
Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

Index Policies for Dynamic and
Stochastic Problems

2011 Vladimír Novák



Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

Department of Applied Mathematics and Statistics

Index Policies for Dynamic and
Stochastic Problems

Bachelor’s thesis

Vladimír Novák

Supervisor:
Mgr. Peter Jacko, PhD.

Co-Supervisor:
Mgr. Jana Szolgayová, PhD.

Branch of study: 9.1.9 Applied Mathematics
Study programme: Economic and Financial Mathematics

Registration number: ed46f30a-0712-4ecb-817b-dd18791671f5

BRATISLAVA 2011



Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

Katedra aplikovanej matematiky a štatistiky

Indexové stratégie pre dynamické
a stochastické úlohy

Bakalárska práca

Vladimír Novák

Školiteľ :
Mgr. Peter Jacko, PhD.

Pomocný školiteľ :
Mgr. Jana Szolgayová, PhD.

Študijný odbor: 9.1.9 Aplikovaná matematika
Študijný program: Ekonomická a finančná matematika

Evidenčné číslo: ed46f30a-0712-4ecb-817b-dd18791671f5

BRATISLAVA 2011





Abstrakt

Novák, Vladimír: Indexové stratégie pre dynamické a stochastické úlohy [Bakalárska
práca].
Univerzita Komenského v Bratislave, Fakulta matematiky, fyziky a informatiky,
Katedra aplikovanej matematiky a štatistiky.
Školitel: Mgr. Peter Jacko, PhD.
Pomocný škotileľ: Mgr. Jana Szolgayová, PhD.
Bratislava 2011

V našej práci sa zaoberáme Whittlovou metódou odvodenia indexových stratégií
pre problémy formulované v prostredí Markovovských rozhodovacích procesov. Ana-
lyzujeme model pre rozvrhovanie úloh užívateľov viacerých tried, v ktorom užívatelia
môžu aj odchádzať, ak ich úloha nie je ukončená včas . Naším cieľom je minimalizá-
cia celkových nákladov a pokút za odchody užívateľov. Práca poskytuje analytické
riešenie optimálnych stratégií pre prípady s 1 a 2 užívateľmi v systéme. Pre prí-
pad s viacerými užívateľmi sme použitím posledných poznatkov v oblasti "Multi-
armed restless bandit" odvodili novú jednoduchú stratégiu, označovanú ako AJN,
pre systémy s povinným, aj bez povinného obsluhovania. Túto stratégiu navrhujeme
používať aj v prípadoch s príchodmi užívateľov. Okrem toho poukazujeme aj na
dôkladnú štúdiu numerických experimentov pre oba systémy, v ktorých porovnávame
AJN indexovú stratégiu s cµ-stratégiou, o ktorej je dobre známe, že je optimálna pre
systém s príchodmi aj bez príchodov užívateľov, avšak v ktorom nie sú zahrnuté od-
chody užívateľov. Porovnaváme ju aj s cµ/θ- stratégiou, o ktorej bolo prednedávnom
ukázané, že je asymptoticky optimálna stratégia v preťaženom systéme s viacerými
servermi. Táto výpočtová štúdia naznačuje, že naša stratégia je takmer vždy lepšia,
alebo porovnateľná s ostatnými stratégiami a často býva optimálna.

Klúčové slová: Markovovské rozhodovacie procesy • Multi-armed restless bandit •
Whittlov index • Indexové stratégie • Bellmanova rovnica



Abstract

Novák, Vladimír: Index Policies for Dynamic and Stochastic Problems [Bachelor’s
thesis].
Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics,
Department of Applied Mathematics and Statistics.
Supervisor: Mgr. Peter Jacko, PhD.
Co-Supervisor: Mgr. Jana Szolgayová, PhD.
Bratislava, 2011

In our work we investigate the Whittle’s index policy derivation framework in
the Markov decision process environment. We analyze model for the multi-class job
scheduling for user with abandonment, with the objective of minimizing the total
holding costs and abandonment penalties.The work provides analytical solution of an
optimal index rule for the case in which there are 1 or 2 users in the system. For
the case with more users we use recent results from the multi-armed restless bandits
approach and derive a new simple index rule, denoted by AJN, for the idling and
the non-idling system. This index rule is proposed to use also in the system with
arrivals. We also report on an exhaustive study of numerical experiments for both
systems, in which we compare AJN index rule with the cµ-rule, which is well-known
to be optimal both with and without arrivals but without abandonments, and with
cµ/θ - rule that was recently shown to be asymptotically optimal in a multi-server
system with overload conditions. This computational study suggests that our rule is
almost always superior or equivalent to the other rules, and it is often optimal.

Keywords: Markov decision process • Multi-armed restless bandit • Whittle index
• Index Policies • Bellman equation
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Introduction

People are confronted with difficult and often too complex problems everyday.
Based on our knowledge, intuition and beliefs we have developed several ways how
to deal with such problems. One way, that is used very often, is to match alterna-
tives with some priorities and based on them, we have to choose the best alternative.
The problem is how to find a most suitable priority to each alternative. Therefore,
it is of a great practical interest, to have general methodology for determination of
easy-solvable and simple priority rules for complex and intractable problems. Espe-
cially, we face these problems when we are sharing resources among multiple users.
This arises in diverse areas like marketing, financial economics, engineering systems,
medicine, telecommunications, etc.. In each of these cases, there exists some schedul-
ing mechanism that regulates how the resources are shared among competing users.
In these cases, it is not always clear what is the best to do. We need to take into ac-
count not only efficient use of the available resources and system operating expenses,
but also what is the impression obtained by users about the system.

In general,we consider several competitors that are competing for the available re-
source capacity at the same time. Suppose that independently of other competitors,
we can match a value to each competitor. This value is determining the efficiency
of attaining a join goal if we allocate resource capacity to her at a given moment.
In addition, reasons mentioned above lead us to deal with an ubiquitous phenomena
as abandonment (aka reneging). This happens in multitude of systems, for instance,
users in the Internet or users using smartphone’s data service may give up a transfer
if the connection is slow. User abandonment has a very negative impact from the per-
formance point of view. A user abandonment could imply for system that resources
have been wasted by allocating resources to a user that decided to abandon anyway.
On the other hand, user who abandons will get a bad impression about the system
and for instance, she may want to change a provider of Internet or mobile services.

From mathematical point of view, abandonments motivate the study of queueing-
theoretic models, but as a consequence of the complexity, the problem of how to
schedule impatient users is not completely understood. In this thesis we aim at solv-
ing the problem of scheduling users in a system with abandonments. We formulate

1



Introduction 2

the problem as a discrete time Markov Decision Process (MDP) and we use the recent
developments on the theory of Multi-Armed Restless Bandits for deriving a simple
implementable scheduling rule (as it was proposed in Whittle (1988)) for multi-class
system, based on assigning a priority to every user and serving the user with highest
priority.

The thesis is organized as follows. The first Chapter provides theoretical back-
ground for the thesis. It consists of an introduction to the topic of Stochastic and
Dynamic Resource Allocation, Index Rules derivation, description of a Markov Deci-
sion Process (MDP) framework and a view on Multi-Armed Restless Bandits models.
In Chapter 2 we make problem description and its formulation as MDP. Moreover,
we analytically solve the problem when there are one or two users and derive a new
simple scheduling rule for idling and non-idling system. Chapter 3 presents an ex-
haustive computational study for both systems, suggesting that the proposed rule is
nearly-optimal and outperforming several alternatives.



Chapter 1
Solution Methods for Stochastic Dynamic
Programming Problems

This Chapter provides an introductory survey of mathematical fields that we will
use throughout the whole thesis.

1.1 Markov Decision Process Framework
Imagine a system, where decision maker observes the state of a system at specified
points in time. Based on this state, he chooses an action from a set of actions that
could be chosen. As a consequence of the chosen action, the decision maker receives
a reward (or pays a cost) and the system moves into new state at a subsequent point
in time according to a probability distribution determined by the chosen action. (We
follow the description given in Puterman (2005)). In this new time point decision
maker faces similar problem, but system could be in a different state. In such a
Sequential Decision Model we assume that decision maker knows: a set of decision
epochs T , a set of system states S, a set of available actions A , a set of state and
action dependent immediate rewards or costs R and a set of state and action depen-
dent transition probabilities P . Decision maker’s aim is to maximize the expected
reward or to minimize the expected cost over a certain time horizon.

When the set of available actions, rewards, and the transition probabilities depend
only on the current state and action and not on previous states and actions we refer
to Markov decision process. Further we will use terms policy and decision rule. Policy
tells what to do in any time t ∈ T . Only if policy is stationary, then it tells what to
do in any state. A decision rule specifies the action to be chosen at a particular time.
A policy is a sequence of decision rules. Implementing a policy generates a sequence
of rewards.

From the historical point of view, MDP theory was developed separately for
discrete-time and continuous-time models. In this thesis we refer to discrete-time
MDPs. Into the bargain, using the uniformization technique we can reformulate
important cases of the continuous-time models into the discrete-time models.

3



1.2. MULTI-ARMED RESTLESS BANDIT PROBLEM 4

Development of discrete-time stream of MDP is mostly connected with Richard
Bellman. His method, known as dynamic programming, is based on using the Prin-
ciple of Optimality. The exact formulation of this principle depends on considered
optimization type, i.e., we can think about optimization over the finite or infinite
horizon etc. For optimization under β-discounted criterion the Principle of Opti-
mality is: "At any point in time, an optimal policy must prescribe an action that
optimizes the sum of immediate reward and (expected) total reward obtained if an
optimal policy is applied from the subsequent point in time on. The mathematical
concept associated to the Principle of optimality is the optimality equations of dy-
namic programming, called the Bellman equations." (Jacko (2010a) page 5 , see also
Bellman (1957), Bertsekas (2005)). Principle of optimality leads us to the recursive
solution method for dynamic programming problems.

As it was mentioned before, the Bellman equation depends on the optimization
horizon. We can use the Bellman equation for optimization over finite horizon. How-
ever, for the optimization over infinite horizon we need to use another type, because
terms in the Bellman equation for finite horizon could easily become infinite. In in-
finite horizon case we usually use the β-discounted Bellman equation, where holds
0 < β < 1. This approach is similar to discounting in finance and it is also mainly
used in the thesis. Besides this, in infinite horizon case we can also use time-average
criterion, where we optimize the average expected reward.

Dynamic programming also provides multitude of theoretical results as sufficient
conditions for optimality in some cases. Practical contribution of dynamic program-
ming is in the significant decreasing of the problem complexity. Nevertheless, we can
still be facing the curse of dimensionality, what refers to the problem that the size
of dynamic programming formulation is exponentially growing with the size of the
model (Jacko (2010a)).

For this purpose, it is often used LP reformulation or relaxation techniques such
as Lagrangian relaxation (mentioned later).

1.2 Multi-Armed Restless Bandit Problem
Multi-Armed Restless Bandit Problem is one of the fundamental stochastic resource
allocation models. It takes name from the classical slot machine: One-Armed Ban-
dit. In Multi-Armed Bandit Problem we consider multitude of levers and each lever
provides a specific reward. Gambler can pull exactly one lever at a time. The gam-
bler’s goal is to maximize the sum of rewards earned through a sequence of lever pulls
(Gittins (1989)). In practice, Multi-Armed Bandit Problem is used for allocating re-
sources among the competing projects, about which we have not got full information.
Such cases occur, for instance, in managing research projects in large organizations.

Whittle (see Whittle (1988)) proposed an extension of the Multi-Armed Bandit
Problem, denoted as Multi-Armed Restless Bandit Problem. In this version, bandit
admits evolution and reward even if it is not played and we can allocate the scarce
resource parallely to a fixed number of bandits. Due to that, we are able to describe a
bigger set of real problems by multi-armed restless bandit problem. However, in this
augmented version occur problems with tractability. The multi-armed restless bandit
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problem is known as extremely difficult optimization problem and proven PSPACE-
hard (Papadimitriou and Tsitsiklis (1999)), that is, its complexity grows exponentially
in time and in memory requirements. Therefore, recent research focuses on designing
of tractable heuristic rules.

1.3 Index Policies and their Designing Methods
In practice, due to the curse of dimensionality there are often used solutions obtained
by ad hoc techniques. Many people propose ad hoc solution also in the case when it
is needed to find only a nearly-optimal solution. We can observe several applications
of such ad hoc techniques in routing of mobile connections.

Gittins, in the early 70s, presented a series of papers in which he developed feature
of multi-armed (classic) bandit problem which is optimality of the index priority rule.
(Whittle (1980)). We match each of the bandit with a dynamic allocation index, and
then apply the index priority policy, defined: "Assign the scarce resource to a bandit
of highest current index value." (Jacko (2010a), page 12 ). This index proposed by
Gittins is now well-known as Gittins index and a solution of the classic multi-armed
bandit problem is known as Gittins index policy (see also Gittins (1979)). One of
the most remarkable contributions of this index is that it can be computed for every
bandit separately, independently on the others, and therefore reducing the multi-
dimensional problem to unidimensional.

Further we will use approach provided by Whittle (Whittle (1988)). For solving
multi-armed restless bandit problem, he used Lagrangian relaxation method. Before
employing the Lagrangian multiplier he proposed to relax the problem by replacing
the family of sample-path constraints by unique one. In other words, we replace
the constraint of playing fixed number of bandits in every period, by playing the
required number of bandits on average. Then, the Lagrangian relaxation results in
an unconstrained problem of optimizing the sum of independent reward processes.
Thus we can decompose multi-armed problem and simplify the solution procedure.
Whittle also proposed an index recovering Gittins index and modified the index
prority policy to: "Assign the scarce resource to bandits of highest current index
values" (Whittle (1988)). These indices often have an economic meaning. Due to
that we often use terms indexes and prices interchangeably.

1.4 Example: Single Restless Bandit Model
In this section following Jacko (2010a) we want to demonstrate the modeling power of
above-mentioned frameworks and methods. We will describe them in a more precise
way.

Consider the time slotted into time epoch t ∈ T := {0, 1, 2, . . . }. The time epoch
t corresponds to the beginning of the time period t. We can choose to work or not to
work on a given project. Project is a general work-reward restless bandit. We denote
by A := {0, 1} the action space, where 0 corresponds to not working (idling) and 1
corresponds to working. The action space is same for all projects. Each project from
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set K can be modeled independently of the others as tuple:

(
Nk, (W a

k)a∈A , (C
a
k)a∈A , (P

a
k)a∈A

)
,

where

• Nk is the state space, i.e., a finite set of possible states project k can occupy

• W a
k :=

(
W a
k,n

)
n∈Nk

, where W a
k,n is the (expected) one-period work required by

project k at state n under action a;

• Ra
k :=

(
Ra
k,n

)
n∈Nk

, where Ra
k,n is the expected one-period reward earned by

project k at state n under action a

• P a
k :=

(
pak,n,m

)
n,m∈Nk

is the project-k stationary one-period state-transition
probability matrix if action a is decided at the beginning of a period, i.e., pak,n,m
is the probability of moving to state m from state n under action a;

The dynamics of the project k is captured by the state process Xk(·) and the
action process ak(·), in each time epoch t. Naturally, we require that the expected
one-period work is nonnegative, i.e., 0 ≤W a

k.
Sometimes it may be more appropriate to consider Ca

k := −Ra
k, the expected

one-period cost paid by project k at state n, under action a.

1.4.1 Example: MDP Formulation of Job Scheduling

Consider K jobs waiting at the beginning (i.e., at time epoch t = 0) for service at a
server that can serve one job at every time period. Let 0 < µk < 1 be the probability
that the service of job k is completed within one period and let 0 < ck be the holding
cost per period incurred for job k waiting. These jobs can be viewed as competing
projects and while there are at least two jobs waiting, one must decide to which job
the server should be allocated. Suppose that the server is preemptive ,i.e., the service
of a job can be interrupted at any time epoch even if not completed.

We will define job k by tuple (Jacko (2009)), as it was proposed in previous sub-
section.

• Nk := {completed, waiting};

• expected one-period work

W 1
k,completed := 1, W 1

k,waiting := 1,

W 0
k,completed := 0, W 0

k,waiting := 0;



1.4. EXAMPLE: SINGLE RESTLESS BANDIT MODEL 7

• expected one-period reward

R1
k,completed := 0, R1

k,waiting := −ck(1− µk)− 0µk,

R0
k,completed := 0, R0

k,waiting := −ck;

• one-period state-transition probability matrix if serving a job,

P 1
k :=

( completed waiting

completed 1 0

waiting µk 1− µk

)
,

and if not being served

P 0
k :=

( completed waiting

completed 1 0

waiting 0 1

)
.

In the following section we apply this approach and notation to a more complicated
problem. In mentioned example projects cannot abandon, and we are talking about
work-conserving systems, what means that the server cannot idle if there are jobs
waiting, so systems are non-idling. In idling systems, the server can idle even if there
are jobs waiting.

In systems with abandonments, however, this requirement should not be imposed,
because it may be optimal to idle the server even if there are jobs waiting.

The Whittle index and the Gittins index for this job is ckµk
1−β (see Jacko (2010b)), so

the index policy is called the cµ-rule: Work on job with the highest ckµk. This rule was
known to be optimal since Smith (1956) without arrivals and Cox and Smith (1961)
with arrivals but proofs do not easily extend to the problem with abandonments.



Chapter 2
Job Scheduling with Abandonment

In this chapter we present the multi-class job scheduling problem, in which we
allow for abandonment due to users mobility or impatience. We will describe the
problem and formulate it as a Markov Decision Process. Further, we introduce the
relaxed formulation of the problem. The main emphasis of this chapter (based on
my joint work with Urtzi Ayesta and Peter Jacko: (Ayesta et al. (2011))) is put on
analytical solving of the original problem in some special cases, but the biggest effort
is given on the analytical solving of the relaxed problem and thus derivation of the
heuristic rule for original stochastic optimization formulation.

2.1 Problem Description
Consider K − 1 jobs waiting for service of a server that can serve one job at a time.
The service of job k is completed (if being served) with probability µk > 0 and the
probability of her abandonment (if not being served) is θk ≥ 0. We assume that the
user in service cannot abandon. Thus, the jobs (i.e., users) are assumed independent
of each other.

Let ck > 0 be the holding cost incurred for user k waiting in the queue. Further,
let dk ≥ 0 be the abandonment penalty incurred for user k if she abandons the system
without having her job completed. If the server is allocated to a user whose job has
already been completed, then no service occurs.

We incorporate the following parameter that makes the problem extensively flex-
ible to incorporate additional conditions or options, and turns out to be crucial for
creating not work-conserving system. It is allowed to allocate the server to an alter-
native task (such as idling, battery recharging or service maintenance), for which we
obtain an alternative-task reward κ. For instance, the role of this alternative task
with a positive κ could be to turn off the server allocation when all the users have too
high abandonment rates. On the other hand, by setting this parameter to a negative
value we may force the server to be non-idling (whenever there are waiting jobs), or
it can be simply set to zero narrowing the focus to the classic problem.

The joint goal is to minimize the expected aggregate holding and abandonment

8



2.2. MDP FORMULATION 9

costs minus the alternative-task reward, over an infinite horizon. The server is as-
sumed to be preemptive (i.e., the service of a job or the alternative task can be
interrupted at any moment even if not completed). Thus, the server continuously
decides to which user (if any) it should be allocated.

2.1.1 Variant without Abandonment

If θk = 0 for all k (i.e., there is no abandonment) and κ = 0, then this problem recovers
the classic job scheduling problem considered in Cox and Smith (1961); Smith (1956);
Fife (1965); Buyukkoc et al. (1985), for which the following greedy rule attains such
a goal:

Rule 1 (cµ-rule). Allocate the server to any waiting job of the non-empty class with
the highest value ckµk.

This quantity measures the expected savings on holding costs, or the efficiency of
attaining the goal, if user of class k is served. Thus, the cµ-rule allocates the server to
the user who contributes most efficiently to minimization of the expected aggregate
holding cost.

2.2 MDP Formulation
Since the cµ-rule is optimal both under general arrival distribution and under no
arrivals, and both in the continuous-time and the discrete-time model, we set out to
analyze the discrete-time model without arrivals, in order to obtain a rule accounting
for abandonment whose performance in the continuous-time model with arrivals we
later evaluate by means of numerical experiments. We set the model in the framework
of the dynamic and stochastic resource allocation problem and follow the approach
to design prices as described in Jacko (2009).

Consider the time slotted into epochs t ∈ T := {0, 1, 2, . . . } at which decisions
can be made. The time epoch t corresponds to the beginning of the time period t.
Suppose that at t = 0 there are K−1 ≥ 1 users awaiting service from the server that
at each epoch chooses (at most) one of the users to serve. If no user is chosen, then
the server is allocated to the alternative task, i.e., there are K competing options,
labeled by k ∈ K. Thus, the server is allocated to exactly one option at a time.

2.2.1 Jobs and Users

Every user k = 1, 2, . . . , K − 1 can be allocated either zero or full capacity of the
server. We denote by A := {0, 1} the action space, i.e., the set of allowable levels of
capacity allocation. Here, action 0 means allocating zero capacity (i.e., “not serving”),
and action 1 means allocating full capacity (i.e., “serving”). This action space is the
same for every user k.

Each job/user k is defined independently of other jobs/users as the tuple(
Nk, (W a

k)a∈A , (C
a
k)a∈A , (P

a
k)a∈A

)
,

where
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• Nk := {0, 1} is the state space, where state 0 represents a job already com-
pleted or abandoned, and state 1 means that the job is uncompleted and not
abandoned;

• W a
k :=

(
W a
k,n

)
n∈Nk

, whereW a
k,n is the (expected) one-period capacity consump-

tion, or work required by user k at state n if action a is decided at the beginning
of a period; in particular, for any n ∈ Nk,

W 1
k,n := 1, W 0

k,n := 0;

• Ca
k :=

(
Ca
k,n

)
n∈Nk

, where Ca
k,n is the expected one-period cost paid by user k at

state n if action a is decided at the beginning of a period; in particular,

C1
k,0 := 0, C1

k,1 := ck · (1− µk) + 0 · µk,
C0
k,0 := 0, C0

k,1 := ck · (1− θk) + dk · θk;

• P a
k :=

(
pak,n,m

)
n,m∈Nk

is the user-k stationary one-period state-transition prob-
ability matrix if action a is decided at the beginning of a period, i.e., pak,n,m is
the probability of moving to state m from state n under action a; in particular,
we have

P 1
k :=

( 0 1

0 1 0

1 µk 1− µk

)
, P 0

k :=

( 0 1

0 1 0

1 θk 1− θk

)
.

The dynamics of user k is thus captured by the state process Xk(·) and the action
process ak(·), which correspond to state Xk(t) ∈ Nk and action ak(t) ∈ A at all time
epochs t ∈ T . As a result of deciding action ak(t) in state Xk(t) at time epoch t, the
user k consumes the allocated capacity, earns the reward, and evolves its state for
the time epoch t+ 1.

Note that we have the same action space A available at every state, which assures
a technically useful property that W a

k,C
a
k,P

a
k are defined in the same dimensions

under any a ∈ A. Note also that state 0 is absorbing.

2.2.2 Alternative Task

We model the alternative task as a static κ-user with a single state 0 and with reward
κ if served. i.e., such a user k = K is defined by NK := {0},W a

K,0 := a, Ca
K,0 :=

−κa, paK,0,0 := 1 for all a ∈ A.

2.2.3 A Unified Optimization Criterion

Before describing the problem we first define an averaging operator that will allow
us to discuss the infinite-horizon problem under the traditional β-discounted crite-
rion and the time-average criterion in parallel. Let ΠX,a be the set of all the poli-
cies that for each time epoch t decide (possibly randomized) action a(t) based only
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on the state-process history X(0), X(1), . . . , X(t) and on the action-process history
a(0), a(1), . . . , a(t−1) (i.e., non-anticipative). Let Eπτ denote the expectation over the
state process X(·) and over the action process a(·), conditioned on the state-process
history X(0), X(1), . . . , X(τ) and on policy π.

Consider any expected one-period quantity Qa(t)
X(t) that depends on state X(t) and

on action a(t) at any time epoch t. For any policy π ∈ ΠX,a, any initial time epoch
τ ∈ T , and any discount factor 0 ≤ β ≤ 1 we define the infinite-horizon β-average
quantity as1

Bπτ
[
Q
a(·)
X(·), β,∞

]
:= lim

T→∞

T−1∑
t=τ

βt−τ Eπτ
[
Q
a(t)
X(t)

]
T−1∑
t=τ

βt−τ

. (2.1)

The β-average quantity recovers the traditionally considered quantities in the fol-
lowing three cases:

• expected time-average quantity when β = 1.

• expected total β-discounted quantity, scaled by constant 1−β, when 0 < β < 1;

• myopic quantity when β = 0.

Thus, when β = 1, the problem is formulated under the time-average criterion,
whereas when 0 < β < 1 the problem is considered under the β-discounted criterion.
The remaining case when β = 0 reduces to a static problem and hence is considered
in order to define a myopic policy. In the following we consider the discount factor
β to be fixed and the horizon to be infinite, therefore we omit them in the notation
and write briefly Bπτ

[
Q
a(·)
X(·)

]
.

2.2.4 Optimization Problem

We now describe in more detail the problem we consider. Let ΠX,a be the space
of randomized and non-anticipative policies depending on the joint state-process
X(·) := (Xk(·))k∈K and deciding the joint action-process a(·) := (ak(·))k∈K, i.e.,
ΠX,a is the joint policy space.

For any discount factor β, the problem is to find a joint policy π maximizing the
objective given by the β-average aggregate reward starting from the initial time epoch
0 subject to the family of sample path allocation constraints, i.e.,

min
π∈ΠX,a

Bπ0

[∑
k∈K

C
ak(·)
k,Xk(·)

]
(P)

subject to Eπt

[∑
k∈K

ak(t)

]
= 1, for all t ∈ T

1For definiteness, we consider β0 = 1 for β = 0.
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Note that the constraint could equivalently be expressed in words as that for all
t ∈ T :

∑
k∈K ak(t) = 1 under policy π and for any possible joint state-process history

X(0),X(1), . . . ,X(t).

2.3 Special Cases
Problem (P) is hard to solve in the whole generality, but we have identified special
cases that admit an analytical solution of the Bellman equation, summarized in this
section. Surprisingly, to the best of our knowledge no one has optimally solved the
cases of one or two users before.

In the case of a single user (1U) competing with the alternative task, we introduce
the following index:

ν1U
k := ck(µk − θk) + dkθk(1− β + βµk). (2.2)

Proposition 2.3.1. The following holds for problem (P) with K = 2 and the alter-
native task reward κ = 0:

1. If ν1U
1 ≥ 0, then it is optimal to serve user;

2. If ν1U
1 ≤ 0, then it is optimal to allocate the server to the alternative task

(k = 2).

Proof. Let us denote the optimal value function by V ∗(n1, n2), where n1 refers to
number of users in a class 1 and n2 refers to number of users in a class 2. When
κ = 0, empty class 2 can represent the alternative task. Then assume that we have
two classes and in each class there is nobody. In such a case, using the Bellman
equation it is straightforward to obtain that

V ∗(0, 0) = 0.

If there is a player in the class one and nobody in the class two then the Bellman’s
equation is:

V ∗(1, 0) = min{C1
1,1 + βp1

1,1,1V
∗(1, 0) + βp1

1,1,0V
∗(0, 0);

C0
1,1 + βp0

1,1,1V
∗(1, 0) + βp0

1,1,0V
∗(0, 0)},

where V ∗ is a optimal value function for the consequent number of users in the
classes. The first term refers to serving the user and the second term to idling. After
plugging the definitions into these two terms, we obtain:

V ∗(1, 0) = min{µ1(βV ∗(0, 0)) + (1− µ1)(c1 + βV ∗(1, 0));

θ1(d1 + βV ∗(0, 0)) + (1− θ1)(c1 + βV ∗(1, 0))}.
(2.3)
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We solve the Bellman’s equation and evaluate the value function assuming that
serving is optimal:

V ∗(1, 0) =
c1(1− µ1)

1− β + µ1β
.

From (2.3), we obtain that serving the user is better than or equivalent to idling if

(−βV ∗(1, 0) + c1) (µ1 − θ1) + d1θ1 ≥ 0.

Putting the last equality together with this inequality then yields to:

ck(µk − θk) + dkθk(1− β + βµk) ≥ 0

what is the stated result (1) . All steps are equivalent, therefore it holds also from
the reverse direction. Claim (2) is obtained analogously. The only difference is that
in a case of not serving inequality is reverse and the value function is equal to:

V ∗(1, 0) =
θ1(d1 − c1) + c1

1 + θ1β − β

In the case of two users (2U) competing among themselves, due to the technical
complexity of the problem we concentrate only on an undiscounted case (β = 1). We
introduce the following index for users k = 1, 2 with respect to the other user:

ν2U
k :=

ck(µk − θk) + dkθkµk
µk[1− (1− µ3−k)(1− θk)]

. (2.4)

Notice that it depends on the other user’s parameters, but only through the service
rate µ3−k.

Proposition 2.3.2. Suppose that ν1U
k ≥ 0 for k = 1, 2. The following holds for

problem (P) with K = 3, β = 1, and the alternative task reward κ = 0:

1. If ν2U
1 ≥ ν2U

2 , then it is optimal to serve user 1;

2. If ν2U
1 ≤ ν2U

2 , then it is optimal to serve user 2.

3. It is optimal to allocate the server to the alternative task if and only if ν1U
1 =

ν1U
2 = 0

Proof. The proof goes along the same lines as the one above.
When we have two classes and in each there is a player, the Bellman’s equation is:
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V ∗(1, 1) = min{µ1θ2(d2 + βV ∗(0, 0)) + µ1(1− θ2)(c2 + βV ∗(0, 1))+

+ (1− µ1)θ2(c1 + d2 + βV ∗(1, 0))+

+ (1− µ1)(1− θ2)(c1 + c2 + βV ∗(1, 1));

θ1µ2(d1 + βV ∗(0, 0)) + θ1(1− µ2)(d1 + c2 + βV ∗(0, 1))+

+ (1− θ1)µ2(c1 + βV ∗(0, 1))+

+ (1− θ1)(1− µ2)(c1 + c2 + βV ∗(1, 1)); 0}

Using the Bellman’s equation straightforward we derive simplified equation for
V ∗(1, 1):

V ∗(1, 1) = min{(1− µ1)(1− θ2)V ∗(1, 1) + θ2d2 + c2
1− θ2

µ2

(µ1 + µ2 − µ1µ2)+

+ c1
1− µ1

µ1

(θ2 + µ1 − θ2µ1); (1− µ2)(1− θ1)V ∗(1, 1) + θ1d1+

+ c1
1− θ1

µ1

(µ2 + µ1 − µ1µ2) + c2
1− µ2

µ2

(θ1 + µ2 − θ1µ2); 0}.

From this equation we can derive condition, when it is optimal to serve class 1. In
such a case, first term is bigger than a second term. Easily we obtain a condition for
serving class 1.

d1θ1µ1 + c1(µ1 − θ1)

µ1[1− (1− µ2)(1− θ1)]
>

d2θ2µ2 + c2(µ2 − θ2)

µ2[1− (1− µ1)(1− θ2)]

In the case that optimal is to serve class 2, condition is similar. Only the second
term is bigger than the first term. Thus we proved statements (1) and (2) and we
obtained index for two users:

ν2U
k :=

ck(µk − θk) + dkθkµk
µk[1− (1− µ3−k)(1− θk)]

.

Claim (3) is obtained by comparing the first(second) term with the third term.

Corrollary 2.3.3. This index satisfies the following inequality:

dkθkµk + ck(µk − θk)
µk

≤ dkθkµk + ck(µk − θk)
µk[1− (1− µ3−k)(1− θk)]

≤ dkθkµk + ck(µk − θk)
µkθk

2.4 Relaxations and Decomposition
For larger values ofK the problem is most likely analytically intractable, and therefore
we approach it in an alternative way.
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2.4.1 Relaxations

For notational reasons we will use the fact that W ak(t)
k,Xk(t) = ak(t) (cf. definitions

in (2.2) ) and instead of the constraints in (P) we will consider the sample path
consumption constraints Eπt

[∑
k∈KW

ak(t)
k,Xk(t)

]
= 1, for all t ∈ T . These constraints

imply the epoch-t expected consumption constraints,

Eπ0

[∑
k∈K

W
ak(t)
k,Xk(t)

]
= 1, for all t ∈ T (2.5)

requiring that the capacity be fully allocated at every time epoch if conditioned on
X(0) only. Finally, we may require this constraint to hold only on β-average, as the
β-average capacity consumption constraint

Bπ0

[∑
k∈K

W
ak(·)
k,Xk(·)

]
= Bπ0 [1] . (2.6)

Using Bπ0 [1] = 1, we obtain the following relaxation of problem (P),

min
π∈ΠX,a

Bπ0

[∑
k∈K

C
ak(·)
k,Xk(·)

]
(PW)

subject to Bπ0

[∑
k∈K

W
ak(·)
k,Xk(·)

]
= 1.

This relaxation was introduced in Whittle (1988). The above arguments thus provide
a proof of the following result.

Proposition 2.4.1. Problem (PW) is a relaxation of problem (P).

The Whittle relaxation (PW) can be approached by traditional Lagrangian meth-
ods, introducing a Lagrangian parameter, say ν, to dualize the constraint, obtaining
thus the following Lagrangian relaxation,

min
π∈ΠX,a

Bπ0

[∑
k∈K

C
ak(·)
k,Xk(·) + ν

∑
k∈K

W
ak(·)
k,Xk(·)

]
− ν. (PL

ν )

The classic Lagrangian result says the following:

Proposition 2.4.2. For any ν, problem (PL
ν ) is a relaxation of problem (PW), and

further a relaxation of problem (P).

Note finally that by the definition of relaxation, (PL
ν ) for every ν provides an upper

bound for the optimal value of both problem (PW) and problem (P).
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2.4.2 Decompostion into Single-User Subproblems

We now set out to decompose the optimization problem (PL
ν ) as it is standard for

Lagrangian relaxations, considering ν as a parameter. Notice that any joint policy
π ∈ ΠX,a defines a set of single-user policies π̃k for all k ∈ K, where π̃k is a randomized
and non-anticipative policy depending on the joint state-process X(·) and deciding
the user-k action-process ak(·). We will write π̃k ∈ ΠX,ak . We will therefore study
the user-k subproblem

min
π̃k∈ΠX,ak

Bπ̃k0

[
C
ak(·)
k,Xk(·) + νW

ak(·)
k,Xk(·)

]
. (2.7)

2.5 Solution
In this section we will identify a set of optimal policies π̃∗k to (2.7) for all users k, and
using them we will construct a joint policy π feasible though not necessarily optimal
for problem (P).

2.5.1 Optimal Solution to Single-User Subproblem via Prices

Problem (2.7) falls into the framework of restless bandits and can be optimally solved
by assigning a set of prices νk,n to each state n ∈ Nk under certain conditions (Niño-
Mora (2007)).

Let us denote for user k ≤ K − 1, νAJN
k,0 := 0, and

νAJN
k,1 :=


ck(µk − θk) + dkθk(1− β + βµk)

1− β + βθk
, if ν1U

k ≥ 0

ck(µk − θk) + dkθk(1− β + βµk)
1− β + βµk

, if ν1U
k < 0

(2.8)

where

ν1U
k := ck(µk − θk) + dkθk(1− β + βµk).

and for the alternative task k = K, νAJN
K,0 := κ. Then we can prove the following

result.

Proposition 2.5.1. For problem (2.7) and k ≤ K − 1, the following holds:

1. if ν ≤ νAJN
k,1 , then it is optimal to serve waiting user k;

2. if ν ≥ νAJN
k,1 , then it is optimal not to serve waiting user k;

3. if ν ≤ νAJN
k,0 , then it is optimal to serve job k when it is already completed or

abandoned;

4. if ν ≥ νAJN
k,0 , then it is optimal not to serve job k when it is already completed

or abandoned;
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5. if ν ≤ νAJN
K,0 , then it is optimal to serve to the alternative task K;

6. if ν ≥ νAJN
K,0 , then it is optimal not to serve the alternative task K.

Proof. The proof of this proposition is based on establishing indexability of the prob-
lem and computing the index values following the survey Niño-Mora (2007). For
following the survey Niño-Mora (2007) we will rewrite our minimalization problem
as a maximalization problem. Indexability is in fact equivalent to existence of the
quantities with stated properties, and is valid because any binary-state MDP is in-
dexable.

Let us denote the optimal value function by V ∗k,n for user k and state n and by
Ra
k :=

(
Ra
k,n

)
n∈Nk

= −Ca
k := −

(
Ca
k,n

)
n∈Nk

, where Ra
k,n is the expected one-period

reward earned by user k at state n if action a is decided at the beginning of a period.
The Bellman equation for state 1 and user k ≤ K − 1, after plugging the definitions
of the action-dependent parameters for a state is:

V ∗k,1 = −max{R1
k,1 − νW 1

k,1 − β[µkVk,0 + (1− µk)Vk,1];

R0
k,1 − νW 0

k,1 − β[θkV
∗
k,0 + (1− θk)V ∗k,1]},

(2.9)

After plugging the formulas for expected rewards and expected one-period capacity
consumption, we obtain:

V ∗k,1 = −(max{−ck(1− µk)− ν − β[µkVk,0 + (1− µk)Vk,1]

+ck(1− θk) + dkθk + β[θkV
∗
k,0 + (1− θk)V ∗k,1]; 0}

−ck(1− θk)− dkθk − β[θkV
∗
k,0 + (1− θk)V ∗k,1]),

(2.10)

where the first term in the curly brackets corresponds to allocating a full capacity
and the second term corresponds to allocating a zero capacity.

The Bellman equation for V ∗k,0 is:

V ∗k,0 = −max{R1
k,0 − νW 1

k,0 − βVk,0;R0
k,0 − νW 0

k,0 − βVk,0}. (2.11)

Further for ν ≥ 0, using the Bellman equation above it is straightforward to obtain
that V ∗k,0 = 0, under assumption that β 6= 0. Analogous for ν < 0, we obtain:

V ∗k,0 =
ν

1− β
.

In the following two statements it is supposed to hold ν ≥ 0.

In the statement (1) we want to show that under stated assumptions it is optimal
to serve waiting user k. Therefore, we derive value of V ∗k,1.

When we choose to allocate full capacity consumption, formula for V ∗k,1, is:

V ∗k,1 = ck(1− µk) + ν + β[µkV
∗
k,0 + (1− µk)V ∗k,1].
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Straightforward we obtain:

V ∗k,1 =
ck(1− µk) + ν

(1− β + βµk)
.

We want to show that under assumption:

ck(µk − θk) + dkθk(1− β + βµk)

1− β + βkθk
≥ ν,

what is:

νAJNk,1 ≥ ν,

it is optimal to user waiting user k. Therefore we substitute terms V ∗k,0 and V ∗k,1 for
serving class k in equation (2.10), and thus we obtained condition for serving class k:

ck(µk − θk) + dkθk + β

(
ck(1− µk) + ν

1− β + βµk

)
(µk − θk) ≥ ν

This condition is satisfied under our assumptions, because this inequality and our
assumptions are same.

Analogous to above we can show that if

νAJNk,1 ≤ ν,

then the action corresponding to allocating zero capacity consumption is bigger than
the action corresponding to allocating full capacity consumption. In other words, it
is optimal not to serve waiting user k.

We can prove statements (1) and (2) also for the cases when ν < 0, i.e. νAJN
k < 0.

All steps will be similar. If ν < 0, then we have V ∗k,0 = ν
(1−β)

.
If serving is optimal, from the equation (2.10),we have

V ∗k,1 =
ck(1− βk) + ν + βµk

ν
(1−β)

1− β + βµk
. (2.12)

Next, we substitute terms V ∗k,0 and V 1
k,1 in the equation (2.10). We want to derive

conditions, when it is optimal to serve class 1 and when it is optimal to serve class
2. For case, when it is optimal to serve class 1, i.e. first term in (2.10) is bigger or
equal to the second. Directly from that inequality we obtain:

ν ≤ dkθk + (µk − θ)

[
ck + βk

ck(1− µk) + ν + βµk
ν

(1−β)

1− β + βµk
− β ν

(1− β)

]
.
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We can derive from that:

ν ≤ ck(µk − θk) + dkθk(1− β + βµk)

1− β + βµk
,

what holds under our assumptions in statements (1) and (2)

ν ≤ 0⇔ ck(µk − θk) + dkθk(1− β + βµk) ≤ 0

Case for serving class 2 we can obtained analogously.

Similarly goes the proof for statements 3 and 4, where the Bellman’s equation for
state n = 0 (job is already completed or abandoned) is:

V ∗k,0 = −max{R1
k,0 − νW 1

k,0 − βV ∗k,0;R0
k,0 − νW 0

k,0 − βV ∗k,0}.

If we choose that we are serving we can derive value that V ∗k,0 = ν
(1−β)

. In the case,
that we chose that we are not serving, we can derive that V ∗k,0 = 0.

Therefore, when it is optimal to serve, action 1 is ≥ action 2, we obtain condition:

−ν − β
(

ν

(1− β)

)
≥ −β

(
ν

(1− β)

)
We have assumed that ν ≤ νAJNk,0 and we know that νAJNk,0 = 0. From the condition,

we can observe that ν ≤ 0, so it is satisfied.
Analogous for the case, when it is optimal not to serve (action 1 is ≤ action 2),

we obtain similar condition that is satisfied when ν ≥ 0. This is true, because in the
2.5.1, we assumed that ν ≥ νAJNk,0 , where νAJNk,0 = 0

The proof for the last two statements 5 and 6 is intuitive. We know that ν is a
price for using a server. Due to that it is obvious that when ν ≤ νAJNK,0 , we choose
to allocate the server to the alternative task K. Because we want to choose a bigger
price. Analogously, when ν ≥ νAJNK,0 , we choose not to allocate the server to the
alternative task K.

2.5.2 Optimal Solution to Relaxations

The vector of policies π∗ := (π̃∗k)k∈K identified in Proposition (2.5.1) is formed by
mutually independent single-user optimal policies, therefore this vector is an optimal
policy to the Lagrangian relaxation (PL

ν ).
Since a finite-state MDP admits an LP formulation using the standard state-action

frequency variables (as observed in Niño-Mora (2001)), strong LP duality implies that
there exists ν∗ (possibly depending on the joint initial state) such that the Lagrangian
relaxation (PL

ν∗) achieves the same objective value as (PW). Further, if ν∗ 6= 0, then
LP complementary slackness ensures that the β-average capacity constraint (2.6) is
satisfied by any optimal solution to (RL

ν∗).
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2.5.3 AJN Rule for Original Problem

Since the original problem requires to allocate the server to exactly one option (one
of the users or the alternative task), then at any time epoch t we propose to allocate
the server to the user k∗(t) with the highest actual price, i.e.,

k∗(t) := arg max
k∈K

νAJN
k,Xk(t).

Notice that any class without abandonment (i.e., having θk = 0) has the index

νAJN
k,1 :=

ckµk
1− β

, (2.13)

which is just the cµ index scaled by a constant. Moreover, under the time-average cri-
terion such a class gets an absolute priority over any class with positive abandonment
rate.

Under β = 1, we obtain the time-average version of the AJN index:

νAJN
k,1 :=


ck(µk − θk) + dkθkµk

θk
, if ν1U

k ≥ 0

ck(µk − θk) + dkθkµk
µk

, if ν1U
k < 0

(2.14)

where

ν1U
k := ck(µk − θk) + dkθkµk.

which we implement in our computational experiments in the next section.
Finally, we just remark that β = 0 gives rise to the myopic version of the AJN

index:

νAJN
k,1 := ck(µk − θk) + dkθk. (2.15)



Chapter 3
Computational Study

In this chapter we report on an exhaustive study of numerical experiments. We
consider a system with two classes of users. Each class is characterized by a set
of values for the parameters µ, θ, c and d as before, and the mean λ of Poisson
arrivals. For higher relevance in applications we consider a continuous-time model
(so λ, µ and θ are rates). Therefore, we first introduce computational methods we use
and theoretical background for using computational methods for the continuous-time
model. In the second section we report on obtained results for idling and non-idling
systems.

3.1 Computational Methods
In the dynamic programming exists two main approaches for solution: the value
iteration algorithm and the policy iteration algorithm. Throughout this thesis we use
the value iteration algorithm with truncated state space.

3.1.1 Value Iteration and State Space Truncation

Value iteration (aka backward induction) was first proposed by Bellman in 1957
(see Bellman (1957)). In this technique we do not compute policy πn, for horizons
n = 0, 1, . . . , (if it is needed we can compute it), but we compute value functions
Vn(·) for each state.

In our experiments we consider a continuous-time model with the infinite horizon,
by a reason that we want to increase relevance for possible applications. In addition,
we focus on an average-cost criteria in our computational study, because problems
that occur in the telecommunication have this setting. The following definitions are
set in the environment proposed in the section (2.2) and are based on the book Ross
(1983).

21
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Definition 3.1.1. Average-cost criteria is to find a policy that minimizes

lim sup
n→∞

1

n
E

(
n−1∑
t=0

C(Xt)

)
Theorem 3.1.2. Let (g, V (·)) be a solution of the average-cost optimality equation

g + V (x) = C(x) + min
a∈A(x)

∑
y

pax,y, for all states x (3.1)

then g equals the minimum average cost.

The function V (·) from previous theorem is the value function.
In the Value Iteration algorithm we investigate the value functions defined as

follows

Definition 3.1.3. Value functions Vn(·) satisfy

V0(x) = 0

Vn+1(x) = C(x) + min
a∈A(x)

{
∑
y

pax,yVn(y)}, n = 0, 1, . . . , . (3.2)

Under certain conditions, minimizing actions in (3.2) converge to actions that
generate an average-cost optimal policy (Verloop (2009)), moreover for n → ∞ it
holds that Vn(·) − ng → V (·) and Vn+1 − Vn → g (Hernández-Lerma and Lasserre
(1996)). In addition, under some assumptions (Koole (2006)) for Vn(·) it converge to
an average-cost optimal value function V (·) (Verloop (2009), Sennott (2005)).

The value iteration algorithm can be used for the numerical determination of an
approximation of the average-cost optimal policy, when the state space is finite. This
is based on a recursively computing the function Vn+1(·) until difference between the
maximal and the minimal difference is sufficiently small. In the thesis we consider the
infinite state space, hence in our computational study we apply the value iteration
algorithm after the appropriate truncation of the state space.

In all our numerical experiments we set the appropriate truncation similarly as in
van Dijk (1991).

3.1.2 The Uniformization Approach

In previous chapters we have established the discrete-time MDP model. In our com-
putational study, we can equivalently consider the uniformized Markov process, as it
was proposed in Puterman (2005):"The uniformization may be viewed as an equiv-
alent process, in which the system state is observed at random times which are
exponentially distributed with some parameter. Because of the Markov property, it
begins anew at each observation point. Alternatively, this transformation may be
viewed as inducing extra or "fictious" transitions from a state to itself."

After the uniformization all transition epochs are generated by a Poisson process.
Thus we can reformulate model as a discrete-time MDP.
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3.2 Numerical Experiments
We are interested in the time-average performance of the whole system, i.e., includ-
ing the user in service. Recall that in the case without abandonments, the system is
work-conserving what implies that taking or not into account the user in service is
equivalent. However, in the case of abandonments these two models are not equiva-
lent, and we believe that the total cost in the system is a more relevant measure. As
a consequence, in some cases it may not necessarily be optimal to serve, but rather
to idle. This is not captured by the model in Atar et al. (2010), in which only the
waiting users are considered and the cµ/θ-rule derived for it. It was shown in Atar
et al. (2010) that for a non-zero abandonment penalty d, the cµ/θ-rule is

ckµk
θk

+ dkµk. (3.3)

We truncate the state space by allowing a maximum number of users in each
class, and we then use the uniformization technique in order to obtain a discrete-
time representation of the model. Using value iteration Puterman (2005) we obtain
numerically the optimal policy and the worst possible policy. Then we calculate the
relative suboptimality gap and the adjusted relative suboptimality gap produced by
the rules AJN, cµ/θ, cµ, 2U and myopic version of AJN (myopic rule) .

Definition 3.2.1. Relative suboptimality gap is a difference between values of the
chosen rule and the optimal strategy, over value for optimal strategy.

Adjusted relative suboptimality gap is a difference between values chosen rule and
the optimal strategy, over a difference between values of the worst strategy and the
optimal strategy.

The myopic rule is

νMyo
k,1 := ck(µk − θk) + dkθk.

We take care that the truncation levels are large enough so that the optimal policy
obtained in this way is almost surely the optimal policy in the untruncated problem.

We present obtained results both for idling and non-idling system.

3.2.1 Idling System

In this type of system we consider that system can idle. That influence the optimal,
the worst policy and also AJN index. Other rules mentioned before: cµ , cµ/θ, 2U
and myopic are always serving some class.

The time-average version of AJN index for idling system is:

νAJN
k,1 :=

ck(µk − θk) + dkθkµk
θk

We do not need to concern about a case for ν1U
k < 0, because in idling system it is

more efficient to idle.
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Table 3.1: Parameters for all the scenarios in computational experiments for the idling
system.

µ1 µ2 θ1 θ2 c1 c2 d1 d2 λ1 λ2

Scenario 1 0.7 0.3 [0, 2] 0.2 1 1 1 1 1 1
Scenario 2 0.4 0.59 [2, 3] 4 1 1 1 1 1 1
Scenario 3 0.8 0.7 1.2 2.7 1 1 [0, 50] 1 1 1
Scenario 4 0.8 0.7 1.2 2.7 1 1 [0, 10] 5 1 1
Scenario 5 0.4 0.1 0.5 0.8 1 [0.01, 20] 1 1 1 1
Scenario 6 0.4 0.22 0.1 0.2 1 [1, 40] 1 1 1 1
Scenario 7 0.4 0.3 0.001 0.03 1 [1, 60] 1 1 1 1
Scenario 8 0.1 0.4 0.12 0.1 [0.01, 20] 1 50 1 1 1

We have investigated a wide range of settings for the parameters in around 200
scenarios, and we report here the results of 6 representative scenarios in order to
provide a global panorama. We further present 2 additional scenarios with unique
and peculiar results. In each of the scenarios, only a single parameter is varied in
order to easily depict the effect. In 3.2 are presented the parameters considered in
each of the scenarios. Note that in all the scenarios the system is in overload (as in
Atar et al. (2010)), having

λ1

µ1

+
λ2

µ2

> 1,

which implies that abandonment are required in order to stabilize the system.
Given the number of parameters that we can choose from, the number of scenar-

ios one can construct is virtually unbounded. Nevertheless, there are some general
conclusions that we can draw:

• Almost always the AJN rule is equivalent or outperforms the cµ/θ rule;

• In cases in which the optimal policy chooses to idle instead of serving, then
AJN is much better than cµ/θ or cµ;

• In many scenarios AJN is equal to the optimal policy for almost all values of
the varied parameter;

• The switching point of the 2U-rule is often very close to AJN, but usually its
suboptimality region is larger.

• If both the 2U and AJN index for class 1 are greater than both for class 2, then
it is almost always optimal to serve class 1.

The first 6 scenarios illustrate these general conclusions. In all following figures
AJN rule is represented by blue color, cµ/θ by red color, cµ by green line, 2U by
yellow dotted line and Myopic index is represented with purple line.
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Figure 3.1: Relative subop-
timality gap - Scenario 1

Figure 3.2: Adjusted relative
suboptimality gap - Scenario 1

Scenario 1. (3.1)(3.2) In this scenario the performance of AJN and cµ/θ is equiv-
alent, and optimal except for a small interval. We also observe that the cµ rule with
myopic rule performs very poorly. The performance of 2U is quite good, and the
only difference with respect to AJN and cµ/θ is the switching point where the policy
starts serving class-2 users.

Figure 3.3: Relative subop-
timality gap - Scenario 2

Figure 3.4: Adjusted relative
suboptimality gap - Scenario 2

Scenario 2. (3.3)(3.4) For this scenario it is optimal not to serve any user, and to
leave them abandon. The 2U and AJN policies capture this feature (and are opti-
mal), but the cµ, cµ/θ and myopic rules do not. As a consequence the performance
of the former two is much better than the latter two.



3.2. NUMERICAL EXPERIMENTS 26

Figure 3.5: Relative subop-
timality gap - Scenario 3

Figure 3.6: Adjusted relative
suboptimality gap - Scenario 3

Scenario 3. (3.5)(3.6) For values of d1 smaller than 35, the optimal policy does
not serve any user, and for values larger than 35 it serves class 1 users (or idles if no
class 1 user is waiting). All the other policies give priority to class 1, being the only
difference that AJN and 2U idle if there is no class 1 user, whereas cµ and cµ/θ serve
class 2 in such a case.

Figure 3.7: Relative subop-
timality gap - Scenario 4

Figure 3.8: Adjusted relative
suboptimality gap - Scenario 4

Scenario 4. (3.7)(3.8) Compared to the previous scenario, only the value of d2 is
5 instead of 1, and this produces a significant difference in the results. Even though
θ’s are still larger than µ’s, in this case the performance of 2U and AJN differ during
a non-negligible range of values for d1. Interestingly, the cµ-rule outperforms (or
matches) all the other policies. For this range of values, the optimal policy is not to
serve any user. The cµ rule always serve class 1, myopic rule always serve class 2 and
the other policies start serving class 2 users (as a consequence of d2), and switch to
serve class 1 (first AJN together with cµ/θ, and afterwards 2U) as the value of d1

becomes larger.
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Figure 3.9: Relative subop-
timality gap - Scenario 5

Figure 3.10: Adjusted rela-
tive suboptimality gap - Sce-
nario 5

Scenario 5. (3.9)(3.10) The optimal policy is to idle. Policies AJN and 2U give
priority to class 1, and to idling if there no user of class 1 (class 2 is never served).
As the value of c2 increases, the policies cµ and cµ/θ switch to give priority to class
2, what makes a sudden increase in the cost function. The key difference is that AJN
depends on the difference µ − θ, and thanks to this it chooses not to serve class 2
regardless of the value of c2. AJN’s performance is very close to optimal.

Figure 3.11: Relative subop-
timality gap - Scenario 6

Figure 3.12: Adjusted rela-
tive suboptimality gap - Sce-
nario 6

Scenario 6. (3.11)(3.12) This is a particularly interesting scenario. Service rates
are larger than abandonment rates, but the policy AJN shows a better performance
than the other policies. In fact, AJN is optimal for all values of c2 with the exception
of a small range around 32. The optimal policy starts serving class 1 in almost all
system states, but as the value of c2 increases it starts serving class 2 in more states.
The AJN policy serves class 1 with strict preference for values of c2 smaller than 32,
and class 1 from that moment on. The upward jump for the other indices happens
when they start giving priority to class 2 (first cµ switches, then cµ/θ and then 2U).
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The following two scenarios illustrate some specific and uncommon phenomena we
have found in our experiments.

Figure 3.13: Relative subop-
timality gap - Scenario 7

Figure 3.14: Adjusted rela-
tive suboptimality gap - Sce-
nario 7

Scenario 7. (3.13)(3.14) In this scenario the abandonment rate is very small, say
negligible. We recall that without abandonments, the cµ-rule is optimal Cox and
Smith (1961); Buyukkoc et al. (1985). In the numerical experiments we see that,
with a rather surprising exception for c2 = 1, the cµ-rule is indeed optimal in this
case and the 2U-rule is equivalent to cµ. Policies AJN and cµ/θ start serving class
1, and switch later on to class 2 when the value of c2 becomes sufficiently large.

We emphasize that this is the only scenario we have found where the decision
pattern of 2U and AJN differs completely and also the only one in which cµ/θ out-
performs AJN (for values of c2 between 40 and 44).

Figure 3.15: Relative subop-
timality gap - Scenario 8

Figure 3.16: Adjusted rela-
tive suboptimality gap - Sce-
nario 8

Scenario 8. (3.15)(3.16) This scenario has a mixed setting since µ1 < θ1, but
µ2 > θ2. We vary c1. The optimal policy always serves class 2 users. For small values
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of c1, the cµ-rule serves class 2, but it then switches to class 1, and therefore it is
suboptimal for all larger values of c1. AJN and 2U start serving class 1, and when c1

becomes sufficiently large they switch to class 2 (since µ1 < θ1).
In this case cµ/θ remains suboptimal for all values of c1. However, each of the

other three policies is optimal on some subrange of the parameter space.

3.2.2 Non-Idling System

In this case we forbid system to idle. Indices: cµ, cµ/θ, 2U and myopic are same
as before. The optimal policy, the worst policy and AJN index are changing. The
time-average version of the AJN index for the non-idling system is:

νAJN
k,1 :=


ck(µk − θk) + dkθkµk

θk
, if ν1U

k ≥ 0

ck(µk − θk) + dkθkµk
µk

, if ν1U
k < 0

where

ν1U
k := ck(µk − θk) + dkθkµk.

Also for the non-idling system we analyze a wide range of experiments. For better
comparison we report same settings of experiments as for the idling system.

Table 3.2: Parameters for all the scenarios in computational experiments for the non-idling
system.

µ1 µ2 θ1 θ2 c1 c2 d1 d2 λ1 λ2

Scenario 1 0.7 0.3 [0, 2] 0.2 1 1 1 1 1 1
Scenario 2 0.4 0.59 [2, 3] 4 1 1 1 1 1 1
Scenario 3 0.8 0.7 1.2 2.7 1 1 [0, 50] 1 1 1
Scenario 4 0.8 0.7 1.2 2.7 1 1 [0, 10] 5 1 1
Scenario 5 0.4 0.1 0.5 0.8 1 [0.01, 20] 1 1 1 1
Scenario 6 0.4 0.22 0.1 0.2 1 [1, 40] 1 1 1 1
Scenario 7 0.4 0.3 0.001 0.03 1 [1, 60] 1 1 1 1
Scenario 8 0.1 0.4 0.12 0.1 [0.01, 20] 1 50 1 1 1

Given the number of parameters that we can choose from, the number of scenar-
ios one can construct is virtually unbounded. Nevertheless, there are some general
conclusions that we can draw:

• Almost always the AJN rule is equivalent or outperforms the cµ/θ rule;

• Performance of the AJN rule is little bit worse as in the idling system;

In scenarios 3 and 5 we can observe the biggest change in AJN rule performance.
In all following figures AJN rule is represented by blue color, cµ/θ by red color, cµ
by green line, 2U by yellow dotted line and Myopic index is represented with purple
line.
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Figure 3.17: Relative subop-
timality gap - Non-idling Sce-
nario 1

Figure 3.18: Adjusted rela-
tive suboptimality gap - Non-
idling Scenario 1

Scenario 1. (3.17)(3.18) In this scenario the performance is almost same as in the
idling case. AJN and cµ/θ is equivalent, and optimal except for a small interval. We
also observe that the cµ rule performs very poorly. The performance of 2U is quite
good, and the only difference with respect to AJN and cµ/θ is the switching point
where the policy starts serving class-2 users.

Figure 3.19: Relative subop-
timality gap - Non-idling Sce-
nario 2

Figure 3.20: Adjusted rela-
tive suboptimality gap - Non-
idling Scenario 2

Scenario 2. (3.19)(3.20) For this scenario in the idling case was optimal not to
serve any user, and to leave them abandon. After system modifying to non-indling
the AJN rule is not longer able to capture this feature (and are not optimal), but is
better than the 2U, cµ and cµ/θ rules.
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Figure 3.21: Relative subop-
timality gap - Non-idling Sce-
nario 3

Figure 3.22: Adjusted rela-
tive suboptimality gap - Non-
idling Scenario 3

Scenario 3. (3.21)(3.22) In this scenario we can observe the biggest difference be-
tween AJN performance in the idling system and the non-idling system. AJN is still
serving same class and it is not able to switch serving class for d1 bigger than 35.
This is the only case, what we found, where AJN is the worst rule. Therefore, we
want to study this scenario more detailed.

Figure 3.23: Relative subop-
timality gap - Non-idling Sce-
nario 4

Figure 3.24: Adjusted rela-
tive suboptimality gap - Non-
idling Scenario 4

Scenario 4. (3.23)(3.24) Compared to the previous scenario, only the value of d2 is
5 instead of 1, and this produces a significant difference in the results. Even though
θ’s are still larger than µ’s, in this case the performance of 2U and AJN differ dur-
ing a non-negligible range of values for d1. Interestingly, the cµ-rule outperforms
(or matches) all the other policies. The cµ rule always serve class 1, and the other
policies start serving class 2 users (as a consequence of d2), and switch to serve class
1 (first AJN together with cµ/θ, and afterwards 2U) as the value of d1 becomes larger.
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Figure 3.25: Relative subop-
timality gap - Non-idling Sce-
nario 5

Figure 3.26: Adjusted rela-
tive suboptimality gap - Non-
idling Scenario 5

Scenario 5. (3.25)(3.26) The optimal policy is to idle. Policies AJN and 2U give
priority to class 1. As the value of c2 increases, the policies cµ and cµ/θ switch to
give priority to class 2, what makes a sudden increase in the cost function. AJN’s
performance is not far from optimal, but it loses advantage of idling and become to
has same performance as 2U and Myopic.

Figure 3.27: Relative subop-
timality gap - Non-idling Sce-
nario 6

Figure 3.28: Adjusted rela-
tive suboptimality gap - Non-
idling Scenario 6

Scenario 6. (3.27)(3.28) This is a particularly interesting scenario. Service rates
are larger than abandonment rates, but the policy AJN shows a better performance
than the other policies. In fact, AJN is optimal for all values of c2 with the exception
of a small range around 32. The optimal policy starts serving class 1 in almost all
system states, but as the value of c2 increases it starts serving class 2 in more states.
The AJN policy serves class 1 with strict preference for values of c2 smaller than 32,
and class 1 from that moment on. The upward jump for the other indices happens
when they start giving priority to class 2 (first cµ switches, then cµ/θ and then 2U).



3.2. NUMERICAL EXPERIMENTS 33

Figure 3.29: Relative subop-
timality gap - Non-idling Sce-
nario 7

Figure 3.30: Adjusted rela-
tive suboptimality gap - Non-
idling Scenario 7

Scenario 7. (3.29)(3.30) In this scenario the abandonment rate is very small, say
negligible. We recall that without abandonments, the cµ-rule is optimal Cox and
Smith (1961); Buyukkoc et al. (1985). In the numerical experiments we see that,
with a rather surprising exception for c2 = 1, the cµ-rule is indeed optimal in this
case and the 2U-rule is equivalent to cµ. Policies AJN and cµ/θ start serving class
1, and switch later on to class 2 when the value of c2 becomes sufficiently large.

Figure 3.31: Relative subop-
timality gap - Non-idling Sce-
nario 8

Figure 3.32: Adjusted rela-
tive suboptimality gap - Non-
idling Scenario 8

Scenario 8. (3.31)(3.32) This scenario has a mixed setting: µ1 < θ1, but µ2 > θ2.
We vary c1. The optimal policy always serves class 2 users. For small values of c1, the
cµ-rule serves class 2, but it then switches to class 1, and therefore it is suboptimal
for all larger values of c1. AJN and 2U start serving class 1, and when c1 becomes
sufficiently large they switch to class 2 (since µ1 < θ1).

In this case cµ/θ remains suboptimal for all values of c1. However, each of the
other three policies is optimal on some subrange of the parameter space.



Conclusion

In this work we focus on development of index policies for dynamic and stochastic
problems. We introduce techniques for these systems description and for Whittle’s
index policies derivation. Moreover, we have investigated the problem of job schedul-
ing with user abandonments. This is an important problem in several application
fields, for which no general solution is known. We have proposed a comprehensive
model accounting for both the linear holding costs and the abandonment penalties.
For the problem with one or two users in the system, we have obtained an optimal
solution.

For the more general case with multiple users, we have applied Whittle’s relaxation
methodology to derive the AJN-rule, a heuristic scheduling rule which has a very
simple structure. It was derived for two system option with idling and non-idling
behavior. This rule is under some conditions equivalent to the cµ/θ-rule that was
proven asymptotically optimal in Atar et al. (2010).

We report on an exhaustive numerical study for the idling and the non-idling
system. In the idling system AJN performs exceptionally well: it is often optimal,
and if not, then its suboptimality is small. Numerical results also indicate that in the
most cases the AJN-rule outperforms the cµ/θ and cµ rules.

The biggest improvement of the AJN over cµ/θ and cµ is achieved when it is
optimal to idle, that is for instance, when the abandonment probability is relatively
large to the service-departure probability. In this case the suboptimality of cµ/θ
can be larger than 100%, while AJN may be optimal at the same time. Another
important differences can be observed when the holding costs differ across classes.
Interestingly, our scheduling rule recovers known optimal policies in some special cases
of the problem, for instance, our rule becomes the cµ-rule if there is no abandonment.

In the non-idling system the AJN performance is not as good as in the idling
system. Often its performance is same as in the idling case, but it is not so often
optimal and also number of cases in which the AJN performance is worse than cµ/θ
is bigger. Therefore we propose to use AJN- rule mainly in idling systems.

An important question for the future research is to determine under what condi-
tions the AJN-rule is optimal in asymptotic and non-asymptotic cases and whether
AJN-rule for non-idling system could be improved.
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Resumé

V práci sa venujeme formulácii, a za použitia Bellmanovej rovnice a Whittlovej
metódy, aj riešeniu konkrétneho modelu pre rozvrhovanie úloh užívateľov viacerých
tried. Keďže problém rozvrhovania úloh užívateľov viacerých tried je veľmi náročný,
zameriavame sa na odvodenie indexových stratégií pre tieto problémy. Tie nám
poskytujú ľahko implementovateľné a elegantné heuristické pravidlá na riešenie týchto
problémov, vyznačujúcich sa veľmi dobrými, takmer optimálnymi výsledkami. V
skúmanom modeli máme zahrnutý aj fenomén odchodov užívateľov. Ten má pre
praktické použitie nesmierny význam, pre jeho častý výskyt a súčasne nevedomosť,
ako najlepšie matematicky tento problém riešiť. Okrem odvodenia nového heuristick-
ého pravidla poukazujeme aj na rozsiahlu štúdiu zaoberajúcu sa výkonnosťou daného
pravidla v porovnaní s ostatnými známymi a dosiaľ často používanými pravidlami.

V prvej kapitole predstavujeme základné princípy a charakteristiky metódy, ktoré
sú potrebné na pochopenie problémov rozvrhovania úloh užívateľov viacerých tried
a na odvodenie indexových stratégií. Na jednoduchom príklade ukazujeme spôsob
formulácie takejto úlohy v prostredí Markovovských rozhodovacích procesov.

V druhej kapitole predstavujeme skúmaný problém, v ktorom naším cieľom je
minimalizácia celkových nákladov a pokút za odchody užívateľov. Ten následne
formulujeme v prostredí Markovovských rozhodovacích procesov. Ide o rozšírenie
dosiaľ známeho problému rozvrhovania úloh užívateľom rôznych tried. Problém je
rozšírený o možné odchody používateľov a súčasne sa zaoberáme aj dvoma rôznymi
špecifikáciami serverov. V jednej je dovolená nečinnosť serveru a v druhej zakázaná.
Okrem iného, na rozdiel od posledných obdobných výsledkov predstavených v Atar
et al. (2010), v našom modeli aj práve obsluhovaný užívateľ prispieva k nákladovej
funkcii. To má opodstatnenie v praxi a ako sa ukázalo aj signifikantný dopad na
dosiahnuté výsledky.

Vyššie spomenutý model v práci najprv analyticky riešime pre prípady s jedným
alebo dvoma užívateľmi. Keďže pre vyššie počty užívateľov problém už nie je možné
analyticky riešiť, problém relaxujeme, nasledujúc Whittlovu metódu a na základe
optimálneho riešenia relaxovaného problému odvádzame nové heuristické pravidlo,
pre pôvodný problém. V závere kapitoly predstavujeme niekoľko verzií tohto pravidla
v závislosti od špecifikácie optimalizačného problému. Taktiež uvádzame aj scenáre,
v ktorých naše pravidlo dostáva tvar známych a v daných scenároch optimálnych
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stratégií.
V tretej kapitole predstavujeme rozsiahlu výpočtovú štúdiu pre oba typy serverov,

v ktorých našu novú indexovú stratégiu numericky porovnávame s dosiaľ známymi
alternatívami: cµ-stratégiou, o ktorej je dobre známe, že je optimálna pre systém s
príchodmi aj bez príchodov užívateľov, avšak bez uvažovania odchodov užívateľov.
Porovnaváme ju aj s cµ/θ- stratégiou, o ktorej bolo prednedávnom ukázané, že je
asymptoticky optimálna stratégia v preťaženom systéme s viacerými servermi.

Výsledky ukazujú, že pre analyzovaný problém je odvodená stratégia takmer vždy
lepšia, alebo porovnateľná s ostatnými. Lepšie výsledky dosahuje v prípade, keď
je dovolená nečinnosť servera. Vďačí za to schopnosti uviesť server do nečinnosti
v prípadoch, keď je to optimálne, čo je aj jeden z jej najväčších prínosov. Mnoho
dosiaľ známych stratégií nie je schopných zachytiť takéto optimálne správanie. V
prípade, keď je zakázaná nečinnosť servera, preukazuje odvodená indexová stratégia
dobré výsledky, avšak mierne sa zvyššuje počet situácii, v ktorých je neoptimálna,
alebo v ktorých je horšia ako niektorá z alternatív.
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