
A brief introduction to the R library

OptimalDesign

Radoslav Harman, Lenka Filová

February 9, 2020

Abstract

The R library OptimalDesign ([7]) provides a toolbox for computing
efficient approximate and exact designs of regression experiments with un-
correlated observations1. This text presumes the general knowledge of the
theory of optimal design of statistical experiments, see, e.g., the mono-
graphs [1], [2], [13]. Here we only provide an overview of the philosophy
and some mathematical details of the library.

1 Design space

The current version of the library works with a design space X of a finite size
n.2 We assume that we have an implicit ordering of “candidate” design points
x1, . . . , xn, each representing particular experimental conditions under which
we can perform a “trial”3, possibly multiple times. The design points typically
correspond to all permissible combinations of the levels of discrete factors. The
general aim is to construct an “efficient design”, which is, abstractly put, a syn-
ergistic multi-set of design points selected from the candidates (a more concrete
definition is in Section 10).

2 Matrix of candidate regressors

The central object of the library is the matrix F = (f1, . . . , fn)′ ∈ Rn×m (denoted
by Fx in the codes) of all candidate regressors, representing the optimal design
problem.

If we consider the standard linear regression model y = f ′(x)θ + ε with the
vector θ of parameters, where, for each trial, x can be selected from X, then

1The library OptimalDesign can also be used to for various other problems equivalent to
optimal design of experiments such as for computing the minimum-volume data-enclosing
ellipsoids. However, in this short guide we only focus on designing experiments.

2The design space is finite but it can be very large, up to millions of design points for some
procedures. Moreover, using various simple strategies, the solvers for optimal designs on a
finite design space can be used to compute efficient designs on continuous design spaces.

3“Trials” are sometimes referred to as “observations” or “measurements”.

1



fi = f(xi). For the application to the design of non-linear regression models
y = η(x, θ) + ε, the fi is the gradient of the function η(xi, ·) with respect to θ,
evaluated in some nominal parameter value θ0

4. We assume that F has the full
column rank, i.e., that F′F is non-singular.

Note that in the package we assume that m ≥ 2, because the optimal design
problems with m = 1 tend to be trivial or directly equivalent to a problem of
(possibly integer) linear programming.

To compute F for the most common linear and nonlinear regression models,
the library OptimalDesign provides functions Fx cube, Fx simplex, Fx blocks,
Fx glm, Fx dose, Fx survival. See the help pages of these functions for details.

3 Design

In our library, the design is formally a non-negative vector w = (w1, . . . , wn)′.
Depending on the application, the interpretation of wi is the approximate (pos-
sibly non-integer) or exact (integer) number of replications of independent trials
in xi. In the former case, w is called an “approximate” design, in the latter case
it is called an “exact” design5. The value

∑
i wi is the “size” of the experiment,

i.e., the total number of trials. The component wi can also represent the relative
proportions of the trials in xi; then

∑
i wi = 1 and w is called a “normalized”

approximate design.

4 Information matrix

For any design w = (w1, . . . , wn)′ ∈ [0,∞)n, the information matrix is defined
as

M(w) =

n∑
i=1

wifif
′
i = F′diag(w)F.

The information matrix is a non-negative definite m×m matrix representing the
information about the parameter gained from the experiment designs accord-
ing to w. For an efficient computation of the information matrix, the library
provides the function infmat.

4The so-called “local” approach.
5That is, formally speaking, exact design is a specific approximate design

2



5 Standard optimality criteria

The library implements the standard criteria of D-optimality, A-optimality, and
c-optimality6, in the following forms.

φD,F(w) = det[M(w)]1/m; (1)

φA,F(w) = m/ tr[M−1(w)] if M(w) is non-singular, 0 otherwise; (2)

φc,F(w) = ‖h‖2/ h′M−(w)h if h ∈ C(M(w)), 0 otherwise, (3)

where h is a user-defined non-zero vector and M− is any generalized inverse
of M. All these criteria depend on w only via M(w). These criteria are concave,
positive homogeneous, and normalized in such a way that they assign 1 to any
w with M(w) = Im. See the function optcrit.

6 Derived optimality criteria

The library also implements two criteria derived fromA-optimality: I-optimality
and C-optimality (i.e., a regularized c-optimality).

φI,F(w) = φA,FR−1
F

(w) if M(w) is non-singular, 0 otherwise; (4)

φC,F(w) = φA,FH−1
α

(w) if M(w) is non-singular, 0 otherwise. (5)

Above, the matrices RF and Hα, α ∈ [0, 1), are defined so that

R′FRF =
m∑n

i=1 ‖fi‖2
n∑
i=1

fif
′
i ,

H′αHα = αIm +
(1− α)mhh′

‖h‖2
.

where h is a user-defined non-zero vector. These criteria are also concave,
positive homogeneous, and they are normalized in such a way that they assign
1 to any w with M(w) = Im.

It is possible to show that for a non-singular M(w) we have

φI,F(w) = ‖F‖2
(

n∑
i=1

f ′iM
−1(w)fi

)−1
(6)

φC,F(w) = m

(
tr

[
αM−1(w) +

(1− α)m

‖h‖2
M−1(w)hh′

])−1
. (7)

6D-optimality aims at constructing designs minimizing the volume of the confidence ellip-
soid for the vector of model parameters, A-optimality minimizes the sum of variance of the
BLUEs of all model parameters and c-optimality minimizes the variance of the BLUE of a
linear combination of the model parameters (the coefficients of the linear combinations are
given by a vector h). See the referenced monographs for more details.

3



I-optimality is a well-known and very useful criterion (e.g., [1]). The expres-
sion 6 implies that I-optimality is aimed at constructing designs that minimize
the sum of the variances of the BLUEs of estimators of the mean responses in
x1, . . . , xn. Note also that many of generalizations of I-optimality can also be
easily converted to A-optimality and the corresponding optimal designs can be
computed using the procedures of this library.

On the other hand C-optimality is not yes an established criterion. The
expression 6 shows that C-optimality is constructed with the aim to produce a
non-singular optimal design efficient with respect to the criterion of c-optimality
(the true c-optimal designs are often singular, i.e, dangerous to use). We use
the fixed value of α = 0.05 and do not yet have theoretical underpinnings of the
criterion, although the criterion seems to work reasonably well.

See the functions optcrit, Fx ItoA, and Fx CtoA.

7 Directional derivatives

Directional derivatives of the criteria provide a useful inspection tool. We use
the following forms of the directional derivatives of φ at the normalized design
w (with a non-singular M(w)) in the direction of the singular designs ei.

∂φD,F(w, ei) =
det(M(w))1/m

m

[
f ′iM

−1(w)fi −m
]

;

∂φA,F(w, ei) =
m

tr2(M−1(w))

[
f ′iM

−2(w)fi − tr(M−1(w))
]

;

∂φc,F(w, ei) =
‖h‖2

(h′M−1(w)h)2
[
(f ′iM

−1(w)h)2 − h′M−1(w)h
]
.

The directional derivatives for the criteria of I- and C-optimality follow from
the definitions (6) and (7).

See the function dirder.

8 Variance functions

“Variance functions” are closely related to the directional derivatives. Since we
have an n-point design space, we can represent the variance functions by vectors
of length n. The i-th component of the variance functions depends on the
criterion and we define it as follows: (vD,F(w))i = f ′iM

−1(w)fi, (vA,F(w))i =
f ′iM

−2(w)fi, and (vc,F(w))i = (f ′iM
−1(w)h)2. See the function varfun.

4



9 Design constraints

Performing a trial incurs costs; therefore, the set W of practically permissi-
ble designs is always restricted.7 Often, we only have the size of the design
constrained by some number N .8 Sometimes, however, we have more complex
design constraints. Several procedures of the library allow for setting multi-
ple linear constraints Aw ≤ b, where A is a k × n matrix and b is a k × 1
vector9. These can be either general linear constraints or the “resource” linear
constraints, depending on the procedure. If the constraints are of the resource
type, A has non-negative elements (but no column is 0k), and b has positive
elements. Many practical constraints are of the resource type and their special
form makes it easier to handle for some optimal design algorithms. See the next
section and Table 1.

10 Optimal designs

The aim of optimal experimental design is to maximize the value of the criterion
of optimality φ over the set W of all permissible designs, thus leading to an
optimal design w∗. This can be formulated as an optimization problem

maxw φ(w)
subject to w ∈ W.

(8)

The primary purpose of the library is to compute optimal designs with a general
matrix F of candidate regressors and various forms of W as indicated in Table
1. The available procedures are od REX (cf. [8] and [9]), od KL ([1]), od MISOCP

([16]), od RC ([6]), and od AQUA ([5] and [3]).

Note that some of the functions also allow for setting a separate lower bound
w0 on w which can represent the design to be optimally augmented.

Some of the functions (od MISOCP, od AQUA) require the gurobi solver ([4]).
The solver is commercial, but it is very simple to obtain a free academic licence.

11 Efficiency of a design

Let w∗ be a φ-optimal design within W and let φ be a concave, positive homo-
geneous criterion. The efficiency of a design w is defined as φ(w)/φ(w∗). To

7Please, note the difference between restrictions on the set X of design points and restric-
tions on the space of designs on X. Computing efficient designs on a restricted X is usually not
much different from computing efficient designs on the original, full, X. On the other hand,
computing the efficient design within a functionally constrained class of design on X may be
a fundamentally harder problem.

8If, for instance, each trial costs the same amount of money and we have a fixed budget
(and there are no constraints on other resources).

9For the sake of simplicity, some of the functions of the library allow for setting Aw ≤ b
in the form of simultaneous constraints A1w ≤ b1, A2w ≥ b2, and A3w = b3.

5



W criteria function
w ∈ [0,∞)n :

∑
i wi = 1 D, A, I, C, c od REX

w ∈ Nn0 :
∑
i wi = N D, A, I, C od KL

w ∈ {0, 1}n :
∑
i wi = N D, A, I, C od KL (with bin=TRUE)

w ∈ [0,∞)n : Aw ≤ b general D, A, I, C, c od MISOCP

w ∈ Nn0 : Aw ≤ b resource D, A, I, C od RC

w ∈ Nn0 : Aw ≤ b general, smaller n D, A, I, C, c od MISOCP

w ∈ Nn0 : Aw ≤ b general, larger n D, A, I, C od AQUA

Table 1: Recommended functions to compute optimal design within various sets
of permissible designs.

compute the actual efficiency of w we need the optimal design w∗ (or at least
φ(w∗)), which may be unavailable. However, in some situations we can quickly
compute a lower bound on the efficiency of w (with a non-singular M(w)). For
instance if W is a set of designs with the same size as w then such a lower
bounds are (based on the criterion):

φD(w)

φD(w∗D)
≥ m

maxi f ′(xi)M−1(w)f(xi)
;

φA(w)

φA(w∗A)
≥ tr(M−1(w))

maxi f ′(xi)M−2(w)f(xi)
;

φc(w)

φc(w∗c )
≥ h′M−1(w)h

maxi(h′M−1(w)h)2
.

See the function effbound.

12 Conclusions

This text is constantly evolving and still does not cover the OptimalDesign

functions od PIN ([11]), od DEL ([10], [12]), od PUK ([14]), od SYM (Subsection
5.1 in [8]), od pool, od print, od plot. Do not hesitate to let us know your
suggestions for improvements.

References

[1] Atkinson AC, Donev AN, Tobias RD (2007): Optimum Experimental De-
signs, With SAS. Oxford University Press.

[2] Fedorov V, Hackl P (1997) Model-oriented design of experiments (lecture
notes in statistics). Springer, Berlin

[3] Filova L., Harman R. (2020). Ascent with Quadratic Assistance for the
Construction of Exact Experimental Designs. To appear in Computational

6



Statistics, DOI: https://doi.org/10.1007/s00180-020-00961-9, arXiv
preprint: https://arxiv.org/abs/1801.09124

[4] Gurobi Optimization, Inc. (2017): Gurobi Optimizer Reference Manual,
http://www.gurobi.com

[5] Harman R, Filová L (2014): ”Computing efficient exact designs of exper-
iments using integer quadratic programming”, Computational Statistics &
Data Analysis, Vol 71, pp 1159-1167

[6] Harman R, Bachratá A, Filová L (2016): ”Construction of efficient exper-
imental designs under multiple resource constraints”, Applied Stochastic
Models in Business and Industry 32/1, pp. 3-17

[7] Harman R, Filová L (2017): R package OptimalDesign, https://CRAN.

R-project.org/package=OptimalDesign

[8] Harman R, Filová R, Richtárik P (2020): A randomized exchange algorithm
for computing optimal approximate designs of experiments, to appear in
Journal of the American Statistical Association, DOI: https://doi.org/
10.1080/01621459.2018.1546588, arXiv preprint: https://arxiv.org/

abs/1801.05661

[9] Harman R, Juŕık T (2008): Computing c-optimal experimental designs
using the simplex method of linear programming, Computational Statistics
& Data Analysis 53 (2), 247-254

[10] Harman R, Pronzato L (2007): Improvements on removing nonoptimal
support points in D-optimum design algorithms, Statistics & Probability
Letters 77, 90-94

[11] Harman R, Rosa S (2020): On greedy heuristics for computing D-
efficient saturated subsets, to appear in Operations Research Letters, DOI:
https://doi.org/10.1016/j.orl.2020.01.003, arXiv preprint: https:

//arxiv.org/abs/1905.07647

[12] Pronzato L (2013): A delimitation of the support of optimal designs for
Kiefers Φp-class of criteria. Statistics & Probability Letters 83, 2721-2728

[13] Pukelsheim F (2006): Optimal Design of Experiments. SIAM.

[14] Pukelsheim F, Rieder S (1992): “Efficient rounding of approximate de-
signs”, Biometrika, Vol. 79, pp. 763-770

[15] R Core Team (2016): ”R: A language and environment for statistical
computing”, R Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/

[16] Sagnol G, Harman R (2015): ”Computing exact D-optimal designs by
mixed integer second order cone programming”, The Annals of Statistics
43 (5), 2198-2224

7

https://doi.org/10.1007/s00180-020-00961-9
https://arxiv.org/abs/1801.09124
http://www.gurobi.com
https://CRAN.R-project.org/package=OptimalDesign
https://CRAN.R-project.org/package=OptimalDesign
https://doi.org/10.1080/01621459.2018.1546588
https://doi.org/10.1080/01621459.2018.1546588
https://arxiv.org/abs/1801.05661
https://arxiv.org/abs/1801.05661
https://doi.org/10.1016/j.orl.2020.01.003
https://arxiv.org/abs/1905.07647
https://arxiv.org/abs/1905.07647
https://www.R-project.org/

	Design space
	Matrix of candidate regressors
	Design
	Information matrix
	Standard optimality criteria
	Derived optimality criteria
	Directional derivatives
	Variance functions
	Design constraints
	Optimal designs
	Efficiency of a design
	Conclusions

