on
this topic is extensive, and recent reviews can be found in [1] and [2].

One particularly effective strategy to improve drug solubility is to use a solid
dispersion. A solid dispersion typically consists of a hydrophobic drug embedded in
a hydrophilic polymer matrix, where the matrix can be either in the amorphous or
crystalline state. The drug is preferably in a molecularly dispersed state, but may
also be present in amorphous particles or even in the crystalline form (though this is
usually undesirable); see Figure 1.1.

1.2. Storage, stability and phase separation of solid dispersions. Drug
loading in most dispersions greatly exceeds the equilibrium solubility in the polymer
matrix for typical storage temperatures. Hence these systems are usually unstable,
with phase separation eventually occurring ([7]). In such cases, the drug will
eventually crystallise out or form an amorphous phase separation. However, if the
dispersion is stored well below the glass transition temperature ([3]) for the polymer,
and is kept dry, this can happen extremely slowly. The system is then for all
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Molecularly dispersed
drug in the polymer
matrix (desirable)

Drug molecule

Polymer matrix

Crystal drug formation
has occurred (undesirable)

Contains amorphous
drug-rich domains

Fig. 1.1. Adapted from [7]. In this figure, we show three possible structures for a polymer/drug
dispersion. Top: Here the drug is in the molecularly dispersed state, which is usually desirable for
a solid dispersion. Bottom left: Here the dispersion contains drug in the crystalline form. Bottom
right: Here the dispersion contains amorphous drug-rich domains.

practical purposes stable, and is said to be metastable. The humidity of the storage
environment can be an issue because even small amounts of moisture can significantly
affect the glass transition temperature. Hence polymers that have high glass transition
temperatures and that are resistant to water absorption have become popular. An
example of one such polymer is Hydroxypropyl Methylcellulose Acetate Succinate
(HPMCAS).

(successful solid dispersion)(failed solid dispersion)

Fig. 1.2. Adapted from [8]. The drug first dissolves along with the soluble polymer matrix to
generate a supersaturated solution (spring) followed by a decline in the drug concentration in the
media due to either absorption or precipitation (parachute).
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1.3. Drug release from solid dispersions. The spring and parachute concept
is the usual strategy associated with drug release from solid dispersions. When the
dispersion absorbs fluid, the dispersed drug dissolves along with the soluble polymer
to create a solution with a drug concentration that is well above the drug solubility in
the fluid (this is the spring). The dispersion then maintains the drug concentration
at supersaturated levels for a period of hours while it is being absorbed (this is the
parachute); see Figure 1.2.

Unfortunately, despite extensive research, the dissolution behaviour of solid
dispersions is only partially understood. In particular, the precise mechanisms via
which the polymer prolongs the supersaturation of the drug have not been fully
resolved. This makes the design of successful solid dispersions a somewhat hit and
miss affair. Clearly, the construction of reliable mathematical models that capture
the key interactions between drug, polymer and solvent molecules in a dissolving solid
dispersion would greatly assist with their rational design. The ultimate goal of such
modelling is to identify the regions of the parameter space governing the system that
lead to the desired dissolution behaviour for a given pharmaceutical product. Some
previous modelling studies for solid solutions can be found in [9], [10], [11] and [12].

2. Mathematical modelling.

2.1. A multicomponent diffusion model for solid dispersions. We develop
a multicomponent diffusion model for the evolution of the concentrations of the three
components constituting a dissolving solid dispersion. These are the drug molecules
(label 1), the polymer molecules (label 2), and the solvent molecules (label 3). For
simplicity, we shall restrict our attention here to the one-dimensional form of the
equations; that is, the concentrations of the species only depend on a single spatial
variable x.

The chemical potential µi (J/mole) of species i (i = 1, 2, 3) gives the Gibbs free
energy per mole of species i, and is given here by ([4])

µi = µi0 +RT ln(ai)− ε2i
∂2Ni
∂x2

(2.1)

where µi0 is the chemical potential of species i in the pure state, R (J/[K·mole]) is
the gas constant, T (K) is the temperature, ai is the activity of species i, and the
term involving ε2i > 0 (m2J/mole) penalises the formation of phase boundaries (see
[5] and [6] for some discussion of this issue). Here Ni is the molar fraction of species
i (i = 1, 2, 3), and the activities can depend on these molar fractions, so that

ai = ai(N1, N2, N3).

The flux of species i (molar·m/s) is given by

Ji = civi(2.2)

where ci (molar), vi (m/s) give the molar concentration and drift velocity, respectively,
of species i. The drift velocity vi gives the average velocity a particle of species i
attains due to the diffusion force acting on it, and is given here by

vi = MiFi = −Mi
∂µi
∂x

(2.3)
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where Mi (mole·s/kg), Fi (J/[m·mole]) give the mobility and diffusion force,
respectively, for species i. Substituting (2.3) in (2.2) and using (2.1) gives

Ji = −Mici
∂µi
∂x

= −Mici

(
RT

ai

∂ai
∂x
− ε2i

∂3Ni
∂x3

)

and then using the fact that the activities depend on the molar fractions gives

Ji = −Mici


RT

ai

3∑

j=1

∂ai
∂Nj

∂Nj
∂x
− ε2i

∂3Ni
∂x3


 .(2.4)

The molar fraction is related to the molar concentration via

Ni = Vici(2.5)

where Vi (molar−1) is the molar volume of species i. Using (2.5), we can now write
(2.4) as

Ji = −
3∑

j=1

Dij
∂cj
∂x

+Diε
2
i ci

∂3ci
∂x3

(2.6)

where the Dij (m2/s) are given by

Dij = Di
Vj
Vi

Ni
ai

∂ai
∂Nj

(i, j = 1, 2, 3)(2.7)

and where

Di = MiRT (Einstein relation)

is the diffusion coefficient for species i. Finally, ε2i = MiViε
2
i /Di > 0 (m2/molar).

Conservation of mass for species i implies that

∂ci
∂t

+
∂Ji
∂x

= 0

and using (2.6) now gives

∂ci
∂t

=
∂

∂x




3∑

j=1

Dij(c1, c2, c3)
∂cj
∂x
−Diε

2
i ci

∂3ci
∂x3


 (i = 1, 2, 3)(2.8)

where we have included the concentration dependence of the diffusion coefficients
Dij here to emphasise that this system is in general a coupled system of nonlinear
diffusion equations. It should be noted that the equations (2.8) are not independent
since V1c1 + V2c2 + V3c3 = 1, and so it is sufficient to solve for two concentrationns
only.

2.2. Activity coefficients. The activities ai are usually written as

ai = γiNi
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where the γi = γi(N1, N2, N3) are referred to as activity coefficients. Equations (2.7)
now give

Dij = Di
Vj
Vi

(
δij +

Ni
γi

∂γi
∂Nj

)
(i, j = 1, 2, 3)(2.9)

where δij is the Kronecker delta. Notice that if γi ≡ constant, then the (2.9) reduce
to Dij = Di and the governing equations decouple to give

∂ci
∂t

= Di
∂

∂x

(
∂ci
∂x
− ε2i ci

∂3ci
∂x3

)
. (i = 1, 2, 3)

If we further have εi = 0, the governing equations reduce to a set of classical linear
diffusion equations.

The details of the interactions between the species in solution are captured
in the modelling by choosing appropriate forms for the activity coefficients γi =
γi(N1, N2, N3). The construction of appropriate forms for the γi for various solutions
is a large subject with a large literature; see, for example, the books [13] and [14].

2.3. Activity coefficients for polymer solutions.

2.3.1. Flory-Huggins Model. The Flory-Huggins model is a lattice-based
model commonly used to describe the thermodynamics of polymer solutions. For a
binary solution in which the subscripts 1 and 2 refer to drug and polymer molecules,
respectively, this model has ([13])

ln(γ1) = ln

(
Φ1

N1

)
+ 1− Φ1

N1
+ χ12Φ2

2

where

Φ1 =
V1N1

V1N1 + V2N2
, Φ2 =

V2N2

V1N1 + V2N2
.

Here χ12 is the Flory-Huggins interaction parameter that quantifies the balance
between polymer-polymer and polymer-solvent interactions. Note that we need only
specify γ1 here since N2 = 1−N1.

For a ternary solution, consisting of drug molecules, polymer molecules, and
solvent molecules (molar fraction N3, molar volume V3), we have ([13])

ln(γi) = ln

(
Φi
Ni

)
+ 1− Φi

Ni
+ 2Vi

3∑

j=1

Φibij − Vi
3∑

j,k=1

ΦjΦkbjk

where

Φi =
ViNi∑3
j=1 VjNj

for i = 1, 2, 3,

and where the interaction parameters bij (molar) are such that bii = 0 and bij = bji.
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The reference fluid
consists of a collection
of hard spheres

Dispersion forces are
added

Chains are formed
via covalent bonding

Association sites are
included that permit hydrogen
bonding-like interactions

Fig. 2.1. Adapted from [16]. In the SAFT framework, the reference fluid consists of a collection
of hard spheres to which dispersion forces are added. These spheres can form chains via covalent
bonding. Association sites are added to the chains that allow for the inclusion of hydrogen bonding
type interactions.

2.3.2. Statistical Associating Fluid Theory. Statistical Associating Fluid
Theory (SAFT) is a sophisticated tool for developing realistic thermodynamic models
for polymer solutions ([15, 16]). The theory allows for the development of tailored
models for specific polymer/drug systems constituting solid dispersions. For a single
component fluid system, the physical basis of the SAFT approach is illustrated in
Figure 2.1. The reference fluid consists of a system of hard spheres to which weak
dispersion forces are added. These spheres can form chains of a given length via
covalent bonding. Finally, association sites are added to the chains to allow for
hydrogen bonding-type interactions.

The Helmholtz free energy A (J) of the fluid in SAFT is then calculated as follows

A = Aideal +Ahs +Adisp +Achain +Aassoc

where

Aideal = contribution from the ideal fluid,

Ahs = contribution from the hard sphere assumption,

Adisp = contribution from the dispersion force interactions,

Achain = contribution from the covalent bonding,

Aassoc = contribution from the association interactions.

Expressions for each of these quantities have been calculated by the applied statistical
thermodynamics community, and can be found in [16]. A full listing and explanation
of these equations would occupy a number pages, and so for brevity we have omitted
these details here. Once the free energies for the individual components have been
calculated, the free energy for the mixture can then be calculated using mixing rules.

With the free energy of the mixture in hand, the activity coefficients can be
calculated as follows ([12, 13, 14]). We first define the residual Helmholtz free energy
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via

Ares = A−Aideal = Ahs +Adisp +Achain +Aassoc,

and the residual chemical potentials are then given by

µresi = Ares +RT (Z − 1) +
∂Ares
∂Ni

−
3∑

j=1

Nj
∂Ares
∂Nj

,

for i = 1, 2, 3 as before, and where

Z = 1 + ρ
∂(Ares/RT )

∂ρ

is the incompressibility factor, with ρ the density of the system. The fugacity of
component i in the mixture is then given by

ϕi =
1

Z exp

(
−µ

res
i

RT

)
.

Finally, the activity coefficient for component i is now given by

γi =
ϕi
ϕi0

,

where ϕi0 is the fugacity of the pure component i.

3. Future work. The following briefly summarises our future research plan for
investigating the behaviour of solid dispersions.

• We shall begin by considering Flory-Huggins type models for polymer
solutions. It is envisaged that the consideration of these simpler systems
will yield mechanistic insights. Once this work has been completed, we
shall use the SAFT framework to develop more realistic models for specific
polymer/drug systems.

• We shall address two main problems. The first of these is the storage
stability problem. For this problem, we shall develop a representative initial
boundary value problem to describe the behaviour of the solid dispersion in
storage. Initially, we shall consider a two component model (polymer/drug)
and identify those parameter regimes that lead to stable, metastable, and
unstable behaviour. It is also worth noting that because we shall be
considering the full non-equilibrium problem, we should also be able to obtain
information concerning the timescales over which phase separation and drug
crystallization occurs. By introducing a third component for water molecules,
the effect of air humidity on storage stability will also be investigated.

• The second problem we shall consider is the dissolution problem. In this case,
we shall develop a representative initial boundary value problem to describe
the dissolution of a solid dispersion. Particular attention will be paid to
identifying the underlying mechanisms and parameter regimes that lead to
the spring and parachute effect.
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TOWARD A MATHEMATICAL ANALYSIS FOR A MODEL OF
SUSPENSION FLOWING DOWN AN INCLINED PLANE

KANAME MATSUE∗ AND KYOKO TOMOEDA†

Abstract. We consider the Riemann problem of the dilute approximation equations with spa-
tiotemporally dependent volume fractions from the full model of suspension, in which the particles
settle to the solid substrate and the clear liquid film flows over the sediment [Murisic et al., J. Fluid.
Mech. 717, 203–231 (2013)]. We present a method to find shock waves, rarefaction waves for the
Riemann problem of this system. Our method is mainly based on [Smoller, Springer-Verlag, New
York, second edition, (1994)].

Key words. hyperbolic conservation law, Riemann problem, shock wave, rarefaction, suspen-
sion, dilute approximation

AMS subject classifications. 03-06, 35L65

1. Introduction. We are concerned here with the two dimensional motion of a
suspension flowing down an inclined plane under the effect of gravity. To describe the
problem we choose a coordinate system (x, y), where the x-axis is along a plane with
a inclination angle α

(
0 < α < π

2

)
and the y-axis is perpendicular to this plane. The

motion of suspension is governed by the following partial differential equations

∇p−∇ · [µ(φ)(∇u+∇u>)] = ρ(φ)g,

∂tφ+ u · ∇φ+∇ · J = 0, (1.1)

∇ · u = 0, in 0 < y < h(x, t), t ≥ 0.

Here u = (u, v)> is the volume averaged velocity and p is the pressure of fluid and
h(x, t) is the total suspension thickness. φ is the particle volume fraction and J =
(Jx,Jy)> is the particle flux and g = g(sinα,− cosα)> is the acceleration of gravity.
µ(φ) is the viscosity of fluid and ρ(φ) = ρpφ + ρf (1 − φ), where ρf and ρp are the
density of fluid and particles respectively. The boundary condition on the wall is the
non-slip and no-penetration condition

u = (0, 0)>, at y = 0. (1.2)

The dynamical and kinematic conditions on the free surface are

(
−pI + µ(φ)(∇u+∇u>)

)
n = 0, at y = h(x, t), (1.3)

∂th+ u∂xh− v = 0, at y = h(x, t),

where I is the identity matrix and n is the outward unit normal vectors to the free
surface. For the particle fluxes, the no-flux boundary conditions at the wall and free
surface are also imposed :

J · n = 0, at y = 0 and y = h(x, t). (1.4)

∗Institute of Mathematics for Industry / International Institute for Carbon-Neutral Energy Re-
search (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan, (kmatsue@imi.kyushu-u.ac.jp)
†Institute for Fundamental Sciences, Setsunan University, Osaka 572-8508, Japan, (to-

moeda@mpg.setsunan.ac.jp)
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To explain the mechanisms of suspensions, some approximation equations are
derived from the full model (1.1)–(1.4). Murisic et al. [4] derived the dilute approxi-
mation equation which is the system of conservation laws :

∂th+ ∂x

(
1

3
h3
)

= 0, (1.5)

∂tn+ ∂x

(√
2

9C
(nh)3/2

)
= 0, (1.6)

where C =
2(ρp−ρf ) cotα

9(ρfKc)
is the buoyancy parameter and Kc is constant and n = φh.

This dilute approximation equation focuses on the settled regime in which particles
settle to the solid substrate and the clear liquid film flows over the sediment. In [4],
the authors solved (1.5) exactly with the initial data h(x, 0) = 1 for 0 ≤ x ≤ 1,
h(x, 0) = 0 otherwise, and the exact solution for h is given by

h(x, t) =





1 t ≤ x ≤ x`,√
x

t
0 < x < min(t, x`),

0 otherwise,

for t ≥ 0, where x` denote the liquid front position which is given by x` = 1 + t
3 for

0 ≤ t ≤ 3
2 , x` =

(
9t
4

)1/3
for 3

2 < t. One of the earlier examples for solution (1.7) is
given by Huppert [1] for the flow of a constant volume of viscous fluid down a constant
slope. The authors in [4] also obtain the exact solution n of (1.6) with the initial data
n(x, 0) = f0h(x, 0) and some given value f0 � 1.

Our aim in this paper is to cover the solution of the system (1.5)–(1.6) when the
initial volume fraction φ(x, 0) is a variable satisfying 0 < φ < 1. For this system, only
exact solutions obtained for the fixed initial volume fraction φ(x, 0) = f0 are treated
in [4]. On the other hand, in mathematical theory, it is known that the general m×m
system of the hyperbolic conservation laws

∂tU + ∂x(F (U)) = 0

has a discontinuous solution such as a shock wave and a smooth solution such as a
rarefaction wave, where U = (U1, · · · , Um)> ∈ Rm, (x, t) ∈ R × R+ and F (U) =
(F1(U), · · · , Fm(U))> is a vector-valued function which is C2 in some open subset
D ⊂ Rm (see [2], [6]). In order to cover the solution of the system (1.5)–(1.6), we
consider the case where the solutions have a discontinuity, and hence we deal with the
weak solution of the system which is defined by (2.2) below. Applying mathematical
theories established in [2], [6] to the system (1.5)–(1.6), we give a construction method
of weak solutions consisting of simple waves such as shock waves and rarefaction waves.

The organization of this paper is as follows. In Section 2, we formulate shock
waves and rarefaction waves for the Riemann problem of the system (1.5)–(1.6). In
Section 3, we find the admissible shock waves and rarefaction waves in settled regime
by using the formula given in Section 2.

2. Preliminaries. We let

U =

(
h
n

)
, F (U) =




1

3
h3√

2

9C
(nh)3/2


 ,
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so that the system (1.5) and (1.6) can be rewritten in the form

∂tU + ∂x(F (U)) = 0. (2.1)

It is well known that a solution to conservation laws (2.1) can become discontinuous
even if the initial data is smooth. Therefore we treat the weak solution which is
defined as follows :

Definition 2.1 ([6]). A bounded measurable function U(x, t) is called a weak
solution of the initial-value problem for (2.1) with bounded and measurable initial data
U(x, 0), provided that

∫ ∞

0

∫

R
(Uψt + F (U)ψx)dxdt+

∫

R
U(x, 0)ψ(x, 0)dx = 0 (2.2)

holds for all ψ ∈ C1
0 (R ×R+;R2). If the weak solution U(x, t) has a discontinuity

along a curve x = x(t), the solution U and the curve x = x(t) must satisfy the
Rankine-Hugoniot relations (jump conditions)

s(UL − UR) = F (UL)− F (UR), (2.3)

where UL = U(x(t) − 0, t) is the limit of U approaching (x, t) from the left and
UR = U(x(t) + 0, t) is the limit of U approaching (x, t) from the right, and s = dx

dt is
the propagation speed of x(t).

We consider the Riemann problem for the conservation laws (2.1) with the initial
data called the Riemann data

U(x, 0) =

{
U0 x < 0

U2 x > 0
. (2.4)

The Jacobian matrix of F at U is

DF (U) =




h2 0√
1

2C
n3h

√
1

2C
h3n




and district eigenvalues of DF (U) are

λ1(U) =

√
1

2C
h3n, λ2(U) = h2. (2.5)

Here we assume that h and n are real valued function of (x, t) ∈ R×R+. According
to [4], set C = 2.307 and n = φh, where the particle volume fraction φ satisfies
0 ≤ φ < 1. Under these conditions, the system (2.1) is strictly hyperbolic, i.e.,
district eigenvalues λj(U) (j = 1, 2) are real-valued and λ1(U) < λ2(U) holds for
any U ∈ Ω, where Ω = {(h, n) ∈ R2 : h > 0, 0 ≤ n < h}. The right eigenvectors
corresponding to the eigenvalues λj(U) are

r1(U) =

(
0

t1

)
, r2(U) =



h2 −

√
1

2C
h3n

√
1

2C
n3h


 ,
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where t1 6= 0 is a constant. Note that ∇λ1 · r1 = t1
2

√
1

2Cnh
3 6= 0 and ∇λ2 · r2 =

2h(h2 −
√

1
2Ch

3n) 6= 0 in Ω, namely, the first and the second characteristic fields are

genuinely nonlinear in Ω. In this case, the weak solution will consist of three constant
states U0, U1, U2; the constant states Uj−1 and Uj (j = 1, 2) are connected by either
shock waves or rarefaction waves (see [2], [6]).

Fix the reference point Up = (hp, np). We consider right states UR = U = (h, n)
which can be connected to a left state UL = Up followed by shock waves or rarefaction
waves. If the weak solution has a jump discontinuity between the left state Up and
the right state U , then U must satisfy the Rankine-Hugoniot relation (2.3):

s(h− hp) =
1

3

(
h3 − h3p

)
, (2.6)

s(n− np) =

√
2

9C

(
(nh)3/2 − (nphp)

3/2
)
.

Eliminating s from these equations, we obtain

(n− np)
(
h2 + hhp + h2p

)
=

√
2

C

(
(nh)3/2 − (nphp)

3/2
)

whose graph is called the Hugoniot locus. In order to pick up physically relevant
solutions, we further require the following k-entropy inequalities (k = 1, 2)

s < λ1(Up), λ1(U) < s < λ2(U), (1-entropy inequality),

λ1(Up) < s < λ2(Up), λ2(U) < s, (2-entropy inequality),

which in this case reads
√

1

2C
h3n < s < min

{√
1

2C
h3pnp, h

2

}
, (1-entropy inequality), (2.7)

max

{√
1

2C
h3pnp, h

2

}
< s < h2p, (2-entropy inequality), (2.8)

where s is the speed of discontinuity

s =

(
2

81C

)1/4
√

(h2 + hhp + h2p)
(
(nh)3/2 − (nphp)3/2

)

n− np
.

If U satisfies (2.6) and (2.7), then U can be connected to Up from the right followed
by a 1-shock wave. Since the system (2.1) is strictly hyperbolic, it is clear that√

1
2Ch

3n < h2. Thus the 1-shock curve is given by

S1(Up) = {(h, n) : (n− np)
(
h2 + hhp + h2p

)
=

√
2

C

(
(nh)3/2 − (nphp)

3/2
)
,

h3n < h3pnp}. (2.9)

Similarly, U can be connected to Up from the right followed by a 2-shock wave, pro-
vided U satisfies (2.3) and (2.8). This curve is called the 2-shock curve, which is given
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by

S2(Up) = {(h, n) : (n− np)
(
h2 + hhp + h2p

)
=

√
2

C

(
(nh)3/2 − (nphp)

3/2
)
,

h < hp}. (2.10)

We consider candidates of right states UR = U = (h, n) which can be connected
to a given left state UL = Up = (hp, np) followed by a rarefaction wave. Here we note
that the condition for (physically relevant) rarefaction waves is that the corresponding
eigenvalue (speed) λ increases from the left to the right side of the wave (see [6]), that
is

λ(Up) < λ(U). (2.11)

The Riemann problem (2.1), (2.4) are invariant under the scaling (x, t) 7→ (ηx, ηt) for
all η > 0. Therefore we seek self-similar solutions of the form U(x, t) ≡ U(xt ). If we
let ξ = x

t , then we see that U(ξ) satisfies the ordinary differential equation

(DF (U)− ξ)dξU = 0,

where dξ = d
dξ . If dξU 6= 0, then ξ is the eigenvalue for DF (U) and dξU is the

corresponding eigenvector. Since DF (U) has two real and distinct eigenvalues λ1 <
λ2, there exist two families of rarefaction waves, 1-rarefaction waves and 2-rarefaction
waves. For 1-rarefaction waves, the eigenvector dξU = (dξh, dξn)> satisfies

(−λ1(U)I +DF (U))dξU =



−
√

1

2C
h3n+ h2 0

√
1

2C
n3h 0



(
dξh
dξn

)
=

(
0
0

)
,

which gives dξh = 0. Since dξn 6= 0, we have

dh

dn
= 0.

We integrate this to obtain the curve passing all possible U connected to Up followed
by a 1-rarefaction wave. This curve is called the 1-rarefaction curve, which is in our
case given by

R1(Up) = {(h, n) : h = hp, n > np}, (2.12)

where n > np comes from λ1(Up) < λ1(U).
For 2-rarefaction waves, the eigenvector dξU satisfies

(−λ2(U)I +DF (U))dξU =




0 0√
1

2C
n3h −h2 +

√
1

2C
h3n



(
dξh
dξn

)
=

(
0
0

)
,

which gives

dh

dn
=
h2 −

√
1
2Ch

3n
√

1
2Cn

3h
=

(
√

2C

√
h

n
− 1

)
h

n
.
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We can solve this ordinary differential equation, the solution is given by

h =
n

(
√

C
2 − eAn)2

,

where eA is the constant of integration. When the solution takes Up = (hp, np), the

constant eA is determined as 1
np

(
√

C
2 −

√
np
hp

) then the special solution is obtained as

h =
nn2p(

n
√

np
hp
− (n− np)

√
C
2

)2 .

The graph of this function is called the 2-rarefaction curve consisting of U which can
be connected from the left state Up by a 2-rarefaction wave. We denote by

R2(Up) = {(h, n) : h

(
n

√
np
hp
− (n− np)

√
C

2

)2

= nn2p, h > hp}, (2.13)

where the condition hp < h comes from λ2(Up) < λ2(U).

3. Admissble weak solutions for the settled regime. In this section we
construct weak solutions of Riemann problem (2.1), (2.4) by substituting the values
corresponding to the settle regime into the curves given in the previous section. We
tackle the Riemann problem for situations wherein h < hp and h > hp representing a
step-down and step-up function, respectively.

We begin with finding admissible wave curves connecting from the fixed left state
U0 to the right states U = (h, n) when h < h0. We set U0 = (h0, n0) = (1, 0.1) and
C = 2.307, which are used in [4]. Then the Hugoniot locus becomes the set

S(U0) :

{
(n− 0.1)

(
h2 + h+ 1

)
=

√
2

2.307

(
(nh)3/2 − (0.1)3/2

)}
, (3.1)

while the 1-entropy inequality and the 2-entropy inequality are as follows, respectively
:

√
1

4.614
h3n <s< min

{√
1

46.14
, h2

}
, (3.2)

max

{√
1

46.14
, h2

}
<s< 1, (3.3)

where

s =

(
2

186.867

)1/4
√

(h2 + h+ 1)
(
(nh)3/2 − (0.1)3/2

)

n− 0.1
. (3.4)

We note that inequalities (3.2), (3.3) are equivalent to the following inequalities :

s−
√

1

4.614
h3n > 0 and s−min

{√
1

46.14
, h2

}
< 0, (3.5)

s−max

{√
1

46.14
, h2

}
> 0 and s− 1 < 0. (3.6)
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Fig. 3.1: Hugoniot locus and the 1-entropy inequality. We plot the Hugoniot lo-
cus (3.1) and implicit functions s = λ1(U) and s = min{λ1(U0), λ2(U)}, where

λ1(U) =
√

1
4.614h

3n, λ1(U0) =
√

1
46.14 , λ2(U) = h2. The solid, dashed and dot-

ted curves represent the Hugoniot locus (3.1), s = min{λ1(U0), λ2(U)} and s = λ1(U)
respectively.

We shall examine whether there exists (h, n) satisfying (3.1) and (3.5) with phase
portraits. In Figure 3.1 we plot the Hugoniot locus (3.1) and the implicit functions

s =
√

1
4.614h

3n and s = min{
√

1
46.14 , h

2}, which is s = h2 for the case
√

1
46.14 ≥ h2

(Figure 3.1(a)) and s =
√

1
46.14 for the case

√
1

46.14 < h2 (Figure 3.1(b)). Two dashed

lines in Figure 3.1 show the upper bound and lower bound for the inequality (3.5),
which means that every point (h, n) within the open region between the upper graph

s = min{
√

1
46.14 , h

2} and the lower graph s =
√

1
4.614h

3n satisfies (3.5). As can be

seen from the figure, (h, n) satisfying the Rankine-Hugoniot relation (3.1) does not
belong to the region that the 1-entropy inequality (3.5) holds. Thus, the weak solution
does not admit 1-shock waves.

Similarly, we examine whether there exists a (right) state (h, n) satisfying (3.1)
and (3.6). In Figure 3.2 we plot the Hugoniot locus (3.1) and the implicit functions

s = 1 and s = max{
√

1
46.14 , h

2}. When
√

1
46.14 ≥ h2, every point (h, n) satisfying

the Rankine-Hugoniot relation (3.1) does not belong to the region between the upper
graph s = 1 and the lower graph s = h2 (Figure 3.2(a)). On the other hand, when√

1
46.14 < h2, the Hugoniot locus S(U0) belongs to the region between the upper

graph s = 1 and the lower graph s =
√

1
46.14 (Figure 3.2(b)), which means that there

exists (h, n) satisfying both (3.1) and (3.6). Thus, when
√

1
46.14 < h2, the 2-shock

wave exists and the 2-shock curve is given by (3.1) for h < 1.
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Fig. 3.2: Hugoniot locus and the 2-entropy inequality. In this figure we plot the
Hugoniot locus (3.1) and implicit functions s = λ2(U0) and s = max{λ1(U0), λ2(U)},
where λ1(U0) =

√
1

46.14 , λ2(U0) = 1, λ2(U) = h2. The solid, dashed and dotted

lines represent the Hugoniot locus (3.1), s = λ2(U0) and s = max{λ1(U0), λ2(U)}
respectively.

As a example, we take U2 = (0.2, n2,s)
1, where n2,s is the solution of

1.24 (n2,s − 0.1) =

√
2

2.307

(
(0.2n2,s)

3/2 − (0.1)3/2
)
, (3.7)

which is exactly the equation (3.1) with U = U2. Then the left state U0 = (1, 0.1) and
the right state U2 is connected by a single 2-shock wave. In the range h < 1,(2.9) and
(2.10) make no sense as 1-shock wave and 2-shock wave by the entropy inequalities,
respectively.

Similarly, we find admissible wave curves in the case h > h0. Fix U0 = (h0, n0) =
(0.4, 0.08) and C = 2.307, and we plot the 1-rarefaction curve and 2-rarefaction curve,
which are given as follows, respectively :

h = 0.4, n > 0.08, (3.8)

h =
n (0.08)2

(
n
√

0.2− (n− 0.08)
√

2.307
2

)2 , h > 0.4, (3.9)

which means that (3.8) makes no sense as 1-rarefaction 2, but (3.9) makes sense as
2-rarefaction by (2.11).

1Using Newton’s method, a sample of the approximate solution for equation (3.7) is obtained as
n2,s = 0.0777100325.

2When h 6= hp, which is typical as phenomena of fluid motion [3], 1-rarefaction waves do not
exist. On the other hand, if we admit h = hp, a 1-rarefaction wave connecting (hp, np) and (hp, n)
with np < n < hp is also admitted.
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Fig. 3.3: In this figure we plot a graph of two rarefaction wave curves (3.8) and
(3.9). The dashed and solid lines represent the 1-rarefaction wave curve (3.8) and the
2-rarefaction wave curve (3.9) respectively.

w1 w2 appear
ance

1-rarefaction 4
1-rarefaction 2-rarefaction 4
1-rarefaction 1-shock wave ×
1-rarefaction 2-shock wave ×
2-rarefaction 1-rarefaction ×

2-rarefaction ©
2-rarefaction 1-shock wave ×
2-rarefaction 2-shock wave ×

w1 w2 appear
ance

1-shock wave 1-rarefaction ×
1-shock wave 2-rarefaction ×

1-shock wave ×
1-shock wave 2-shock wave ×
2-shock wave 1-rarefaction ×
2-shock wave 2-rarefaction ×
2-shock wave 1-shock wave ×

2-shock wave ©

Table 3.1: Combination of solutions to appearance. wi (i = 1, 2) denote the simple
wave in the i-characteristic field.

As an example, we take U2 = (1.0, n2,r)
3, where n2,r is the solution of

0.08
√
n2,r + (n2,r − 0.08)

√
2.307

2
= n2,r

√
0.2. (3.10)

Then the left state U0 = (0.4, 0.08) and the right state U2 is connected by a single
2-rarefaction wave.

Our argument is summarized in Table 3.1. Following the terminology “allowed
sequence” of waves in [5], wave sequences consisting of shocks and rarefactions asso-
ciated with identical characteristic fields are excluded.

4. Conclusions. In this paper we have dealt with a Riemann problem for the
system of conservation laws (1.5)–(1.6) which is derived from the dilution approxima-

3Using Newton’s method, a sample of the approximate solution for equation (3.10) is obtained
as n2,r = 0.0972723141.
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tion of a suspension flow on an incline as a mathematical model in the settled regime.
Murisic et al. [4] dealt only with a exact solution for the system (1.5)–(1.6), when the
initial volume fraction is fixed as φ(x, 0) ≡ f0 for some given f0 � 1. On the other
hand, we aim at covering the solution of this system when the initial volume fraction
φ(x, 0) is a variable satisfying 0 < φ < 1. In Sections 2 and 3, we show that the
weak solution of this Riemann problem is connected by a single 2-rarefaction wave
from the left state U0 = (h0, n0) to the right state U2 = (h2, n2) when h0 < h2, and
connected by a single 2-shock wave when h0 > h2. To illustrate one example of these
wave curves, we impose the initial conditions as follows,

Ur(x, 0) =

{
U0 = (0.4, 0.08) x < 0

U2 = (1.0, n2,r) x > 0
, Us(x, 0) =

{
U0 = (1.0, 0.1) x < 0

U2 = (0.2, n2,s) x > 0
,

where n2,s and n2,r is the solution of (3.7) and (3.10) respectively. We take the values
of Ur(x, 0) and Us(x, 0) to satisfy the ranges 0 ≤ h ≤ 1 and 0 ≤ n ≤ 0.1 of the
exact solution handled in [4]. With the Riemann data Ur(x, 0), the weak solution
consists of a single 2-rarefaction wave whose curve is shown in Figure 3.3. With the
Riemann data Us(x, 0), the weak solution consists of a single 2-shock wave whose
curve is shown in Figure 3.2(b). The construction method given in Sections 2 and 3
may also be useful for other suspension models even if the initial volume fraction φ
depends on x. The correspondence between rarefaction wave and shock wave obtained
from (1.5)-(1.6) and experimental results in [4], as well as solutions of (general) initial
value problems discussed there, will be a next issue.
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BEHAVIOUR OF THE SUPPORT OF THE SOLUTION APPEARING
IN SOME NONLINEAR DIFFUSION EQUATION WITH

ABSORPTION ∗

KENJI TOMOEDA†

Abstract. Numerical experiments suggest interesting properties in the several fields of fluid
dynamics, plasma physics and population dynamics. Among such properties, we may observe the
interesting phenomena; that is, the repeated appearance and disappearance phenomena of the region
penetrated by the fluid in the flow through a porous media with absorption. The model equation in
two dimensional space is written in the form of the initial-boundary value problem for a nonlinear
diffusion equation with the effect of absorption. In this paper we show some numerical examples and
prove such phenomena.

Key words. nonlinear diffusion, support dynamics, finite difference scheme

AMS subject classifications. 35K65, 35B99, 65M06

1. Introduction. We are concerned with the dynamical behaviour of the region
penetrated by the fluid in the filtration of the flow through an absorbing medium.
The representative filtration is well known as the flow through porous media where
the water evaporates. In particular, it is expected that such a seepage exhibits the
repeated appearance and disappearance phenomena of such a region, which are caused
by the interaction between the nonlinear diffusion and the penetration of the fluid
from the boundary on which the flowing tide and the ebbing tide occur. To realize
such phenomena we introduce the simplest model based on the following nonlinear
diffusion equation with absorption in two dimensional space [7, 9] :





vt(t, x, y) = ∆(vm)− cvp in (0,∞)× Ω,
v(t, x, y) = ψ(t, x, y) on (0,∞)× ∂Ω,
v(0, x, y) = v0(x, y) on Ω,

(1.1)

where Ω is a bounded domain in R2 with piecewisely smooth boundary ∂Ω, and
satisfies the exterior sphere condition. Moreover, v(≥ 0) denotes the density of the
fluid, m > 1, 0 < p < 1, c > 0, m + p ≥ 2, and v0(x, y) and ψ(t, x, y) are non-
negative continuous functions. This equation is also used to describe the propagation
of thermal waves in plasma physics [8].

From analytical points of view, the existence and uniqueness of a weak solution
and the comparison theorem are proved by Bertsch [1].

We state some mathematical results in one dimensional case. For the initial
value problem, Rosenau and Kamin [8] suggested the support splitting phenomena in
several numerical examples, and we also constructed the initial function for which
the repeated support splitting and merging phenomena appear [10]. Here the support
means the region penetrated by the fluid; that is, the region where v > 0. For the

∗This work was supported by Japan Society for the Promotion of Science through Grand-in-Aid
for Scientific Research(C):No.16K05271.
†Graduate School of Informatics, Kyoto University, Sakyo-ward, Kyoto 606-8501, JAPAN

(ktomoeda@acs.i.kyoto-u.ac.jp).
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initial-boundary value problem Kersner proved the appearance of the support splitting
phenomena [5], but he did not show that the support merging phenomena appear after
the support splits. To investigate the occurrence of the repeated support splitting and
merging phenomena, we construct two stationary solutions, the one is the support
non-splitting solution and the other is the support splitting solution. We proved this
occurrence by imposing the periodicity on the boundary value which takes the value
greater than the former boundary value and less than the latter [11].

In two dimensional case, to the best of my knowledge, we are unable find any
result concerned with the repeated appearance and disappearance phenomena of the
support. By employing the argument used in the one dimensional case we try to justify
the occurrence of such phenomena.

2. Stationary solutions and numerical examples. In this section we con-
sider the profile of the stationary solution w(x, y)(≥ 0) satisfying

{
∆(wm)− cwp = 0 in Ω,
w(t, x, y) = ϕ(x, y) on ∂Ω,

(2.1)

where m > 1, 0 < p < 1, c > 0, m + p ≥ 2, and ϕ(x, y) is a non-negative continuous
function on ∂Ω. Then the existence and uniqueness of the solution w(x) follows (see
Theorem 12.5 in [12]).

Theorem 2.1. The equation (2.1) has the unique solution w(x, y) such that
wm(x, y) ∈ C2, pm (Ω) ∩ C0(Ω̄).

We introduce the radial solution of (2.1), which is used in the numerical compu-
tation. Put

φ(x, y) =

{(
m− p

2m

)2

c(x2 + y2)

} 1
m−p

.(2.2)

It is obvious that (2.2) satisfies the first equation of (2.1) with w = φ and w(x, y) > 0
for (x, y) 6= (0, 0).

To investigate the behaviour of the support of the solution (1.1) we tried numerical
computation by our difference scheme, which approximates the following problem
instead of (1.1):





ut(t, x, y) = mu∆u+ a(u2
x + u2

y)− (m− 1)cuq in (0,∞)× Ω,
u(t, x, y) = ψm−1(t, x, y) on (0,∞)× ∂Ω,
u(0, x, y) = (v0)m−1(x, y) on Ω,

(2.3)

where a = m
m−1 and q = m+p−2

m−1 , and this equation can be obtained by putting

u = vm−1 [6, 10].
We put m = 1.5, p = 0.5, c = 6, Ω = (−1.5, 1.5) × (−1.5, 1.5) and the space

mesh width h = 1
32 , and show the numerical profiles in Cases I and II.

Case I. The boundary condition ψ(t, x, y) is independent of t; that is,

Example 1. ψ(t, x, y) =
{
φm−1(x, y) + 0.5

} 1
m−1 on ∂Ω (Left figures in Fig. 2.1),

where v0(x, y) =
{
φm−1(x, y) + 0.5 + 1.25 cos θ(x) cos θ(y)

} 1
m−1 on Ω;

Example 2. ψ(t, x, y) =
{
φm−1(x, y)− 0.5

} 1
m−1 on ∂Ω (Right figures in Fig. 2.1),

where v0(x, y) =
{

[φm−1(x, y)− 0.5]+ + 1.5 cos2 θ(x) cos2 θ(y)
} 1
m−1 on Ω.

In both examples we put θ(η) = −π
2

+
π

3
(η + 1.5) (−1.5 ≤ η ≤ 1.5).
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Fig. 2.1. The non-appearance and appearance phenomena of the region where v = 0



362 K. TOMOEDA

The region where v = 0, which is indicated in black, begins to appear in the right figure
with t = 0.4545, but does not in the left figures. We note that such a region in the right
figure with t = 0.4909 remains until t = 3.972 at which we stop computation. Thus
numerical solutions converge to the stationary solutions as t increases, respectively.

Case II. We impose a period on ψ(t, x, y) and put v0(x, y) = φ(x, y) on Ω; that is,

Example 3. ψ(t, x, y) =
{
φm−1(x, y) + 0.5 sin(2πt)

} 1
m−1 on ∂Ω (Fig. 2.2);

Example 4. ψ(t, x, y) =
{
φm−1(x, y) + 0.5 sin(8πt)

} 1
m−1 on ∂Ω (Fig. 2.3).
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Fig. 2.2. The repeated appearance and disappearance phenomena of the region where v = 0.
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Fig. 2.3. The appearance of the region where v = 0 is not observed.

In Figs. 2.2 and 2.3 the initial and boundary profiles are located as equal to the same
stationary solution φ(x, y). The increasing and decreasing profiles appear repeatedly
as t increases in both figures. The region where v = 0 appears at t = 2.804 and
disappears at t = 3.303 in Fig. 2.2. We may observe that the profile of the numerical
solution at t = 2.302 approximately coincides with the one at t = 3.303. The numerical
period 1.001 = 3.303 − 2.302 corresponds to 1.00 of ψ(t, x, y) in Example 3. Thus
Fig. 2.2 shows the repeated appearance and disappearance phenomena of the region
where v = 0. On the other hand, Fig. 2.3 shows the numerical period 0.250 =
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2.490 − 2.240, which coincides with 1
4 of ψ(t, x, y) in Example 4. The numerical

solution is close to zero in the neighborhood of (x, y) = (0, 0), but not equal to zero.
The region where v = 0 never appears.

We mention our numerical method for (2.3), which is the following explicit finite
difference scheme:

un+1
h = Pk,hDk,hHk,hu

n
h (n = 0, 1, · · · ).(2.4)

Here unh(x, y) is the numerical approximation to the solution u(tn, x, y). Pk,h, Dk,h and
Hk,h approximate ut = mu∆u, ut = −(m− 1)cuq and ut = a(u2

x + u2
y), respectively,

and k ≡ kn+1 = tn+1 − tn is a variable time step determined by

kn+1 =
h

2amax(‖(unh)x‖∞, ‖(unh)y‖∞)
.(2.5)

Since h = 1
32 , it is observed that kn+1 ≈ 6.0 × 10−4 ∼ 5.2 × 10−3 in Examples 1-4,

which is very small. This may affect the shape of the region where v = 0. In the right
figures of Fig. 2.1 such a region looks like a square after t = 0.4909. Unfortunately,
we are unable to analyze the appearance of such a figure. However, it is expected
that these numerical solutions in Examples 1-4 qualitatively capture the appearance
and disappearance phenomena of the region where v = 0.

In the following section we prove the properties appearing in Figs. 2.1–2.2. At
the present time it seems difficult for us to prove the occurrence of such phenomena
in Fig. 2.3.

3. Stabilization.
Theorem 3.1 (Stabilization). Let v(t, ·) be the solution of (1.1) with ψ(t, x, y) =

ϕ(x, y), where ϕ(x, y) is a non-negative continuous function on ∂Ω. Then v(t, ·)
converges to the unique stationary solution w(·) of (2.1) in C(K) as t → ∞, where
K ⊂ Ω is an arbitrary fixed compact set.

Proof. We state the proof briefly. For the solution v(t, ·) we consider a continuous
orbit γ = {v(t, ·) : t ≥ 0} in C(K). By the result of DiBenedetto [2], γ is precompact
in C(K); that is,

∃{tn},∃ v̂(·) : tn →∞ and v(tn, ·)→ v̂(·) ∈ ω in C(K) as n→∞,

where ω is the ω-limit set of γ. On the other hand, the following inequality is proved
for the solutions v1(t, ·) and v2(t, ·) of (1.1) by Bertsch [1]:

‖v1(t, ·)− v2(t, ·)‖L1(Ω) ≤ eMt‖v1(0, ·)− v2(0, ·)‖L1(Ω) for t ≥ 0,(3.1)

where M is the constant number satisfying

(−sp)− (−rp) ≤M(s− r) for any (0 ≤ r ≤ s).(3.2)

In general, M = 0. However, taking the boundedness of the solution v of (1.1) and
the stationary solution w of (2.1) into consideration, we can take |M(v, w)| << 1
(M(v, w) < 0) depending on v and w, and obtain

‖v(tn, ·)− w(·)‖L1(K) ≤ ‖v(tn, ·)− w(·)‖L1(Ω)(3.3)

≤ eM(v,w)tn‖v(0, ·)− w(·)‖L1(Ω) for t ≥ 0,
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which tends to 0 as n → ∞. Thus v̂(x, y) = w(x, y) holds on K, and the theorem
follows from the uniqueness of the stationary solution w(x, y).

Let wi(x, y) (i = 1, 2) be two non-negative solutions of (2.1) satisfying w2(x, y) >
w1(x, y) on Ω̄. Assume that w1(x, y) has the non-empty region where w1(x, y) = 0.
Then Theorem 3.1 predicts the following result:

If the time while we keep the boundary value ψ(t, x, y) of v(t, x, y) greater than
w2(x, y) on ∂Ω is sufficiently long, then v(t, x, y) > 0 on Ω. Conversely, if the time
while we keep ψ(t, x, y) less than w1(x, y) on ∂Ω is sufficiently long, then the region
where v(t, x, y) = 0 appears.

Thus we may expect the repeated appearance and disappearance phenomena of
the region where v = 0 by imposing the period and magnitude on ψ(t, x, y).

However, since Theorem 3.1 does not guarantee the appearance of the region
where v = 0 in finite time, it is unclear in Fig. 2.1 and 2.2 whether or not such
phenomena occur. So, we will prove it for the specific case in the next section.

4. Galaktionov and Vazquez’s particular solution. Let m + p = 2 and
0 < p < 1. Then we can construct the Galaktionov-Vazquez’s particular solution
which satisfies the first equation of (1.1)[3, 4]. We briefly state its construction. In
the first equation of (2.3) we find q = 0 and have

ut = mu∆u+ a(u2
x + u2

y)− (m− 1)cχ{u>0}, a =
m

m− 1
.(4.1)

We assume that this explicit solution is written in the form u(t, x) = f(t)+g(t)h(x, y).
Then f , g and h satisfy

f ′ + g′h = m(f + gh)g(hxx + hyy) + ag2(h2
x + h2

y)− (m− 1)c,(4.2)

where ′ denotes the derivative with respect to t. Let h(x, y) = x2 + y2 in (4.2). Then
we have

{
f ′ = 4mfg − (m− 1)c,
g′ = 4(m+ a)g2.

(4.3)

Solving (4.3), we obtain a solution for two parameters ε > 0 and σ̂ > 0:

u(t, x, y) = {E − 4(m+ a)t}−1(4.4)

×
[
D{E − 4(m+ a)t}2 +G {E − 4(m+ a)t}

1
m

+ x2 + y2

]

+

,

u(0, x, y) = ε(x2 + y2) + σ̂,(4.5)

where

G ≡ G(m, c, σ̂, ε) = (σ̂ −DE)E
m−1
m , D ≡ D(m, c) =

(m− 1)c

4(2m+ a)
, E ≡ E(ε) = ε−1.
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Using the same argument as used in [10], we have

Lemma 4.1. Let σ̂ < DE. Then

σ̂

(m− 1)c
< t̂(m, c, σ̂, ε) < T̂ (m, ε)(4.6)

holds and u satisfies

u(t, x, y) > 0 for (t, x, y) ∈ [0, T̂ (m, ε))×R2 \ S,(4.7)

u(t, x, y) = 0 for (t, x, y) ∈ S,(4.8)

lim
t↗T̂ (m,ε)

u(t, 0, 0) = 0, lim
t↗T̂ (m,ε)

u(t, x, y) =∞ for (x, y) 6= (0, 0),(4.9)

where

t̂(m, c, σ̂, ε) =
1

4(m+ a)

{
E −

(−G
D

) m
2m−1

}
, T̂ (m, ε) =

E

4(m+ a)
,(4.10)

S =
{

(t, x, y) | t ∈
[
t̂(m, c, σ̂, ε), T̂ (m, ε)

)
and(4.11)

x2 + y2 ≤ {E − 4(m+ a)t}
1
m

[
−G−D {E − 4(m+ a)t}

2m−1
m

]}
.

(See Fig. 4.1 in the next page).

By the simple calculations we can show that v(t, x, y) = u(t, x, y)
1

m−1 satisfies the
first equation of (1.1) for (t, x) ∈ ((0, T̂ (m, ε))×R2)\∂S. Since 1 < m < 2, it follows

that
1

m− 1
> 1 and

m

m− 1
> 2, which implies that vt(t, x, y) = ∆(vm)(t, x, y) = 0

hold on (t, x, y) ∈ ∂S\(T̂ (m, ε), 0, 0). Thus v(t, x, y) becomes the solution of the first
equation of (1.1) on (0, T̂ (m, ε))×R2.

Under the specific case where m+ p = 2 and 0 < p < 1 we have

Theorem 4.2. Assume that w(x, y) be the stationary solution of (2.1) with
the non-empty region where w(x, y) = 0. Let v(t, x, y) be the solution of (1.1) with
ψ(t, x, y) = w(x, y) on ∂Ω. Then the region where v(t, x, y) = 0 appears in finite
time.

Proof. Without loss of generality we assume that w(x, y) ≡ 0 in the neighborhood
of (x, y) = (0, 0). LetGV (t, x, y; m, c, σ̂, ε) denote Galaktionov and Vazquez’s solution
written in the form of the term on the right side of (4.4). From the properties of this
solution it is possible to take sufficiently large ε(> 0) so that there exists some constant
tε(> 0) satisfying

GV (0, x, y; m, c, 0, ε) ≥ wm−1(x, y) on Ω̄,(4.12)

GV (0, x, y; m, c, 0, ε) > wm−1(x, y) on ∂Ω,(4.13)

GV (t, x, y; m, c, 0, ε) > wm−1(x, y) on [0, tε)× ∂Ω.(4.14)

Taking the positive number σ̂ < DE, we have G < 0. Then the region where
GV (t, x, y ; m, c, σ̂, ε) = 0 appears at t = t̂(m, c, σ̂, ε)(> 0) by Lemma 4.1. Moreover,
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since t̂(m, c, σ̂, ε)↘ 0 as σ̂ ↘ 0, we take σ̂ sufficiently small so that t̂(m, c, σ̂, ε) < tε.
We fix σ̂ and ε. Then Theorem 3.1 (Stabilization) yields for sufficiently large t∗

GV (0, x, y; m, c, σ̂, ε) > u(t∗, x, y) ≡ vm−1(t∗, x, y) on Ω̄.(4.15)

We have from (4.14) and (4.4)

GV (t, x, y; m, c, σ̂, ε) > GV (t, x, y; m, c, 0, ε)(4.16)

> wm−1(x, y) = u(t∗ + t, x, y)

≡ vm−1(t∗ + t, x, y) in [0, tε)× ∂Ω.

Applying the comparison theorem [1], which is concerned with the initial and bound-
ary data, to (4.15) and (4.16), we obtain

GV (t, x, y; m, c, σ̂, ε) ≥ u(t∗ + t, x, y) on [0, tε)× Ω̄.(4.17)

Thus the region where v(t, ·) = u(t, ·) 1
m−1 = 0 appears at t = t∗ + t̂(m, c, σ̂, ε), and

the proof is complete.

0
0 −→√x2 + y2

ε(x2 + y2) + σ̂

σ̂ {
0 −→√x2 + y2

t

t̂

T̂

u = 0 u > 0

u > 0

Blow-up ((x, y) 6= (0, 0))

Fig. 4.1. The initial function and the support of Galaktionov and Vazquez’s solution (4.4).
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AN ELEMENTARY PROOF OF ASYMPTOTIC BEHAVIOR OF
SOLUTIONS OF U ′′ = V U ∗
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Abstract. We provide an elementary proof of the asymptotic behavior of solutions of second
order differential equations without successive approximation argument.

Key words. Elementary proof, second-order ordinary differential equations, asymptotic behav-
ior.
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1. Introduction. The asymptotic behavior of the solutions of the ordinary dif-
ferential equation

u′′(x) = V (x)u(x), x ∈ (0,∞) (1.1)

is an important tool in various fields of mathematics and mathematical physics, in
particular when special functions are involved. It can be found in [3, Section 6.2] and
partially in [1, Chapter 10] and in [2, Chapter IV] that if V (x) = f(x) + g(x), that is,

u′′(x) =
(
f(x) + g(x)

)
u(x), x ∈ (0,∞) (1.2)

and

ψf,g := |f |− 1
4

(
− d2

dx2
+ g

)
|f |− 1

4 is absolutely integrable in (0,∞), (1.3)

then two solutions of (1.2) behave like

u(x) ≈ |f |−1/4e±
∫ x
0
|f(s)|1/2 ds, u(x) ≈ |f |−1/4e±i

∫ x
0
|f(s)|1/2 ds.

The proof is usually done treating first the cases f = ±1 and then reducing to them
the general case, by the Liouville transformation. We follow the same approach but
simplify the cases f = ±1 by using Gronwall’s Lemma, instead of successive ap-
proximations. In order to keep the exposition at an elementary level, we avoid also
Lebesgue integration and dominated convergence (which could shorten some proofs);
note that we only use the notation f ∈ L1(I) when f is absolutely integrable in I.
We consider both the behavior at infinity and near isolated singularities and apply
the results to Bessel functions. We also recall that the general case

u′′(x) + g(x)u′(x) = V (x)u(x)

can be reduced to the form (1.1) (with another V ) by writing u = 1
2 (exp

∫
g)v.
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This kind of analysis can be applied to the spectral analysis for Schrödinger
operator with singular potentials (for example S = −∆ + V (|x|) with V (r) ∼ r−δ

near the origin). Actually, the essential selfadjointness of the Schrödinger operator S
can be treated by using the limit-point and limit-circle criteria (see e.g., Reed–Simon
[4]) which require the behavior of two solutions to u − u′′ + N−1

r u + V u = 0. The
behavior of two solutions above leads also to resolvent estimates for S. From this
view-piont, the elemental consideration in the present paper helps in understanding
various spectral phenomena for second-order differential operators.

2. Behavior near infinity in the simplest cases. First we consider the cases
f ≡ 1 and f ≡ −1 and we prove the following results to which the general case
reduces.

Proposition 2.1. If f = 1, g ∈ L1(0,∞), then there exist two solutions u1 and
u2 of (1.2) such that, as x→∞,

e−xu1(x)→ 1, e−xu′1(x)→ 1, (2.1)

exu2(x)→ 1, exu′2(x)→ −1. (2.2)

Proposition 2.2. If f = −1, g ∈ L1(0,∞), then there exist two solutions v1

and v2 of (1.2) such that, as x→∞,

e−ixu1(x)→ 1, e−ixu′1(x)→ i, (2.3)

eixu2(x)→ 1, eixu′2(x)→ −i. (2.4)

By variation of parameters, every solution of (1.2) can be written as

u(x) = c1e
ζx + c2e

−ζx +
1

2ζ

∫ x

a

(eζ(x−s) − e−ζ(x−s))g(s)u(s) ds, x ∈ [a,∞), (2.5)

with c1, c2 ∈ C, ζ = 1, i,−i and a > 0. In the following Lemma we choose c1 = 1, c2 =
0 to construct a solution which behaves like eζx as x→∞, ζ = 1, i,−i.

Lemma 2.3. Let ζ ∈ {1, i,−i}, a > 0 and g ∈ L1(a,∞). If u ∈ C2([a,∞))
satisfies

u(x) = eζx +
1

2ζ

∫ x

a

(eζ(x−s) − e−ζ(x−s))g(s)u(s) ds, x ∈ [a,∞),

then z(x) := e−ζxu(x) satisfies

|z(x)| ≤ e
∫ x
a
|g(r)| dr, x ∈ [a,∞) (2.6)

‖zg‖L1(a,∞) ≤ e‖g‖L1(a,∞) − 1. (2.7)

Proof. Note that

z(x) = 1 +
1

2ζ

∫ x

a

(1− e−2ζ(x−s))g(s)z(s) ds, x ∈ [a,∞).

Since |1− e−2ζ(x−s)| ≤ 2 for s ≤ x, we see that for x ≥ a,

|z(x)| ≤ 1 +

∣∣∣∣
1

2ζ

∫ x

a

(1− e−2ζ(x−s))g(s)z(s) ds

∣∣∣∣ ≤ 1 +

∫ x

a

|g(s)| |z(s)| ds.
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Thus Gronwall’s lemma implies (2.6), in particular z is bounded on [a,∞) and then
zg ∈ L1(a,∞). Moreover we have

‖zg‖L1(a,∞) ≤
∫ ∞

a

|g(s)| e
∫ s
a
|g(r)| dr ds = e‖g‖L1(a,∞) − 1.

Proof of Proposition 2.1. Let a > 0 such that ‖g‖L1(a,∞) < log 2 and let u
be in Lemma 2.3 with ζ = 1. Then u is one solution of (1.2) with f = 1. Set
z(x) = e−xu(x). Then noting that as x→∞,

∣∣∣∣
∫ x

a

e−2(x−s)g(s)z(s) ds

∣∣∣∣ ≤
∫ a+x

2

a

e−2(x−s)|g(s)z(s)| ds+

∫ x

a+x
2

|g(s)z(s)| ds

≤ e−x+a‖gz‖L1(a,∞) + ‖gz‖L1( a+x2 ,∞) → 0,

we see that z satisfies

z(x)→ z∞ := 1 +

∫ ∞

a

g(s)z(s) ds as x→∞,

z′(x) =

∫ x

a

e−2(x−s)g(s)z(s) ds→ 0 as x→∞.

By (2.7), we deduce that ‖zg‖L1(a,∞) < 1. Therefore |z∞ − 1| ≤ ‖zg‖L1(a,∞) < 1 and

hence z∞ 6= 0. The function u1(x) := z−1
∞ exz(x) satisfies (2.1). Moreover, since u−2

1

is integrable near ∞, another solution of (1.2) is given by

u2(x) = 2u1(x)

∫ ∞

x

1

u1(s)2
ds. (2.8)

Integrating by parts we deduce that, as x→∞,

exu2(x) = 2z∞e
2xz(x)

∫ ∞

x

1

e2s[z(s)]2
ds

= z∞e
2xz(x)

(
−
[

1

e2s[z(s)]2

]s=∞

s=x

− 2

∫ ∞

x

z′(s)
e2s[z(s)]3

ds

)
→ 1

and

[exu2(x)]′ = 2z∞e
2xz′(x)

∫ ∞

x

1

e2s[z(s)]2
ds+ 2exu2(x)− 2z∞

z(x)
→ 0.

�
Proof of Proposition 2.2. Let a > 0 such that ‖g‖L1(a,∞) < log 2 and let ũ1 and

ũ2 be as in Lemma 2.3 with ζ = i and with ζ = −i, respectively. Noting that both ũ1

and ũ2 satisfy (1.2) with f = −1, and setting z1(x) = e−ixũ1(x) and z2(x) = eixũ2(x),
we have as x→∞

e2ix

(
z1(x)− 1− 1

2i

∫ ∞

a

g(s)z1(s) ds

)
→ 1

2i

∫ ∞

a

e2isg(s)z1(s) ds,

e−2ix

(
z2(x)− 1 +

1

2i

∫ ∞

a

g(s)z2(s) ds

)
→ − 1

2i

∫ ∞

a

e−2isg(s)z2(s) ds
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and

e2ixz′1(x)→
∫ ∞

a

e2isg(s)z1(s) ds, e−2ixz′2(x)→
∫ ∞

a

e−2isg(s)z2(s) ds.

It follows that ũ1 ≈ ξ1e
ix + ξ2e

−ix, ũ′1 ≈ iξ1e
ix − iξ2e−ix and ũ2 ≈ η1e

ix + η2e
−ix,

ũ′2 ≈ iη1e
ix − iη2e

−ix as x→∞ where

ξ1 = 1 +
1

2i

∫ ∞

a

g(s)z1(s) ds, ξ2 = − 1

2i

∫ ∞

a

e2isg(s)z1(s) ds,

and similarly for η1, η2. From (2.7) we see that |ξ1| > 1/2, |ξ2| < 1/2, |η1| < 1/2 and
|η2| > 1/2 and hence |ξ1η2−ξ2η1| > 0 and ũ1 and ũ2 are linearly independent. There-
fore we can construct solutions u1 and u2 which satisfy (2.3) and (2.4), respectively.
�
We consider now the case f = 0, assuming extra conditions on g.

Proposition 2.4. Assume that xg ∈ L1(0,∞). Then there exist two solutions
u1 and u2 of

u′′(x) = g(x)u(x) (2.9)

such that

x−1u1(x)→ 1, u′1(x)→ 1,

u2(x)→ 1, xu′2(x)→ 0

as x→∞, respectively.
Proof. Set u(x) := xz(x). Then z′′ + (2/x)z′ = gz and, assuming z′(a) = 0 we

obtain

z′(x) = x−2

∫ x

a

s2g(s)z(s) ds. (2.10)

Then assuming z(a) = 1

|z(x)− 1| ≤
∫ x

b

t−2

(∫ t

a

s2|g(s)z(s)| ds
)
dt

=

∫ x

a

(∫ x

s

t−2 dt

)
s2|g(s)z(s)| ds ≤

∫ x

a

s|g(s)z(s)| ds. (2.11)

Gronwall’s lemma yields

|z(x)| ≤ e
∫ x
a
s|g(s)| ds

hence z is bounded and z′ ∈ L1(a,∞) by (2.10). As in the proof of Proposition 2.1,
z(x)→ z∞ 6= 0 if a is sufficiently large. Moreover, since as x→∞,

|xz′(x)| ≤
√
a

x

∫ √ax

a

s|g(s)z(s)| ds+

∫ x

√
ax

s|g(s)z(s)| ds→ 0,

u1(x) := z−1
∞ xz(x) satisfies the statement. Another solution u2 of (1.2) is given by

u2(x) := u1(x)

∫ ∞

x

1

u1(s)2
ds.

As in the proof of Proposition 3.1 we can verify that u2 satisfies u2(x) → 1 and
xu′2(x)→ 0 as x→∞. �
Observe the integrability condition for xg near∞ is necessary. In fact, if g(x) = cx−2

the above equation has solutions xα if α2 − α = c.
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3. Behavior near infinity in the general case. We recall that the function
ψf,g is defined in (1.3) and set vj(x) = |f |1/4uj(x), j = 1, 2 if u1, u2 are solutions
of (1.2). The hypothesis |f |1/2 not summable near ∞ guarantees that the Liouville
transformation Φ of Lemma 3.3 maps (a,∞) onto (0,∞), so that the results of the
previous section apply. When it is not satisfied Φ maps (a,∞) onto a bounded interval
(0, b) and the behavior of the solutions of (3.5) near b is more elementary (in some
cases one can use Proposition 2.4).

Proposition 3.1. Assume that f(x) > 0 in (a,∞), |f |1/2 6∈ L1(a,∞) and
ψf,g ∈ L1(a,∞). Then there exist two solutions u1 and u2 of (1.2) such that as
x→∞

e−
∫ x
a
|f(r)|1/2drv1(x)→ 1, |f(x)|−1/2e−

∫ x
a
|f(r)|1/2drv′1(x)→ 1, (3.1)

e
∫ x
a
|f(r)|1/2drv2(x)→ 1, |f(x)|−1/2e

∫ x
a
|f(r)|1/2drv′2(x)→ −1. (3.2)

Proposition 3.2. Assume that f(x) < 0 in (a,∞), |f |1/2 6∈ L1(a,∞) and ψf,g ∈
L1(a,∞). Then there exists two solutions u1 and u2 of (1.2) such that asx→∞

e−i
∫ x
a
|f(r)|1/2drv1(x)→ 1, |f(x)|−1/2e−i

∫ x
a
|f(r)|1/2drv′1(x)→ i, (3.3)

ei
∫ x
a
|f(r)|1/2drv2(x)→ 1, |f(x)|−1/2ei

∫ x
a
|f(r)|1/2drv′2(x)→ −i. (3.4)

The proof is based on the well-known Liouville transformation that we recall
below.

Lemma 3.3. Let a > 0 and assume that f ∈ C2([a,∞)) satisfies |f(x)| > 0,
|f |1/2 6∈ L1(a,∞). Define Φ ∈ C2([a,∞)) by

Φ(x) :=

∫ x

a

|f(r)|1/2 dr, x ∈ [a,∞).

Then Φ−1 : [0,∞)→ [a,∞) and if u satisfies (1.2) the function

w(y) := |f(Φ−1(y))|1/4u(Φ−1(y)), y ∈ [0,∞)

satisfies

w′′(y) =

(
f(Φ−1(y))

|f(Φ−1(y))| +
ψf,g(Φ

−1(y))

|f(Φ−1(y))|1/2
)
w(y). (3.5)

Proof. Note that Φ′(x) = |f(x)|1/2 and d(Φ−1)
dy (y) = |f(Φ−1(y))|−1/2. Setting
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w(y) = |f(Φ−1(y))|1/4u(Φ−1(y)) (and using ξ = Φ−1(y) for simplicity), we have

w′(y) =
d

dx

[
|f |1/4u

]
(ξ)

d(Φ−1)

dy
(y)

= |f(ξ)|−1/4u′(ξ) +

[
|f |−1/2 d

dx
|f |1/4

]
(ξ)u(ξ)

=

[
|f |−1/4u′ − d

dx
(|f |−1/4)u

]
(ξ),

w′′(y) =
d

dx

[
|f |−1/4u′ − d

dx
(|f |−1/4)u

]
(ξ)

d(Φ−1)

dy
(y)

= |f(ξ)|−3/4u′′(ξ)−
[
|f |−1/2 d

2

dx2
|f |−1/4

]
(ξ)u(ξ)

= |f(ξ)|−1(f(ξ) + g(ξ))w(y)−
[
|f |−3/4 d

2

dx2
|f |−1/4

]
(ξ)w(y).

Thus we obtain (3.5). �
Proof. [Proof of Propositions 3.1 and 3.2] It suffices to apply Propositions 2.1 and

2.2 to the respective cases f > 0 and f < 0. Set h(y) = ψf,g(Φ
−1(y))|f(Φ−1(y))|−1/2.

Then

∫ b

0

|h(y)| dy =

∫ ∞

a

|ψf,g(x)| dx.

Therefore Propositions 2.1 and 2.2 are applicable to w′′ = ±w+hw, respectively. Fi-
nally, using Lemma 3.3 and taking u(x) = |f(x)|−1/4w(Φ(x)), we obtain the respective
assertions in Propositions 3.1 and 3.2.

4. Behavior near interior singularities. If f and g have local singularities at
x0, then the behavior of solutions near x0 is also considerable. For simplicity, we take
x0 = 0. The following propositions are meaningful when |f |1/2 is not integrable near
0, in particular when |f |1/2 = cx−1. We recall that vj(x) = |f(x)|1/4uj(x), j = 1, 2.

Proposition 4.1. Assume that f(x) > 0 in (0,∞) and ψf,g ∈ L1(0,∞). Then
there exist two solutions u1 and u2 of (1.2) such that as x ↓ 0

e−
∫ 1
x
|f(r)|1/2drv1(x)→ 1, |f(x)|−1/2e−

∫ 1
x
|f(r)|1/2drv′1(x)→ −1,

e
∫ 1
x
|f(r)|1/2drv2(x)→ 1, |f(x)|−1/2e

∫ 1
x
|f(r)|1/2drv′2(x)→ 1.

Proposition 4.2. Assume that f(x) < 0 in (0,∞) and ψf,g ∈ L1(0,∞). Then
there exist two solutions u1 and u2 of (1.2) such that as x ↓ 0

e−
∫ 1
x
|f(r)|1/2drv1(x)→ 1, |f(x)|−1/2e−

∫ 1
x
|f(r)|1/2drv′1(x)→ −i,

e
∫ 1
x
|f(r)|1/2drv2(x)→ 1, |f(x)|−1/2e

∫ 1
x
|f(r)|1/2drv′2(x)→ i.

Proof of Propositions 4.1 and 4.2. Setting w(s) := su(s−1) we see that

w′′(s) = s−3u′′(s−1)

= s−3(f(s−1) + g(s−1))u(s−1) = s−4(f(s−1) + g(s−1))w(s).
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Let f̃(s) := s−4f(s−1) and g̃(s) := s−4g(s−1). Noting that

ψf̃ ,g̃(s) = s|f(s−1)|−1/4

(
− d2

ds2
+ s−4g(s−1)

)(
s|f(s−1)|−1/4

)

= s−2|f(s−1)|−1/4

(
− d2

dx2
|f |−1/4 + g|f |−1/4

)
(s−1)

= s−2ψf,g(s
−1),

we have ψf̃ ,g̃ ∈ L1((0,∞)), and hence Propositions 3.1 and 3.2 can be applied. Since

∫ s

1

|f̃(r)|1/2dr =

∫ 1

1/s

|f(t)|1/2dt,

we obtain the respective assertions in Propositions 4.1 and 4.2. �
5. Examples from special functions. Some examples illustrate the applica-

tion of the results of the previous sections.
Example 1 (Modified Bessel functions). We consider the modified Bessel equa-

tion of order ν

u′′ +
u′

r
−
(

1 +
ν2

r2

)
u = 0, (5.1)

All solutions of (5.1) can be written through the modified Bessel functions Iν and
Kν . Both Iν and Kν are positive, Iν is monotone increasing and Kν is monotone
decreasing (see e.g., [3, Theorem 7.8.1]). Proposition 2.1 and Proposition 4.1 give the
precise behavior of Iν and Kν near ∞ and near 0, respectively. In fact, (5.1) can be
written as

(
√
ru)′′ =

(
1 +

4ν2 − 1

4r2

)
(
√
ru). (5.2)

Since 1/r2 is integrable near ∞, choosing f = 1 and g = 4ν2−1
4r2 , we see from Propo-

sition 2.1 that

√
re−rIν(r)→ c1 6= 0 and

√
rerKν(r)→ c2 6= 0 as r →∞.

Moreover, if ν 6= 0, then choosing f(r) = ν2

r2 and g(r) = 1− 1
4r2 , that is, ψf,g(r) = r/ν,

from Proposition 4.1 we have

r−νIν(r)→ c3 6= 0 and rνKν(r)→ c4 6= 0 as r ↓ 0.

If ν = 0, then putting w(s) = u(e−s) we obtain

w′′(s) = e−2sw(s), s ∈ R.

Therefore using Proposition 2.4 with g̃(s) = e−2s and taking u(x) = w(− log x), we
have

I0(r)→ c5 6= 0 and | log r|−1K0(r)→ c6 6= 0 as r ↓ 0.
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Example 2 (Fundamental solution of λ−∆). For n ≥ 3, λ ≥ 0 the fundamental
solution vλ of λ−∆ can be computed by integrating the heat kernel:

vλ(r) =

∫ ∞

0

1

(4πt)n/2
e−λt−

r2

4t dt,

where r = |x|. Clearly vλ(r) ≤ v0(r) = cr2−n, vλ(r) → 0 as r → ∞. The function
v = vλ satisfies

v′′ +
n− 1

r
v′ = λv

or, setting v = r(1−n)/2w,

w′′ =

(
λ+

n2 − 1

4r2

)
w.

Proceeding as in the example above we see that r2−nv(r) → c1 6= 0 as r → 0 and

r(n−1)/2e
√
λrv(r)→ c2 6= 0 as r →∞.

Example 3 (Bessel functions). Next we consider the Bessel equation of order ν

u′′ +
u′

r
+

(
1− ν2

r2

)
u = 0, (5.3)

or equivalently,

(
√
ru)′′ =

(
−1 +

4ν2 − 1

4r2

)
(
√
ru).

All solutions of (5.3) can be written through the Bessel functions Jν and Yν . As in
Example 1, from Propositions 4.1 (for ν > 0) and 2.4 (for ν = 0) we obtain the
behavior of Jν and Yν near 0

r−νJν(r)→ c1 6= 0, and rνYν(r)→ c2 6= 0 as r ↓ 0

and if ν = 0,

| log r|J0(r)→ c3 6= 0, and Y0(r)→ c4 6= 0 as r ↓ 0.

In view of Proposition 2.2 the behavior of Jν and Yµ near ∞ is given by

|√rJν(r)− c5 cos(r + θ1)| → 0, and |√rYν(r)− c6 cos(r + θ2)| → 0,

as r →∞, where c5 6= 0, c6 6= 0 and θ1, θ2 ∈ [0, π) satisfy θ1 6= θ2.
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NONLINEAR TENSOR DIFFUSION IN IMAGE PROCESSING∗
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Abstract. This paper presents and summarize our results concerning the nonlinear tensor
diffusion which enhances image structure coherence. The core of the paper comes from [3, 2, 4, 5].
First we briefly describe the diffusion model and provide its basic properties. Further we build a
semi-implicit finite volume scheme for the above mentioned model with the help of a co-volume mesh.
This strategy is well-known as diamond-cell method owing to the choice of co-volume as a diamond-
shaped polygon, see [1]. We present here 2D as well as 3D case of a numerical scheme, see [3, 4].
Then the convergence and error estimate analysis for 2D scheme is presented, see [3, 2]. Last part is
devoted to results of computational experiments. They confirm the usefulness this diffusion type not
just for an image improvement but also as a pre-processed algorithm. Numerical techniques which
require a good coherence of image structures (like edge detection and segmentation) achieve much
better results when we use images pre-processed by such a filtration. Let us note that this diffusion
technique was successfully applied within the framework of EU projects. It was used to pre-process
images for the structure segmentation in zebrafish embryogenesis, see [5].

Key words. image processing, nonlinear tensor diffusion, coherence enhancing diffusion, nume-
rical solution, semi-implicit scheme, diamond-cell finite volume method, convergence, error estimate,
structure segmentation.

AMS subject classifications. 35K55, 65M12, 35B45, 68U10, 65M08.

1. Introduction. Coherence enhancing diffusion (CED), see [11], is a technique
which enables to achieve an improvement of image structure connectivity. It is also
helpful as a pre-processed algorithm for numerical methods in which a precise image
structure coherence is desirable (e.g. edge detection, segmentation). Applying these
procedures on images filtered by CED yields an enhancement of their results. The
filtration process is driven by the diffusion tensor in such a way that the diffusion
is strong in preferred directions, e.g. along edges (in 2D images) or along 2D edge
surfaces (in 3D images) which causes a recovery of defects in image structures. In-
terrupted places will be completed. On the contrary, the smoothing is low in the
perpendicular direction and therefore the edges are not significantly blurred.

2. Mathematical model. Let QT is a spatio-temporal domain, where a time
interval is given by I = [0, T ] and Ω (subset of R2 or R3) is an image domain with the
boundary ∂Ω. We consider the coherence enhancing diffusion model on this domain.
It has the following form, see [11, 3, 7, 4],

∂u

∂t
−∇ · (D∇u) = 0 in QT ≡ I × Ω,(2.1)

u(x, 0) = u0(x) in Ω,(2.2)

D∇u · n = 0 on I × ∂Ω,(2.3)
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where u(x, t) denotes an unknown function and represents a grey level image intensity,
u0 ∈ L2(Ω) and n denotes the outer normal unit vector to the ∂Ω. The matrix
D represents the so-called diffusion tensor. Its design differs in dependence on a
dimension order.

2.1. 2D diffusion tensor. The construction of the 2D diffusion tensor is based
on the eigenvalues and eigenvectors of the (regularized) structure tensor Jρ(∇ut̃) =

Gρ ∗ (∇ut̃∇ut̃T ) =

(
a b
b c

)
, where ut̃(x, t) = (Gt̃ ∗ u(·, t))(x). Gt̃ and Gρ are

Gaussian convolution kernels, see [11, 3]. The matrix Jρ is symmetric and positive
semidefinite and its eigenvectors are parallel and orthogonal to ∇ut̃, respectively.

Its eigenvalues are given by µ1,2 = 1
2

(
a+ c±

√
(a− c)2 + 4b2

)
, µ1 ≥ µ2. The cor-

responding orthogonal set of eigenvectors (v,w) to eigenvalues (µ1, µ2) is given as
follows

v = (v1, v2), w = (w1, w2), w ⊥ v, w1 = −v2, w2 = v1,

v1 = 2b, v2 = c− a+
√

(a− c)2 + 4b2.(2.4)

The orientation of the eigenvector w corresponding to the smaller eigenvalue µ2 is
called the coherence orientation. This orientation has the lowest fluctuations in image
intensity. The diffusion tensor D is built to steer a filtering process such that the
smoothing is strong along the coherence direction w and increases with the coherence
(µ1 − µ2)2. To achieve it, we require D to possess the same eigenvectors v and w as
the structure tensor Jρ(∇ut̃) and we choose the eigenvalues of D as follows

κ1 = α, α ∈ (0, 1), α� 1,(2.5)

κ2 =

{
α, if µ1 = µ2,

α+ (1− α) exp
(

−C
(µ1−µ2)2

)
, C > 0 else.

Hence we get the diffusion tensor in the form

D = ABA−1, where A =

(
v1 −v2

v2 v1

)
and B =

(
κ1 0
0 κ2

)
,(2.6)

which depends nonlinearly on partial derivatives of solution u, possesses smoothness,
symmetry and uniform positive definiteness properties.

2.2. 3D diffusion tensor. The construction of the 3D diffusion tensor is based
on a smoothed intensity gradient given by ∇ut̃ = (ux1

, ux2
, ux3

)T , where ut̃(x, t) =
(Gt̃ ∗ u(·, t))(x), (t̃ > 0) and Gt̃ is a Gaussian kernel, see [4, 7]. Provided that
µ = ||∇ut̃||2 > 0 we choose a triplet of vectors (v1,v2,v3) by v1 ‖ ∇ut̃, v2 ⊥ ∇ut̃,
v3 ⊥ ∇ut̃, v2 ⊥ v3. The direction of vector v1 corresponds to the direction of the
largest intensity change. The other two vectors give a tangential plane to a level set of
image intensity which may represent a 2D surface edge in a 3D image, provided that µ
is large. It is called coherence plane P and represents an eigenspace corresponding to
the eigenvalue 0 of the outer product ∇ut̃ ⊗∇ut̃. In order to enhance the coherence,
the diffusion tensor D must steer the filtering process such that the diffusion is strong
and increasing with the level of µ along the coherence plane P and is small in the
perpendicular direction. We achieve it by choosing the eigenvalues of the diffusion
tensor, which determine the diffusivities in the directions v1, v2 and v3 as

κ1 = α, α ∈ (0, 1), α� 1,(2.7)
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κ2 = κ3 =

{
α, if µ = 0,

α+ (1− α) exp
(
−C
µ

)
, C > 0 otherwise.

Then we apply another convolution with a smoothing kernel Gρ and get the diffusion
matrix D in the form

D = Gρ ∗D0, where D0 =

{
B, if µ = 0,
PBP−1 otherwise,

B =




κ1 0 0
0 κ2 0
0 0 κ2


(2.8)

and P denotes a transition matrix from the basis (v1,v2,v3) to (e1, e2, e3). If µ > 0,
the matrix D0 has the following form

1

µ




u2
x1
κ1 + (u2

x2
+ u2

x3
)κ2 ux1

ux2
(κ1 − κ2) ux1

ux3
(κ1 − κ2)

ux1
ux2

(κ1 − κ2) u2
x2
κ1 + (u2

x1
+ u2

x3
)κ2 ux2

ux3
(κ1 − κ2)

ux1
ux3

(κ1 − κ2) ux2
ux3

(κ1 − κ2) u2
x3
κ1 + (u2

x1
+ u2

x2
)κ2




in the standard basis (e1, e2, e3). Such choice of the matrix D0 was given in [4], it is
independent on a concrete choice of v2 and v3 and can be directly and fast evaluated
using the diamond-cell finite volume technique (see also next section). The 3D dif-
fusion tensor satisfies the smoothness, symmetry and positive definiteness properties,
see [4], as does the 2D diffusion tensor.

3. Diamond-cell finite volume scheme. We design the numerical scheme
for CED using the finite volume method, see [6], since this discretization technique
uses the piecewise constant representation of approximate solutions similarly to the
structure of digital images. The restrictions of the classical five-point method for the
tensor models, see [8], lead to choice of the nine-point diamond-cell method in 2D,
see [1, 3]. Similarly, we switch to 27-point scheme instead of simpler 7-point scheme
in 3D space, see [4].

Let the image be represented by n1 × n2 pixels (finite volumes) in 2D or by
n1×n2×n3 voxels in 3D such that it looks like a mesh with n1 rows and n2 columns in
2D or a mesh with n1 rows, n2 columns and n3 layers in 3D. Let Ω = (0, n1h)×(0, n2h)
in 2D or Ω = (0, n1h)×(0, n2h)×(0, n3h) in 3D with a pixel(voxel) size h. We consider
the filtering process in a time interval I = [0, T ]. Let the time discretization be given
by 0 = t0 ≤ t1 ≤ · · · ≤ tNmax = T with tn = tn−1 + k, where k is the length of
the discrete time step. Th is an admissible finite volume mesh, see [6] and further
quantities and notations are given as follows: m(W ) is the measure of the finite
volume W with boundary ∂W , σWE = W ∩ E = W |E is an edge(face) of the finite
volume W , where E ∈ Th is an adjacent finite volume to W such that the measure
m(W ∩ E) 6= 0. At several places we will replace σWE by σ to simplify notation.
m(σ) is the measure of edge (face) σ. EW represents the set of edges(faces) such that
∂W =

⋃
σ∈EW σ and E =

⋃
W∈Th EW . The set of boundary edges(faces) is denoted by

Eext, that is Eext = {σ ∈ E , σ ⊂ ∂Ω} and denote Eint = E \ Eext. Υ is the set of pairs
of adjacent finite volumes, defined by Υ = {(W,E) ∈ T 2

h , W 6= E, m(σWE) 6= 0}
and nW,σ is the normal unit vector to σ outward to W . Let unW represents a numerical
solution on finite volume W , W ∈ Th at time tn, n = 1, ..., Nmax.

Our discrete solution is given by uh,k(x, t)=
∑Nmax
n=0

∑
W∈Thu

n
Wχ{x∈W}χ{tn−1<t≤tn},

where the function χ{A} is defined as

χ{A}=

{
1, if A is true,
0, elsewhere.
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The finite volume approximation at the n-th time step is given by

unh,k(x) =
∑

W∈Th
unWχ{x ∈W}

and initial values as u0
W = 1

m(W )

∫
W

u0(x)dx, W ∈ Th.

We start the scheme derivation integrating the equation (2.1) over the finite vo-
lume W , then provide a semi-implicit discretization and use the divergence theorem
to have

unW − un−1
W

k
m(W )−

∑

σ∈EW∩Eint

∫

σ

(Dn−1∇un) · nW,σds = 0.(3.1)

We can define an auxiliary unknown φnσ(unh,k) representing an approximation of the

exact averaged flux 1
m(σ)

∫
σ
(Dn−1∇un) · nW,σds for any W and σ ∈ EW in order to

rewrite (3.1) in the form

unW − un−1
W

k
− 1

m(W )

∑

σ∈EW∩Eint
φnσ(unh,k)m(σ) = 0.(3.2)

Approximation of the flux φnσ(unh,k) is built with the help of a co-volume mesh,
see e.g. [1, 3]. The 2D co-volume χσ associated to σ is constructed around each edge
by joining endpoints of this edge and midpoints of finite volumes which are common
to this edge, see Fig. 3.1. We create a co-volume χσ associated with σ around each

r rp p p p p p p p p p p
p p p p p p

p p p p p p p p p p p p p p p p p
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xNnχσ,σ̄

Fig. 3.1. The co-volumes χσ associated to edges σ = σWE (left) and σ = σEW (right).

finite volume face by joining four vertices of this face and midpoints of the finite
volumes which are common to this face, see Fig. 3.2. Using this technique we obtain
the scheme in the form, see [3, 4],

unW − un−1
W

k
− 1

m(W )

∑

σ∈EW∩Eint
φnσ(unh,k)m(σ) = 0(3.3)

with 2D φnσ(unh,k) = D̄σ
11

unE − unW
h

+ D̄σ
12

unN − unS
h

,(3.4)

with 3D φnσ(unh,k) = D̄σ
11

unE − unW
h

+ D̄σ
12

unTN + unBN − unTS − unBS
2h

(3.5)

+ D̄σ
13

unTN + unTS − unBN − unBS
2h

.

where D̄σ
11 and D̄σ

12 in 2D φnσ(unh,k) are elements of the matrix Dσ = Dn−1
σ written

in the basis (nW,σ, tW,σ), see [1], where tW,σ is a unit vector parallel to σ such that
(xN − xS) · tW,σ > 0. The values at xE and xW are taken as uE and uW , and the
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Fig. 3.2. The co-volumes associated with the face σ = σWE (left) and σ = σEW (right).

values uS and uN at the vertices xN and xS are computed as the arithmetic mean
of uW , where W are finite volumes which are common to this vertex. Further, D̄σ

11,
D̄σ

12 and D̄σ
13 in 3D φnσ(unh,k) are elements of the matrix Dσ = Dn−1

σ written in the
basis (nW,σ, t1W,σ, t2W,σ), where t1K,σ is a unit vector parallel to xTN − xTS such
that (xTN − xTS) · t1K,σ > 0 and t2K,σ is a unit vector parallel to xTN − xBN such
that (xTN − xBN ) · t2K,σ > 0. Due to the computation of the values uTN , uTS , uBN
and uBS in (3.5) as the arithmetic mean of neighbouring voxel values, we get the 27
point finite volume scheme.

4. Convergence analysis for 2D discrete scheme. We proved the conver-
gence of the numerical solution of the scheme (3.3)-(3.4) to the weak solution of the
problem (2.1)-(2.3) in [3]. Our convergence analysis follows the convergence proof
from [8], see [3]. However, our scheme is 9-point scheme compared with the 5-point
scheme from [8]. Due to this fact, we must take into account also values of corner’s
neighbouring volumes. They appear in the scheme in the form of a derivative in the
tangential direction, since uN and uS are computed as arithmetical mean of their 4
adjacent volumes. In order to overcome the difficulties arising in the occurrence of
uN and uS we bound the derivative in tangential direction by using the derivative in
normal direction with the help of the following lemma.

Lemma 4.1. (Bounding of the derivative in tangential direction) The derivative
in tangential direction is bounded by the derivative in normal direction (see Fig. 3.1)
as follows

∑

σ∈Eint

(
D̄σ

12

D̄σ
11

)2(
unN − unS

h

)2

D̄σ
11 ≤ γ

∑

σ∈Eint

(
unE − unW

h

)2

D̄σ
11 ,(4.1)

where 0 ≤ γ < 1, γ = max
σ∈E

γσ, γσ =
∑

δ∈Pσ∩Eint

1

4

(
D̄δ

12

D̄δ
11

)2
D̄δ

11

D̄δ
11

,

where edges δ and set Pσ are given in the following definition.
Definition 4.2. Let Pσ be the set of all edges δ perpendicular to σ, which have

common vertex with σ and fulfill the following conditions:
(xEδ − xWδ

) · tW,σ > 0 if (xNσ − xSσ ) · tW,σ > 0 and
(xEδ − xWδ

) · tW,σ < 0 if (xNσ − xSσ ) · tW,σ < 0,
which means that xEδ − xWδ

has the same orientation as the tangent tW,σ. Let us
note that xWσ

= x1
Wδ

= x3
Eδ

, for σ = σWE, xEσ = x2
Wδ

= x4
Eδ

, for σ = σWE,
xWσ = x2

Eδ
= x4

Wδ
, for σ = σEW and xEσ = x1

Eδ
= x3

Wδ
, for σ = σEW .
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Our convergence proof is based on Kolmogorov’s compactness theorem. We
proved the following lemmata: Uniform boundedness, Time translate estimate, Space
translate estimate and stronger Space translate estimate in [3]. Using these lemmata
we know that the sequence of discrete solution uh,k is relatively compact in L2, which
implies that there exists a subsequence of uh,k which is bounded. The main theorem
of the convergence analysis is given below.

Theorem 4.3. (Convergence of the scheme) The sequence uh,k converges strongly
in L2(QT ) to the unique weak solution u of (2.1)-(2.3) as h, k → 0.

The crucial ideas used in our convergence proof are the convergence of the dis-
crete weak form to the continuous weak form, which follows from the Lipschitz con-
tinuity of diffusion tensor elements and the fact that the limit u of uh,k is in space
L2(0, T ;H1(Ω)), which follows from stronger Space translate estimate. The detailed
convergence proof can be found in [3].

5. Error estimate analysis. This section concerns with an estimate of the dif-
ference between the weak solution of the model (2.1)-(2.3) and the numerical solution
satisfying the scheme (3.3)-(3.4) in dependence on spatial and time discretization step,
see [2]. Subtracting the discrete form from the continuous form and rearranging it
we get a relation. It can be split in several terms and each of them can be bounded.
Using these estimations we can state the following theorem.

Theorem 5.1. (Error estimate) Let the weak solution fulfil the following re-
gularity properties: ∇u ∈ L∞(QT ), utt ∈ L2(QT ), u ∈ L2(I,W 2,2(Ω)), ∇ut ∈
L2(I, L∞(Ω)). Let enW = u(xW , tn)−unW and enh,k(x, t) =

∑
W∈Th

enWχ{x∈W}χ{tn−1<t≤tn}.

Then, there exist a constant C, such that for sufficiently small h

∫

Ω

|emh,k|2dx+
m∑

n=1

∫

Ω

|enh,k − en−1
h,k |2dx+

m∑

n=1

tn∫

tn−1

∑

σ∈Eint
(enE − enW )

2
dt ≤ C(h2 + k)

for every m = 1, ..., Nmax.
One can observe that the error of the piecewise constant approximation given by

our scheme in L∞(I, L2) is of order h. The core of error estimate proof consists of a
bounding of the derivative in tangential direction by means of the derivative in normal
direction, a time translate estimate for approximate solution and the Lipschitz conti-
nuity of the diffusion tensor elements with respect to the smoothed partial derivatives
of the solution. The detailed error estimate proof is given in [2].

Let us note that the 3D convergence / error estimate analysis is still an outstand-
ing problem since we are not yet able to extend the inequality from Lemma 4.1 to its
3D version.

6. Computational experiments. The goal of this section is to demonstrate
benefits of our numerical technique. We performed our experiments on a 2D finger-
print image (type of flow-like structures image) and 3D image sequences coming from
the two-photon laser scanning microscopy. They represent early stages of zebrafish
embryogenesis.

First experiment represents the behaviour of the CED (coherence enhancing dif-
fusion). This technique yields a coherence improvement of image flow-like structures.
After several filtration steps round interrupted places become gradually elongated in
the coherence direction and they will be eventually corrected, see Fig. 6.1 and Fig. 6.2.
We used the following filtration parameters: a space step 0, 01, a time step 0, 0001,
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Fig. 6.1. A fingerprint image. Top: the original image(left), the filtered image after 5 time
steps(middle) and the filtered image after 20 time steps(right). Bottom: the Sobel edge detections
of these images.

t̃ = 0, 000025 and ρ = 0, 002. Fig. 6.1 shows a fingerprint image. The original image
is deteriorated by numerous redundant apertures while most of them are lost in the
filtered image. Fig. 6.2 depicts damaged cell membranes. Some boundaries are almost
lost in the original image, but we are able to clearly recognize them in the filtered
image.

6.1. Pre-processing technique. Further, we concern our method as a pre-
processing technique. We show its contribution to the subsequent image algorithms.
If we pre-process images for techniques which depend on the connectivity of coherent
image structures by the CED, we achieve significantly better results. We can adduce
an edge detection as an example. If we compare the edge detections of an original
and filtered image, see Fig. 6.1 and Fig. 6.2 (bottom), we can observe that the edge
detection of the original image depicts many superfluous image structures caused by
noise which are omitted in the edge detection of the filtered image. Moreover, several
boundaries which are lost in the first edge detection are reconstructed in the second
edge detection, see Fig. 6.2 (bottom).

The structure segmentation, see [5], is also the post-processing algorithm following
CED. We use the segmentation based on the subjective surface method, see [10] and
its finite volume implementation from [9]. The segmentation model has the following
form

∂tu =
√
ε2 + |∇u|2∇.

(
g(|∇Gσ ∗ I0|) ∇u√

ε2 + |∇u|2

)
in QT ≡ I × Ω,(6.1)

u(x, 0) = u0(x) in Ω,(6.2)

u = 0 on I × ∂Ω,(6.3)
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Fig. 6.2. Cell membranes. Top: the original image(left) and the filtered image after 5 time
steps(right). Bottom: the Sobel edge detections of these images.

where I0 is the image intensity and ε is the regularization parameter. The solution u
denotes the evolving segmentation function. The function g = g(|∇Gσ ∗ I0|) has the
role of the edge detector. We start the segmentation imposing the initial segmentation
function in an approximate center of segmented object. This function is evolved by
equation (6.1) to a final steady state which gives the boundaries of the segmented
object. The question is which isoline of the final steady state most precisely represents
the object shape. The chosen isoline is most naturally taken as the average of maximal
and minimal value of the final segmentation function.

The goal of this experiment is to segment an eye retina of a zebrafish embryo.
Let us note that the structure segmentation is much more complicated than image
segmentation since evolving segmentation function is restrained to achieve correct
segmentation steady state by fine image objects representing inner cell structures. In
order to overcome these constraints we pre-processed images for the segmentation by
the CED. Even though they look too blurred they are very suitable for the structure
segmentation, see Fig. 6.3. The segmentation result for the original image consists of
amount of various isolines and chosen medium isoline bounds only a part of segmented
object. On the contrary, the final segmentation function for the image filtered by the
CED is represented by a variety of almost identical isolines and each of them precisely
illustrates shape of segmented object.

In order to compare our method with other filtration techniques, we pre-processed
images for segmentation by the GMCF (geodesic mean curvature flow), MCF (mean
curvature flow) and PM (Perona-Malik) smoothing. Fig. 6.4 depicts their segmenta-
tion results which are much worse than the final steady state achieved by the coherence
enhancing technique. It is caused by the fact that this diffusion not only smooths noise
and image objects but emphasizes image structure boundaries as well.

Last experiment is devoted to results of the 3D CED as well as the 3D segmen-
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Fig. 6.3. The eye retina segmentation using the 2D slice of 3D original image (left) and the
2D slice of 3D image filtered by 20 time steps of the 3D nonlinear tensor diffusion (right). Top:
the averaged isoline of the final state of segmentation function is superimposed to the original and
filtered slice, respectively. Bottom: the graph of the final state of segmentation function is plotted
after 2000 segmentation time steps using the original slice and after 200 time steps using the filtered
slice.

tation algorithms, see Fig. 6.5. These techniques were performed on the 3D image
detail representing two cell nuclei. One can observe that the original image is much
more deteriorated by a noise than the image filtered by the CED and the noise of
the filtered image is less distinct. The contours of the filtered nuclei are smoother
than the nucleus contours from the original image since the diffusion tensor of the
CED steers the smoothing process in such a way that the diffusion is strong along
the coherence plane and very low in the perpendicular direction to this plane. Owing
to the above mentioned facts we achieved more precise segmentation results for the
nuclei filtered by CED, cf. Fig. 6.5(left) and (right).

The experiments mentioned before confirm the utility of this filtration as a pre-
processing technique for algorithms which depend on the connectivity of coherent
image structures.
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NEW EFFICIENT NUMERICAL METHOD FOR 3D POINT CLOUD
SURFACE RECONSTRUCTION BY USING LEVEL SET METHODS.

BALÁZS KÓSA∗, JANA HALIČKOVÁ–BREHOVSKÁ† , AND KAROL MIKULA‡

Abstract. In this article, we present a mathematical model and numerical method for surface
reconstruction from 3D point cloud data, using the level-set method. The presented method solves
surface reconstruction by the computation of the distance function to the shape, represented by the
point cloud, using the so called Fast Sweeping Method, and the solution of advection equation with
curvature term, which creates the evolution of an initial condition to the final state. A crucial point
for efficiency is a construction of initial condition by a simple tagging algorithm which allows us also
to highly speed up the numerical scheme when solving PDEs. For the numerical discretization of the
model we suggested an unconditionally stable method, in which the semi-implicit co-volume scheme
is used in curvature part and implicit upwind scheme in advective part. The method was tested
on representative examples and applied to real data representing the historical and cultural objects
scanned by 3D laser scanners.

Key words. point cloud, level set methods, reconstruction

AMS subject classifications. 65M06, 65Y20, 53A05, 65D17

1. Introduction. The aim of our work is to create a reliable and efficient nu-
merical method which can easily create computerized 3D models from point cloud
data that resembles the original object as much as possible. This type of data can be
obtained by 3D scanning or by photogrammetric methods. The data created in this
manner contains three coordinates for every scanned point. For further processing
and the creation of an exact digital model of the scanned object this information is
not enough. The point cloud lacks the information of the connectivity between the
points, thus making the reconstruction of the surface a difficult task. Papers as [1, 2]
have shown us that for solving this problem the level-set method can be applied. We
follow basic ideas from these papers, but we take a different approach in the solution
of the partial differential equation presented here.

In the following parts of our paper after the Mathematical Formulation of the
applied level set equation in the section Algorithm for point cloud surface reconstruc-
tion we will present our method and its numerical discretization and solution. After
the theoretical deduction of the method and the description of a short algorithm for
computing the initial condition in Computation acceleration we suggest a way to ac-
celerate the computational time, making the algorithm really efficient. In the last
section Numerical results we present created 3D models which we obtained so far.
We achieved this by implementing our method in the language C with the use of the
programming environment of Visual Studio. The example pictures of the results used
in this article are direct outputs from our application processed in the freely avail-
able open-source visualization software Paraview. With the help of this software we

∗Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak
University of Technology, Radlinskeho 11, 810 05 Bratislava, Slovakia (kosa@math.sk).
† Monument Board of the Slovak Republic Cesta na Červený most 6, 81406 Bratislava, Slovakia
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can easily compare the initial point cloud data and our results, to confirm that our
assumptions regarding this new numerical method are right.

2. Algorithm for point cloud surface reconstruction. The level set
method, which we are using is based on the solution of the advection equation with
curvature term

ut −∇d · ∇u− δ |∇u| ∇ ·
( ∇u
|∇u|

)
= 0

(2.1)
(x, t) ∈ Ω× [0, T ]

where u(x, t) is an unknown function, v = −∇d is the advective velocity defined by
the gradient of distance function d to the point cloud, parameter δ > 0 determines
influence of the curvature to the result, Ω is the computational domain and [0, T ]
is a time interval. This equation is coupled with homogeneous Neumann boundary
conditions and an initial condition which we will discuss later.

To obtain numerical solution of the model created from point cloud data, denoted
by Ω0 ⊂ Ω and determined by equation (2.1), following steps have to be executed.
First we have to computate the distance function to the point cloud. For computation
we use the Fast sweeping method, as introduced in [3].The initialization of distance
function in the Fast sweeping method is done in such way, that we prescribe exact
distance to the nearest point from the cloud in the grid points next to the points in the
cloud. After that we have to find a subvolume containing Ω0, which will be used to
set the initial function u0 for the generation of the final solution of the equation. This
subvolume is defined on discrete grid in subsection 2.2. The final solution (created
3D model) will be represented by an isosurface of the computated function u (x, T )
with value 0.5.

2.1. Numerical scheme for solving advection equation with curvature
term. The numerical scheme is obtained by discretization of equation (2.1). We will
do this analogically to the discretization used in [4].

2.1.1. Time discretization. For time discretization, we have to choose a uni-
form discrete time step, denoted by τ . We can replace the time derivative in (2.1) with
a backward difference. Then we can formulate our semi-implicit time discretization
in the following way:

Let τ be a fixed number and u0 a function representing the initial surface of our
mathematical model. Then at every discrete time tn = nτ, n = 1, ..., N we search for
the function un as the solution to equation

un − un−1
τ

−∇d · ∇un − δ
∣∣∇un−1

∣∣∇ ·
( ∇un
|∇un−1|

)
= 0(2.2)

2.1.2. Spatial discretization. Our discretized model consists of a 3D grid,
which is built of voxels with cubic shape and an edge size h. We will interpret spatial
discretization of the level set function u as numerical values ui,j,k at the voxel centres.
In order to easily computate the gradient of the level-set equation

∣∣∇un−1
∣∣ in every

time step of (2.2) we induct a 3D tetrahedral grid into the voxel structure and take a
piecewise linear approximation of u (x) on such a grid. This way we obtain a constant
value of the gradient for each tetrahedron, by which we can construct in a simple and
clear way the fully discrete system of equations.
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Fig. 2.1: Our initial voxel grid cell with a tetrahedral grid cell

The 3D tetrahedral finite element grid is created by the following approach. Every
voxel is divided into six pyramid shaped elements with base surface given by the
voxel’s walls and vertex by the voxel centre. Each one of these pyramids is joined
with neighbouring pyramids with whom they have a common base surface. These
newly formed octahedrons are then split into four tetrahedrons as seen in Figure 2.1.
In our new grid Th the level-set function will be updated only at the centres of the
voxels. They will represent so called degree of freedom (DF) nodes.

For the tetrahedral grid we construct a co-volume mesh, which will consist of cells
p associated only with DF nodes of Th. We denote all neighbouring cells q of p by
Cp. The cells q are all connected to the cell p by a common edge of four tetrahedrons,
which is denoted by σpq with length hpq. Each cell p is bounded by a plane for every
q ∈ Cp which is perpendicular to σpq and is denoted by epq. The set of tetrahedrons
which have σpq as an edge are denoted by εpq. For every T ∈ εpq, cTpq is the area of
the intersection of epq and T . Np will be a set of tetrahedrons that have DF node
associated with cell p as a vertex. On this grid uh will be a piecewise linear function.
Then we can use the notation up = uh (xp), where xp denotes the center coordinates
of cell p.

Now that we have all notations which are needed we can begin the derivation of
the spatial discretization of (2.2). We will do this by using a following modified form
of the equation:

un − un−1
τ

+ v · ∇un = δ
∣∣∇un−1

∣∣∇ ·
( ∇un
|∇un−1|

)
(2.3)

where v = −∇d.

As the first step we will integrate (2.3) over every cell p.

∫

p

un − un−1
τ

dx+

∫

p

v · ∇undx =

∫

p

δ
∣∣∇un−1

∣∣∇ ·
( ∇un
|∇un−1|

)
dx(2.4)

For the first term on the left-hand side of (2.4) we get the approximation

∫

p

un − un−1
τ

dx = m (p)
unp − un−1p

τ
(2.5)

where m (p) is a measure in Rd of the cell p.
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For the second term on the left-hand side of (2.4) we are using the implicit upwind
approach and get

∫

p

v · ∇undx =
∑

q∈Cp
min (vpq, 0)

(
unq − unp

)
(2.6)

where vpq = h2pqv · n.
Now what remains is the discretization of the right-hand side of (2.4). We use

the divergence theorem to get
∫

p

δ
∣∣∇un−1

∣∣∇ ·
( ∇un
|∇un−1|

)
dx = δ

∣∣∇un−1p

∣∣ ∑

q∈Cp

∫

epq

1

|∇un−1|
∂un

∂n
dσ(2.7)

The integral part
∫
epq

1
|∇un−1|

∂un

∂n dσ and
∣∣∇un−1p

∣∣ from (2.7) will be approximated

numerically using piecewise linear reconstruction of un−1 on the tetrahedral grid Th,
thus we get

δ
∣∣∇un−1p

∣∣ ∑

q∈Cp


 ∑

T∈εpq
cTpq

1∣∣∇un−1T

∣∣


 unq − unp

hpq

Mn−1
p =

∣∣∇un−1p

∣∣ =
∑

T∈Np

m (T ∩ p)
m (p)

∣∣∇un−1T

∣∣

and the final form of equation (2.3) after reorganization will be

un−1p = unp +
τ

m (p)


∑

q∈Cp
min (vpq, 0)

(
unq − unp

)

(2.8)

−δMn−1
p

∑

q∈Cp


 ∑

T∈εpq
cTpq

1∣∣∇un−1T

∣∣


 unq − unp

hpq




From this form, we are able to derive the system of linear equations which we will
solve at every time step. For the linear equations, we will define regularized gradients
by

|∇uT |ε =

√
ε2 + |∇uT |2(2.9)

After we arrange all parts of equation (2.8) we get the following coefficients

an−1pq =
τ

m (p)


min (vpq, 0)− δMn−1

p

1

hpq

∑

T∈εpq
cTpq

1∣∣∇un−1T

∣∣
ε


(2.10)

thus, we can formulate our semi-implicit co-volume scheme:
Let u0p, p = 1, ...,M be given discrete initial values of the level-set function. Then,

for n = 1, ..., N we look for unp , p = 1, ...,M , satisfying

unp +
τ

m (p)

∑

q∈Np
an−1pq

(
unq − unp

)
= un−1p(2.11)
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With addition of homogeneous Neumann boundary conditions to our fully discrete
scheme we obtain a system of linear equations. Since an−1pq are non-negative we can
prove the following statement.

Theorem. There exists unique solution (un1 , ..., u
n
M ) of (2.11) for any τ > 0, ε >

0, and for every n = 1, ..., N . The system matrix is a strictly diagonally dominant
M-matrix. For any τ > 0, ε > 0, the following L∞ stability holds:

min
p

u0p ≤ min
p

unp ≤ max
p

unp ≤ max
p

u0p, 1 ≤ n ≤ N.(2.12)

The number of time steps N is determined by the difference of the solution in
current and previous time steps in discrete L2 norm. The computation is stopped
if this difference is less than the prescribed tolerance, which we usually set to 10−6.
Then the stopping time T = Nτ .

If we denote the DF nodes with indexes (i, j, k) and rearrange (2.11) to obtain
the coefficients for every node we can define for a DF node the equation

ci,j,ku
n
i,j,k + bi,j,ku

n
i,j,k−1 + ti,j,ku

n
i,j,k+1 + ni,j,ku

n
i+1,j,k

(2.13)
+si,j,ku

n
i−1,j,k + ei,j,ku

n
i,j+1,k + wi,j,ku

n
i,j−1,k = un−1i,j,k

When we collect the equations for all DF nodes and take into account Neumann
boundary conditions we get the linear system which we have to solve. For the solution
of this system we choose the SOR (Successive Over Relaxation) iterative method. We
start the iterations by setting uni,j,k = un−1i,j,k, then in every iteration l = 1, ... we use
the following two step procedure:

Y = (u
n(0)
i,j,k − bi,j,ku

n(l)
i,j,k−1 − ti,j,ku

n(l−1)
i,j,k+1 − ni,j,ku

n(l−1)
i+1,j,k

− si,j,kun(l)i−1,j,k − ei,j,ku
n(l−1)
i,j+1,k − wi,j,ku

n(l)
i,j−1,k)/ci,j,k(2.14)

u
n(l)
i,j,k = u

n(l−1)
i,j,k + ω

(
Y − un(l−1)i,j,k

)

We define squared L2 norm of residuum at current iteration by

Rl =
∑

i,j,k

(ci,j,ku
n(l)
i,j,k + bi,j,ku

n(l)
i,j,k−1 + ti,j,ku

n(l)
i,j,k+1 + ni,j,ku

n(l)
i+1,j,k

+ si,j,ku
n(l)
i−1,j,k + ei,j,ku

n(l)
i,j+1,k + wi,j,ku

n(l)
i,j−1,k − u

n(0)
i,j,k)2

The iterative process is stopped if Rl < TOL.

2.2. Computation of the initial condition. As mentioned, this method needs
an initial condition, represented by the initial function u0 (x), which will be deformed
to get the solution, that is the final form of the created 3D model. Theoretically any
initial surface that contains the point cloud data set could be used, but an optimal
initial guess is crucial for the efficiency of the method. We can find this optimal
surface by identifying all points for which the value of the distance function is greater
or equal to a parameter β. For simplicity let us call these points, exterior points. To
find all these points we will use the following algorithm:

• Mark all points on the borders of the grid as exterior and add them to set E.
• For every point in the set E check all neighbouring points in the grid.
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• If the neighbouring point is not an exterior point and its distance from the
point cloud is greater or equal to β add it to the set E and mark as exterior.

• Continue until you get to the last point of E.
When we found all the exterior points we set u0 (x) to be equal 0 in every exterior

point and 1 in every other point. With this approach, we can find an initial surface
close to the final shape as seen on the Figure 2.2.

Fig. 2.2: Example for the initial condition used in our method. Object is shown from
different angles.

3. Computation acceleration. The part of our algorithm which consumes the
most time during computation is the solution of the linear system of equations (2.11)
coupled with the computation of its coefficients. To reduce this time, we came up with
the following idea. First, we construct a band around the area between the initial
surface and the point cloud data. To find the surface which we want to reconstruct
it is sufficient to update the values on grid cells contained in such a band, thus we
can computate coefficients and evaluate the SOR method (2.14) only in this new
subset of all grid cells. On Figure 3.1 we can see an example of this subset. For
easier visualization, we show this on a slice with the plane x = 0. Here the red line
marks the point cloud data, the purple line the initial surface and the white lines the
borders of the created band. In the background of the picture we show the values of
the distance function.

To find this area we adopted the algorithm mentioned in the previous section,
which was used to find the initial surface, to this task. To obtain an outer border for
the band which contains the initial surface we chose a new parameter γ = 2β. With
this additional parameter and the introduction of a new set denoted F the algorithm
for finding the band is given as follows.

• Tag all points on the borders of the grid and add them to the set E.
• For every point in the set E check all neighbouring points in the grid.
• If the neighbouring point is not tagged execute the following steps.

– If the neighbouring point’s distance from the point cloud is smaller or
equal to γ add it to the set F .

– If the neighbouring point’s distance from the point cloud is greater or
equal to β add it to the set E as well and tag it.

• Continue until you get to the last point of E. When we finish with set E we
start a new cycle for set F.
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• For every point in the set F check all neighbouring points in the grid.
• If the neighbouring point is not tagged and its distance from the point cloud

is smaller or equal to γ add it to the set F .
• Continue until you get to the last point of F .

While we look for points with distance smaller or equal to γ we will cross the
border with distance 0, represented by the point cloud, thus set F will contain also
grid points from the inner region of the object. From the set F we can create an
array consisting of values 0, for points not in the band, and 1, for points in the band.
This will serve as a mask for the SOR method, thus in the computation loops we can
determine if it is necessary to computate the new value or if we can skip to the next
grid point.

Fig. 3.1: The slice of our new computational area on the plane x = 0.

We measured how much time we managed to save with this new approach on
real-life data sets representing a bracelet and a sealer. The tests were executed on a
personal notebook with a dual core processor and 4 GB of memory. Our results are
listed in the tables 3.1 and 3.2. We tested the algorithm on grids containing 403, 803

and 1603 grid cells. All tests were performed with the same parameter β and stopping
criteria for the iterations.

In the second column of the tables we recorded the number of points contained by
the band. This number depends on the size and form of the original object represented
by the data set. In columns three and four we see the measured times for the original
and optimized implementation. In the tests, we achieved not only reduced times but
also better convergence, so fewer time steps were needed. This led to computations
which were 20 to 60 times faster.

Visually we cannot detect any difference between the created 3D models computed
by the two methods, original and optimized. We measured the mean value of squared
differences between all grid values and listed the obtained values in the third column.
We can see that these values are in the tolerable range.
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Number of
grid cells

Points in
band

CPU time (s)
Original

CPU time (s)
Optimized

Mean squared
difference

403 4 636 4.269 0.261 8.90795e-7
803 37 640 34.247 1.677 2.27554e-8

1603 304 456 895.68 13.385 1.92055e-8

Table 3.1: CPU times comparison for the bracelet data set

Number of
grid cells

Points in
band

CPU time (s)
Original

CPU time (s)
Optimized

Mean squared
difference

403 6 075 13.914 0.537 1.75849e-6
803 48 710 88.673 3.470 4.38982e-8

1603 392 185 2 051.402 72.846 9.36878e-9

Table 3.2: CPU times comparison for the sealer data set

4. Numerical results. In this section, we present the reconstruction of the
point cloud surfaces on a representative testing example and real data. These exam-
ples are a good display of the quality of our method.

Figure 4.1 illustrates the test example. This object was used for the verification
of the correct behaviour of our method during the implementation phase. The point
cloud data was generated with corresponding parametric equations of the object. The
representative example was created on a grid containing 803 cells. We can see that
for this test with such a sparse grid we already got good results.

On Figure 4.2 and 4.3 we can see real-life data. These items where archaeological
finds and the point cloud scans were provided by the Monuments Board of the Slovak
republic to which we express our great thanks. On Figure 4.2 we can see a bracelet.
The created 3D model was computed on a grid with 1603 cells. On Figure 4.3 we
can see a sealer, with a very interesting surface structure. The created 3D model was
computed on a grid with 3203 cells.

Fig. 4.1: On the left, we see the point cloud data, on the right the point cloud with
the created 3D model.
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Fig. 4.2: Archaeological finds: bracelet. On the left, we see the point cloud data, on
the right the final result with triangulated surface.

Fig. 4.3: Archaeological finds: sealer. On the left, we see the point cloud data, on the
right the final result.

Fig. 4.4: Details of the sealer with triangulated surface.

We also tested our method on data sets with noise. In the point cloud data of
the sealer we added artificial noise by changing the coordinates of 100 random points.
Thanks to the curvature part of equation (2.1) this kind of noise has no effect on our
created 3D model. We can observe that fact in Figure 4.5.
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Fig. 4.5: Sealer point cloud data with noise, visualized with the final result.

5. Conclusions. In this work we presented our approach for surface reconstruc-
tion from point cloud data utilizing the level set method. We formulated the math-
ematical model, derived the time and spatial discretization and provided the reader
with an exact description of the numerical solution. By implementing the method
we obtained several interesting results for numerical tests and real-life data which we
presented as examples in the last section. Our results show that for smoother objects
a sparse grid already shows good result, but for an object with more detail we need
more grid points. With adjusting the SOR method to our needs we achieved signif-
icant reduction of the required computational time, thus making our method more
suitable for real-life application.
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REFERENCES
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Abstract. We consider strongly coupled competitive elliptic systems that arise in the study of
two-component Bose-Einstein condensates. As the coupling parameter tends to infinity, solutions
that remain uniformly bounded are known to converge to a segregated limiting profile, with the
difference of its components satisfying a limit scalar PDE. In the case of radial symmetry, under
natural non-degeneracy assumptions on a solution of the limit problem, we establish by a perturbation
argument its persistence as a solution to the elliptic system.
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1. Introduction. We consider coupled elliptic systems of the form

∆ui = fi(ui) + gui
∑

j 6=i
aiju

2
j , in Ω; ui = 0 on ∂Ω,(1.1)

i = 1, · · · ,m, where fi are smooth functions with

fi(0) = 0,(1.2)

g is a real parameter, aij are nonnegative constants such that aii > 0, aij = aji,
i, j = 1, · · · ,m, and Ω is a bounded smooth N -dimensional domain. Systems of
this form arise in the study of multi-component Bose-Einstein condensates. In this
context, the reaction terms are typically

fi(u) = giu
3 − µiu, gi, µi ∈ (−∞,+∞).(1.3)

The coupling parameter g measures the interaction between the different components
in the mixture: if g < 0 they attract each other, whereas if g > 0 they repel each
other. On the other hand, the coefficients gi in (1.3) measure the interaction between
atoms in the same i-th component: if gi < 0 there is attraction, whereas if gi > 0
there is repulsion.

The function ui represents the density corresponding to the i-th component in the
mixture, and thus is naturally assumed to be positive. Nevertheless, the mathematical
interest to (1.1) also extends to sign-changing solutions. In passing, we note that (1.1)
has variational structure as it comes from a Gross-Pitaevskii energy.

In the following, we will consider the case of strong repulsion (or competition),
that is g � 1. Moreover, we will focus on the case of two components, but first let us
recall some of the main known results for the case of m components.

∗Département de Mathématique, Université libre de Bruxelles, Campus de la Plaine CP 213, Bd.
du Triomphe, 1050 Bruxelles, Belgium, supported by the Belgian Fonds de la Recherche Scientifique
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†Department of Mathematics, University of Ioannina, Ioannina, 45110, Greece (sourdis@uoc.gr).
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1.1. Known results. In the seminal paper [13] (see also [8] for the correspond-
ing parabolic problem), it was shown that if a family of solutions ug = (ug1, · · · , ugm)
of (1.1) remains bounded in L∞(Ω) as g → +∞, then it also remains bounded in
Cα(Ω̄) for any α ∈ (0, 1). We also refer to [25] for a related result in planar domains.
Hence, thanks to a well known compact imbedding, possibly up to a subsequence
gn → +∞, such a family converges in Cα(Ω̄) for any α < 1 to some limiting config-
uration u∞ = (u∞1 , · · · , u∞m ). In fact, it was shown in [13] that the limiting profile
has Lipschitz regularity up to the boundary of Ω. Furthermore, the limiting compo-
nents are segregated, that is their supports are disjoint. In its respective support, the
limiting component u∞i satisfies the following elliptic problem

∆u∞i = fi(u
∞
i ).(1.4)

In the language of singular perturbations, the above limit problem is called the outer
limit problem.

More recently, it was shown in [18] that such families ug remain bounded, uni-
formly in g, even in the Lipschitz norm, at least away from the boundary of the
domain and for positive solutions

The regularity properties of the sharp interface

Γ =
{
x ∈ Ω̄ : u∞1 (x) = · · · = u∞m (x) = 0

}

were subsequently studied in [22]. It was shown there that Γ has properties analogous
to the nodal set of eigenfunctions of the Laplacian: there exists Σ ⊂ Γ withHdim(Σ) ≤
N − 2 such that Γ \ Σ is a finite union of smooth manifolds (we refer to [23] for
a detailed description of Σ). The set Σ is referred to as the singular part of the
interface Γ, whereas Γ \Σ as the regular part. On each side of a smooth manifold M
that composes the regular part of the interface there is only one nontrivial limiting
component. Moreover, across M the corresponding limiting components, say u∞ =
u∞i and v∞ = u∞j (it holds i 6= j, see [9]), satisfy the following reflection law:

|∇u∞| = |∇v∞| on M.(1.5)

We note that the above normal derivatives are nonzero by (1.2), (1.4) and Hopf’s
boundary point lemma.

More refined estimates for the convergence as g → +∞ have recently been ob-
tained in [20] and [24]. In particular, it was shown in the former reference that near a
point p of M , the two corresponding components ug = ugi , vg = ugj (i 6= j) that survive
as gn → +∞ should behave, to main order, in the following self-similar fashion:

ug(x) ∼ g− 1
4U
(
g

1
4 dist(x,M)

)
, vg(x) ∼ g− 1

4V
(
g

1
4 dist(x,M)

)
,(1.6)

where dist(·,M) stands for the signed distance to M , while the one-dimensional pro-
files U(t), V (t) depend only on the point p and satisfy

{
U ′′ = UV 2

V ′′ = V U2(1.7)

in the entire real line. It was shown in [4, 5] that the above problem has just a
2-parameter family of positive solutions given by

µU(µt+ τ), µV (µt+ τ),
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with scaling parameter µ > 0 and translation τ ∈ (−∞,+∞), for some fixed solution
pair (U, V ) which satisfies the mirror reflection symmetry

U(−t) ≡ V (t),(1.8)

and enjoys the following asymptotic behaviour at respective infinities:

U(t)→ 0 as t→ −∞; U ′(t)→ |∇u∞(p)| > 0 as t→ +∞.

Notice that the convergence in the previous limits is super-exponentially fast. In fact,
it was observed in [1] that there is an asymptotic phase k = k(p) > 0 in the asymptotic
behaviour of U at +∞. Combining all the previous information, we deduce that, for
t > 0 large enough,

U(t) = |∇u∞(p)|t+ k +O(e−c1t
2

) and V (t) = O(e−c2t
2

),(1.9)

for some positive constants c1 and c2. The above relations can be differentiated and,
via (1.8), provide the corresponding asymptotic behaviour as t→ −∞.

One also expects that the behaviour of solutions for large g near Σ should be
governed by an equivariant entire solution with polynomial growth of the PDE version
of system (1.7), see [5, 19], which is usually called the inner (or blow-up) limit problem.

1.2. The problem with two-components. ¿From now on, we will consider
the special case of problem (1.1) with m = 2, which (after a rescaling) we can write
as





−∆u+ f(u) + guv2 = 0
in Ω;

−∆v + h(v) + gvu2 = 0

u = v = 0 on ∂Ω,

(1.10)

for some smooth functions f and h such that f(0) = h(0) = 0 and Ω still a bounded,
smooth N -dimensional domain.

We note that the reflection law (1.5) implies that the difference

w = u∞ − v∞

is smooth across the regular part of the interface. In fact, it was shown in [9] that
this difference is a classical solution of the following limit problem

∆w = f(w+)− h(−w−) in Ω; w = 0 on ∂Ω,(1.11)

where one writes

w = w+ + w− with w+ ≥ 0 and w− ≤ 0.

It is worthwhile mentioning that in the special case where f ≡ h is odd, the above
limit problem reduces to

∆w = f(w) in Ω; w = 0 on ∂Ω.(1.12)
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1.3. The converse problem. So far we have discussed how one can reach the
limit problem (1.11) (and also (1.7)) starting from an appropriate family of solutions
to (1.10) for large g. It is also of interest whether one can go in the opposite direc-
tion, that is under which conditions do solutions of the limit problem (1.11) generate
corresponding solutions of (1.10) for large values of g.

In [10], Dancer considered (1.10) for nonlinearities as in (1.3) with g1, g2 > 0 (with
the obvious correspondence with (1.1)). It was shown by variational methods that,
under appropriate restrictions on µ1, µ2, a certain type of nodal least energy solutions
of (1.11) generate corresponding solutions with positive components to (1.10) for large
g. On the other hand, the authors of [26] considered the case where g1 = g2 < 0 (say
−1) and µ1 = µ2 > 0 (say 1) in a ball in two or three dimensions. In this case,
it is well known that, for any integer m ≥ 1, the (reduced) limit problem (1.12)
admits a radial nodal solution wm with exactly an m number of sign changes. Using
variational methods, they were able to show that each wm produces a corresponding
radial solution of (1.10) with positive components that shadow respectively (wm)+

and −(wm)− as g → +∞.

At this point let us make a small detour and discuss briefly the analogous elliptic
system modeling two competing populations that arises in spatial ecology. In that con-
text, the coupling terms in both equations of (1.10) are guv, while the nonlinearities
f, h are usually of logistic type. Remarkably, uniformly bounded families of solutions
to both systems share essentially the same regularity properties (with respect to large
g), see [6]. In particular, they have the same (outer) limit problem (1.11). For the
population problem, it was shown in [7] by means of a topological degree theoretic ar-
gument that non-degenerate (in the sense that the linearized operator does not have a
kernel) nodal solutions w of (1.11) give corresponding solutions (ug, vg) with positive
components for the system with large g. The key idea for proving this is to consider
the difference u− v and note that this leads to a system with only one singularly per-
turbed equation (a standard slow-fast system in the language of dynamical systems).
Interestingly enough, this result was established without making use of the analogous
blow-up limit problem to (1.7). In light of the aforementioned common features of
the two systems, it is natural to expect that an analogous converse result should also
hold for the condensate problem (1.10), see [11].

2. Main result. We show that an analogous converse result holds for the con-
densate problem (1.10), provided that we restrict to the radial setting and we impose
some extra but milder non-degeneracy assumptions on the solution of the limit prob-
lem (1.11).

Theorem 2.1. Let Ω be an N -dimensional ball or annulus, N ≥ 1, and let
f, h ∈ C4[0,∞) be such that f(0) = h(0) = 0. Suppose that w is a radial nodal
solution of the limit problem (1.11) with one sign change, which is non-degenerate in
the radial class in the sense that the associated linearization does not have a nontrivial
radially symmetric element in its kernel. Moreover, assume that −w− and w+ are also
non-degenerate in the radial class as solutions of (1.11) in their respective supports.
Then, if g is sufficiently large, there exists a radial solution (ug, vg) of (1.10) with
positive components such that

‖vg + w−‖L∞(Ω) ≤ Cg−
1
4 , ‖ug − w+‖L∞(Ω) ≤ Cg−

1
4 ,

where the constant C > 0 is independent of g.

If r0 denotes the radius of the sphere where w vanishes, and (r− r0)w(r) > 0 for
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r 6= r0, it holds





ug(r) = g−
1
4U
(
g

1
4 (r − r0)

)
+O

(
g−

1
2 + (r − r0)2

)

vg(r) = g−
1
4V
(
g

1
4 (r − r0)

)
+O

(
g−

1
2 + (r − r0)2

)

for |r − r0| ≤ (ln g)g−
1
4 , as g → +∞, where the pair (U, V ) is the unique solution of

(1.7) satisfying (1.8) and (1.9) with u∞ = w+ and |p| = r0.

As we will describe in more detail in the sequel, our proof relies on a perturbative
method. We first combine the outer and inner problems, (1.11) and (1.7) respectively,
to construct a sufficiently good approximate solution to (1.10) for large g that is valid
in the whole domain. Then, we can capture a genuine solution nearby by a fixed point
argument owing to appropriate invertibility properties of the associated linearized
operator between carefully chosen weighted spaces.

We point out that the separate non-degeneracy assumptions on −w− and w+ were
not present in the previously mentioned result of [7] for the population system. As
will become apparent shortly, the underline reason for imposing them is the presence
of the positive asymptotic phase k in the asymptotic behaviour of the blow-up profile
(recall (1.9)). We point out that there was no such phase present in the analogous
blow-up limits for the population problem. Loosely speaking, the outer and inner
approximate solutions, given to main order by ±w± and (1.6) with M = {|x| = r0},
respectively, do not have the phase k > 0 in common (in the intermediate zone where
they must match). Therefore, we need to move the outer solutions towards the inner
one by a regular perturbation to compensate for the gap caused by k > 0 (in principle,
the inner solution should control the outer ones). To be able to do so, by means of the
implicit function theorem, we need to impose these non-degeneracy assumptions on
−w− and w+. We remark that the non-degeneracy assumptions for ±w± are much
easier to verify in practice (see for instance [16]) in comparison to that for w which is
a sign-changing solution (see [21]); see also Section 4 below.

We believe that an analogous result still holds when w changes sign an arbitrary
number of times, provided one imposes further analogous non-degeneracy assumptions
to take into account the interaction created by adjacent zeros of w(r) for 1� g <∞.

3. Sketch of the proof. In this section, we describe briefly the main steps in
the proof of Theorem 2.1. For simplicity, we will do this in a one-dimensional setting
where Ω = (a, b) and r0 = 0. The general radial case can be treated in a completely
analogous manner.

We write v0 instead of −w−, u0 instead of w+, and set

ψ0 = −v′0(0) = u′0(0) > 0.

3.1. Construction of the approximate solution (uap, vap). Firstly, around
the origin we consider a two-parameter family of first order inner approximate solu-
tions of the form

uin(x) = µg−
1
4U(t), vin(x) = µg−

1
4V (t), where t = µg

1
4 (x− ξ),(3.1)

with µ > 0 and ξ ∈ (−∞,∞). The remainder left by this approximation in (1.10) is

of order |x|+ g−
1
4 , therefore we will use it for |x| ≤ | ln g|g− 1

4 (keep in mind also the
super-exponential rate of convergence in (1.9)).
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In (a, 0) and (0, b) we consider one-parameter family of outer approximate so-
lutions of the form

(
0, vδ̃

)
and (uδ, 0), respectively, through the following boundary

value problems:





v′′
δ̃

= h(vδ̃), x ∈ (a, 0),

vδ̃(a) = 0, vδ̃(0) = δ̃,





u′′δ = f(uδ), x ∈ (0, b),

uδ(0) = δ, uδ(b) = 0,
(3.2)

for 0 ≤ δ̃, δ � 1. We point out that such vδ̃, uδ exist and depend smoothly on δ̃, δ ≥ 0
thanks to the implicit function theorem and the assumption that v0 and u0 are non-
degenerate solutions of the above problems for δ̃ = 0 and δ = 0, respectively. In fact,
the following asymptotic expansion holds:

uδ = u0 + δu1 + δ2u2 + δ3u3 +O(δ4)

where the ui for i ≥ 1 are given as solutions of linear inhomogeneous problems (which
are solvable thanks to the aforementioned non-degeneracy of u0). In particular, we
have

−u′′1 + f ′(u0)u1 = 0, x ∈ (0, b); u1(0) = 1, u1(b) = 0.

Naturally, an analogous expansion holds also for vδ̃. The outer approximate solution,

made up by (0, vδ̃) and (uδ, 0), will be used for |x| ≥ | ln g|g− 1
4 . In fact, it solves (1.10)

exactly except from x = 0. As a first order outer approximate solution (uout, vout) we
take the pairs

(
0, v0 + δ̃1v1

)
and (u0 + δ1u1, 0)(3.3)

in
(
a,−| ln g|g− 1

4

)
and

(
| ln g|g− 1

4 , b
)

, respectively, with δ̃1, δ1 free parameters.

The main effort is placed in adjusting conveniently the four free parameters
µ, ξ, δ1, δ̃1 so that the above first order inner and outer approximate solutions match in
an appropriate intermediate zone, which we can take as | ln g|g− 1

4 ≤ |x| ≤ 2| ln g|g− 1
4 .

On the one hand, from (3.1), by virtue of (1.9) with asymptotic slope ψ0 > 0 and
asymptotic phase k > 0, the first component of the first order inner approximate
solution behaves essentially as a linear function of t = µg

1
4 (x− ξ)� 1. On the other

hand, we see from (3.3) that the corresponding component of the outer approximate
solution has, to main order, a linear behaviour in x near x = 0+. By comparing these
(say equating the powers x0 and x1), we get two equations to be satisfied. We point
out that powers of x2 are not present in neither the first order outer or inner approx-
imation. We stress that an analogous property propagates to higher order powers
of x when matching higher order inner and outer approximate solutions, merely by
equating the powers x0 and x1 at each step. Doing the same on the other side for the
second components, gives two more equations. The resulting system of four equations
and! four unknowns, after setting µ = 1 + µ1, reads as follows:





δ1 = g−
1
4 k − ξψ0,

δ1u
′
1(0) = 2ψ0µ1,

δ̃1 = g−
1
4 k + ξψ0,

δ̃1v
′
1(0) = −2ψ0µ1.
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The above system has the following unique solution, provided that v′1(0) 6= u′1(0):

µ1 = − g−
1
4 ku′1v

′
1

ψ0(u′1 − v′1)
, ξ =

g−
1
4 k(u′1 + v′1)

ψ0(u′1 − v′1)
, δ1 = − 2g−

1
4 kv′1

(u′1 − v′1)
, δ̃1 =

2g−
1
4 ku′1

(u′1 − v′1)
,

where here u′1, v
′
1 are evaluated at zero. Observe that thanks to the non-degeneracy

assumption on w, we always have v′1(0) 6= u′1(0) (otherwise, the union of v1 and u1

would be an element of the kernel of the linearization of (1.11)).
To improve the remainder left by (3.1) in (1.10), we consider a more refined inner

approximate solution of the form

uin(x) = µg−
1
4U(t) + ϕ(t), vin(x) = µg−

1
4V (t) + ϕ̃(t),(3.4)

for fluctuations ϕ, ϕ̃ of higher order. We point out that we will not adjust further
µ and ξ, analogous parameters will appear shortly. In order to choose corrections
ϕ, ϕ̃ for a second order inner approximate solution, we have to try (3.4) in (1.10),
and then take into account the matching with the corresponding second order outer
approximate solution. The latter is comprised of

(
0, v0 + (δ̃1 + δ̃2)v1 + (δ̃1 + δ̃2)2v2

)
,
(
u0 + (δ1 + δ2)u1 + (δ1 + δ2)2u2, 0

)
(3.5)

in
(
a,−| ln g|g− 1

4

)
and

(
| ln g|g− 1

4 , b
)

, respectively, with δ1, δ̃1 as above and δ2, δ̃2 are

higher order corrections to be chosen.
At first sight it seems that, to main order, the inner corrections should satisfy the

following inhomogeneous linear problem in (−∞,+∞):

{
−ϕ′′ + V 2ϕ+ 2UV ϕ̃ = −µ−1g−3/4f ′(0)U,
−ϕ̃′′ + U2ϕ̃+ 2UV ϕ = −µ−1g−3/4h′(0)V.

(3.6)

We note that the linear operator in the left side is precisely the linearization of the
blow-up problem (1.7) about (U, V ). It is important to note that this operator includes
in its kernel the pairs (U ′, V ′) and (tU ′+U, tV ′+V ) due to the translation and scaling
invariance of (1.7). In fact, it was shown in [4] that the only bounded elements in the
kernel are constant multiples of (U ′, V ′). By setting

(ϕ, ϕ̃) = µ−1g−
3
4

(
(Z, Z̃) + (ϕ1, ϕ̃1)

)
,

where Z, Z̃ are fixed, smooth functions such that





Z(t) = 0, t ≤ −1, Z(t) = f ′(0)
(
k t

2

2 + ψ0
t3

6

)
, t ≥ 1,

Z̃(t) = h′(0)
(
k t

2

2 − ψ0
t3

6

)
, t ≤ −1, Z̃(t) = 0, t ≥ 1,

we can transform (3.6) to an equivalent problem for (ϕ1, ϕ̃1) with the same linear
operator on the left side but with righthand side that decays super-exponential fast
as t → ±∞ and is independent of g. By the linear theory developed in [1], the
resulting problem has a solution such that, for any M > 1, it holds

ϕ1(t) = a+t+ b+O(e−Mt), ϕ̃1(t) = O(e−Mt) as t→ +∞,
ϕ1(t) = O(eMt), ϕ̃1(t) = a−t+ b+O(eMt) as t→ −∞,
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for some constants a±, b. Therefore, we seek corrections (ϕ, ϕ̃) in (3.4) in the form

(ϕ, ϕ̃) = µ−1g−
3
4

(
(Z, Z̃) + (ϕ1, ϕ̃1) +A(U ′, V ′) +B(tU ′ + U, tV ′ + V )

)
,(3.7)

with A,B free parameters to be determined through the matching with the outer
approximation in (3.5). As before, by looking at the powers x0, x1, the matching
amounts to solving a 4×4 linear system for A,B, δ2, δ̃2 which is again possible thanks
to the non-degeneracy condition on w. More precisely, we find that A = O(g

1
4 ), B =

O(1), δ2 = O(g−
1
2 ), δ̃2 = O(g−

1
2 ). However, it turns out that A = O(g

1
4 ) causes the

second order inner approximate solution to leave a remainder of the same order as
the first order one. This suggests that there should be a quasi-second order inner
approximate solution given by

(ψ, ψ̃) = µ−1g−
3
4 (A1(U ′, V ′) +B1(tU ′ + U, tV ′ + V ))

as the main correction in (3.4) for some appropriate A1 = O(g
1
4 ) and B1 = O(1). It

turns out that a successful way to go about this issue is to determine at the same
time (through the previous matching considerations) the above quasi-second order
inner solution, the quasi-second order outer (3.5), the genuine second order inner
solution that is given by (3.7), writing A = A2, B = B2, with (ϕ1, ϕ̃1) satisfying the
inhomogeneous problem (3.6) with the addition of some super-exponential decaying
terms of the same order in the righthand side involving A1, B1, and the genuine second
order outer solution

(
0,

3∑

i=0

(δ̃1 + δ̃2 + δ̃3)ivi

)
,

(
3∑

i=0

(δ1 + δ2 + δ3)iui, 0

)
(3.8)

where δ3, δ̃3 are higher order corrections. We are led to two 4 × 4 linear systems for
(A1, B1, δ2, δ̃2) and the corresponding (A2, B2, δ3, δ̃3), that are again solvable, with the
flexibility of rearranging conveniently their right hand sides so that we get solutions
of the desired order in g.

Finally, we can smoothly patch the (genuine) second order outer and inner ap-
proximate solutions using cutoff functions in the intermediate zone, and get a smooth
global approximate solution (uap, vap) that leaves a remainder in (1.10) of order

| ln g|4g− 1
2 .

3.2. The fixed point argument. We can perturb the approximate solution to
a genuine one by applying the contraction mapping theorem, based on the following
a-priori estimates for the associated linearized operator, expanding on ideas from [1].

Proposition 3.1. Suppose that

L
(
φ
ψ

)
=

(
F
H

)
, x ∈ (a, b); φ(a) = φ(b) = 0, ψ(a) = ψ(b) = 0,

where F,H ∈ C[a, b] and

L




φ

ψ


 ≡



−φ′′ + f ′(uap)φ+ gv2

apφ+ 2guapvapψ

−ψ′′ + h′(vap)ψ + gu2
apψ + 2guapvapφ


 .

Then, given γ ∈ (0, 1), ρ > 0, there exist C, g0 > 0, independent of (F,H) and (φ, ψ),
such that

‖(φ, ψ)‖1 ≤ Cg−
1
4 ‖(F,H)‖2,
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‖(φ, ψ)‖1 ≤ Cg−
1
4 ‖(F,H)‖0 + Cgρ−

1
2 ‖(F,H)‖2,

where

‖(Φ,Ψ)‖i = ‖wi(x)Φ‖L∞(a,b) + ‖wi(−x)Ψ‖L∞(a,b), i = 0, 1, 2,

with

w0(x) =





1 + |g 1
4x|1+γ , x ∈ [0, b),

1, x ∈ (a, 0).
w1(x) =





1, x ∈ [0, b),

eg
1
4 |x|, x ∈ (a, 0),

w2(x) =





1 + |g 1
4x|1+γ , x ∈ [0, b),

eg
1
4 |x|, x ∈ (a, 0),

provided that g ≥ g0.

4. Applications of the main result. Let us now give briefly some applications
of Theorem 2.1. As it was already pointed out earlier, in the case f ≡ h and f is odd
the limit problem becomes (1.12). It is known that when f(u) = λu − u2p+1, λ ≥ 0
and p is such that

1 < 2p+ 1 <
N + 2

N − 2
if N ≥ 3, p > 0 if N = 2,(4.1)

then a radial solution w to (1.12) is unique and non-degenerate in the radial class
provided that

• w is positive, λ 6= 0 and Ω is an annulus or the exterior of a ball, see [12];
• w is positive, λ = 0 and Ω is a ball or an annulus, see [14];
• w is positive, λ 6= 0 and Ω is a ball, see [2];
• w is a nodal solution with two nodal regions, λ = 0, see [15].

We also refer to [17] for more general results concerning the function f . We point
out that such solutions can be shown to exist by variational methods.

Thanks to these previous results, we see that our result applies in the case f(u) =
−u2p+1 with p as in (4.1), and Ω a ball or an annulus. In a related topic, let us point
out that when Ω is the whole N -dimensional space, N ≥ 3, and f(u) = u − |u|p−1u
with 1 < p < N+2

N−2 sufficiently close to N+2
N−2 , Ao, Wei and Yao [3] constructed radial

solutions with k ≥ 1 nodes to (1.12) that tend to zero as r → ∞. Moreover, they
established that their solutions are unique and non-degenerate. Our theorem, with
only minor modifications in the proof, can produce a corresponding solution to (1.10)
for large g, starting from such a one-node solution.
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