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Abstrakt

MATEJOVICOVA, Lenka: Modelovanie imunitnej odpovede na virusovi infekciu,
[Bakalarska praca], Univerzita Komenského v Bratislave, Fakulta matematiky, fyziky
a informatiky, Katedra aplikovanej matematiky a Statistiky, veduci prace: Mgr. Katarina
Bod’ova, PhD., Bratislava, 2012, 42s.

Koevolucia patogénov a ich hostitelov viedla k vyvoju mnohych imunitnych
mechanizmov, ktoré s schopné rozoznavat molekularne Struktary typické pre
patogény. Jedna z takych molekul bezne rozozndvana systémom vrodenej imunity je
virusova RNA, ktoré ¢asto vstupuje do bunky pri virusovych infekciach. Ked’ virusovi
RNA rozoznaju molekularne receptory, bunka reaguje spustenim signalizac¢nej kaskady
s cielom eliminovat’ zdroj tohoto potencialne nebezpecného signalu. V praci skimame
vlastnosti tejto signalizacnej kaskady danej ako sustava obycajnych diferencialnych
rovnic modelujticich koncentracie jednotlivych molekul v ¢ase po infikovani. NaSim
cielom je zjednodusenie pdvodného zlozitého systému zachovajuc jeho biologické

vlastnosti a vyvodenie zaverov o jeho charaktere, ekvilibriach a asymptotickej stabilite.

KPacové slova: vrodend imunita, systémova biologia, obycajné diferencialne rovnice.



Abstract

MATEJOVICOVA, Lenka: Modelling innate immune response to viral infection
[Bachelor’s Thesis], Comenius University in Bratislava, Faculty of Mathematics,
Physics and Informatics, Department of Applied Mathematics and Statistics; Supervisor
Mgr. Katarina Bod’ova, PhD., Bratislava, 2012, 42 p.

Co-evolution of pathogens and their hosts lead to the fact, that there are multiple
immune mechanisms which recognise pathogen-associated molecular patterns. One of
such molecules widely recognised by the innate immune system is viral RNA, which
enters the host cell in the process of many viral infections. After recognition of the viral
RNA by the receptor molecules, a signalling cascade leading to elimination of the
intruder is activated. In this work we study properties of the given innate immune
signalling cascade defined as asystem of differential equations modelling
concentrations of the molecules in time after infection. We focus on simplifying this
complex system conserving the biological qualities of the model and drawing

conclusions about its character, equilibria and asymptotic stability.

Key words: innate immunity, systems biology, ordinary differential equations.
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Introduction

We often tend to think of size as the synonym to strength and invulnerability. However,
yet an ordinary influenza infection caused by a pathogen, which is so small, that it
cannot be seen even under a light microscope can cause severe problems to its host, no

matter how large mass the host has.

Co-evolution of pathogens and other organisms lead to the fact, that there are multiple
immune mechanisms which recognise pathogen-associated molecular patterns. In higher
organisms, we can distinguish between the two types of immune response: innate and

adaptive.

When a virus attempts to infect a cell, it injects its genetic information in form of a
nucleic acid (RNA or DNA, depending on the type of a virus) into the host cell. In this
work, we will be interested in a certain part of the innate immune response to viral
infections triggered by foreign RNA recognition in a cell. Where applicable, we will use
strains of Murine Norovirus (MNV) as our model virus and the data from MNV

experiments.

The recognition of foreign RNA and the signalling that follows is a very complex
process, that involves many species and reactions. However, better understanding of the
way this process works could help us in preventing or curing the diseases caused by
viral infections. The system of immune signalling has been explored in more detail e.g.
in [9], [12] and [6] and many of these reaction networks have been published in on-line
databases of reactions ([4], [13]).

However, pathways activated by two groups of special molecular receptors (see
Background for more detail) are in literature treated separately based on structural
relatedness, although there is a common trigger and significant crosstalk. Furthermore,
immune signalling is a dynamic process, thus we find the exclusive use of cross-
sectional data and a purely static approach inappropriate. Inspired by the Yamada’s

model of the JAK-STAT transduction pathway [15], the author of this work designed




a joint dynamic systems biology model [8] of innate immune response to MNV

infection as a part of her summer research project.

The model is very complicated, therefore the overarching aim of this thesis is to
understand how the model works (e.g. through analysis of its subsystems), test its
functionality and to design simple alternative system that would give qualitatively
similar results using specialised mathematical and systems biology software (MATLAB
SBToolbox). We hope to explore the potential of a simplified model to describe

experimental data, and to study its mathematical properties.
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1 Biological background

This chapter will in more detail describe the processes and methods from life sciences
and systems biology relevant to modelling of innate immune response to viral infection.
In particular, we will be interested in immunology of a viral infection [2], modelling of
biochemical reactions in a cell [11]. We will also introduce the nature of data selection
that can be used to test and calibrate the model [3], and formulate our expectations from

a functional model based on experimental results from [10] and [12].

1.1 Immunology of a viral infection

Co-evolution of pathogens and their hosts lead to development of various strategies the
hosts use to fight the pathogenous agents and contrary. The strategies differ in timing,
triggers and targets. In higher organisms, we can distinguish between the two types of
Immune response: innate and adaptive. In this work, we will focus on the innate
immunity of mammals, which is less specific, yet much faster in taking an action

against the pathogen than the adaptive immunity [9].

There is also a variety of pathogens using different strategies to attack the host (as
mentioned in the Introduction, we will use murine norovirus (MNV) as our model
virus). When an MNV attacks the cell, its genetic information in form of a ribonucleic
acid (RNA) gets to the interior (cytoplasm) of a host cell. Then, the virus uses the cell’s
own machinery to replicate viral genetic information and to produce structural proteins
which self-assembly to form new viral particles. These new particles of MNV are
released into the cell’s surroundings, ready to infect other cells right after the non-

functional infected cell bursts open.

In mammals, normally only single-stranded RNA is present in the cytoplasm of the
cells. On the other hand, viral RNA is usually present in structures specific for viruses
that can be recognised by the molecule receptors of the innate immune system [9].
Recognition of such “foreign” structures inside the cytoplasm is therefore the sign of a
threat to the cell and the organism as a whole and thus it leads to activation of several
defence mechanisms. These typically include inflammation, apoptosis (programmed

death of the infected cell) and interferon (IFN) production and release [2]. In this work,
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we will focus on modelling of those pathways of the innate immune response triggered
by viral RNA recognition in a cell, that lead to the type I interferon production.

In mammals, the receptors that sense viral RNA of MNV come from two different
families of receptors: RIG-I-like receptors (RLRs) and toll-like receptors (TLRS).
Activation of receptors leads to the activation of group of molecules called adaptors.
This causes interferon regulatory factors (IRF) to dimerise (form a complex of two
molecules) and enter the nucleus, where the dimers act as transcription factors, resulting
in production and release of type | interferons [14]. Interferons then close the loop with
a positive feedback, as they seem to up-regulate the amount of receptors in the cell [5].
Apart from this effect, the interferons also activate the JAK-STAT pathway modelled in
[15], which helps to clear the infection through production of antiviral proteins.

Based on their structural relatedness, in literature the pathways activated by RLRs and
TLRs are treated separately, although there is a common trigger and significant
crosstalk. Therefore, the author of this work decided to design a joint systems biology

model of innate immune response to MNV infection as a part of her summer research

project [8]:
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Figure 1: The complex model (CM) of innate immune response to viral RNA
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Description of the model:

(Arrows denote change of state or combination of two molecules to form a complex,

13

whereas small white circles denote catalysis of such reaction. Suffix “ star* denotes

3

activated species, “ n*“ depicts location in nucleus. Pink circles denote either degraded
species, or species we are not interested in, but are important in the modelling process.)

1. Viral RNA catalyses the activation of receptors (shown in yellow). It has been
shown, that RIG-1 like receptors (RLR) MDAS and RIG-1 and toll-like receptor
(TLR) TLR3 are involved in innate immune response to MNV in mice [6], [9].

2. Activated receptors contribute to signalling through adaptors (shown in green) in
different ways. There is an interconnection of RLR and TLR signalling in
proteins Traf3 and Tank.

3. Final components of the adaptor signalling catalyse interferon regulatory factors
(IRFs) activation. Particularly Irf3 and Irf7 were shown to be involved in type
| interferon production pathway [4].

4. Activated IRFs are transferred to the nucleus, where they act as transcription
factors [4], which means they catalyse the production of type I interferon mMRNA
(Ifnb1_mRNA).

5. Back in the cytoplasm, the Ifnb1_mRNA is translated into type | interferon
Ifnb1 (shown in blue).

6. Type I interferons are shown to up-regulate RLRs [5] and the loop is complete.

While looking at this model, we should be aware, that it is just a simplification and it
can be rather incomplete. The reasons can be both our trying to keep only relevant
species and reactions from the very complicated published networks [4], [13] (as we are
dealing with quite aspecific problem in immune signalling) and the possible
incompleteness of the knowledge about the innate immunity response as such (some of

the involved molecules might not even be known yet).

1.2 Modelling of biochemical reactions in a cell

Once we have the idea of reactants and reactions in the system, we could be interested
in Kinetics of the reactions. There are two basic types of kinetics: Michaelis-Menten

kinetics and mass action kinetics.
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Inspired by Yamada et al. in [15], we chose simple mass action kinetics, where the rate
of the reaction relates directly to the concentrations of its reactants as described in [11].

- B

Figure 2: Simple state transition
Thus the rate of simple irreversible state transition (Figure 2) would be % = kA , where

X stands for the concentration of species X and k is the rate constant for this reaction. If
the state transition was reversible, then the rate of the reaction would be characterised

by

dB
i kA —kyB, 1)

where k; is a rate constant for the forward and k,, for the backward reaction. Since we
assume conservation of the sum A + B, the rate of change of A concentration would be
simply the opposite:

dA dB

In Figure 3 there is a bimolecular reaction (heterodimer formation), which means that
the two different molecules (A, B) combine to form a complex (C).

Figure 3: Bimolecular reaction

The rate of C production in this reversible reaction would be then

ac

Whereas the rate of change in reactant concentrations would differ from the above only
by a minus sign:

dA dB dac
E_E__E__kaB—i_kbC' (4)
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Figure 4: Catalysis of simple state transition
If the reaction of a state transition was catalysed by a species C (Figure 4), then the rate
of the reversible reaction would be

dA dB

We need to be aware that k; in simple state transition and ks in catalysed state transition

and bimolecular reaction differ in units.

1.3 Model versus experiment

Once we have a model with species, reactions and kinetics, we would like to test its
functionality. In this part of the Background we would like to discuss the link between

our model and reality.

Murine norovirus is a virus from Caliciviridae family causing infections in mice. It is
very close to Human Norovirus (HUNV), which causes increasingly frequent massive
outbreaks throughout the world. Although the HUNV infections are seldom lethal and
only take afew days, outbreaks typically result in significant economic loss and
closures of hospitals (nursing homes, kindergartens, etc.) [9].

It is believed, that with better knowledge of the way immune system responds to HUNV,
the outbreaks could be handled more efficiently. However, it is complicated to culture
HuNV and conduct aresearch on this type of norovirus. Therefore, the data from

experiments on strains of MNV are used [3].

MNV is capable of causing an infection in several types of cells, particularly cells of
gastro-intestinal system and innate immunity cells. As there is a widely known working
cell-culture system for the latter types of cells and they are also capable of significant
response to MNV, most of the experimental data available come from the research on

the cells of innate immunity, namely bone marrow — derived macrophages (BMMs).
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Therefore, when speaking about response of “cells” in the modelling process, we

usually refer to response of these BMMs.

BMMs used in the experiments can either come from cell cultures immortalized by
asuitable mutation and can therefore divide “forever” (actually, they accumulate
mutations all the time they are left to divide, therefore the time of proper use of such
cells is limited), or they are cultured on specific media from pluripotent cells from the
bone marrow of mice. Since it involves less animal sacrifice, working with
immortalised forms is sometimes preferred to experiments with pluripotent cells,

although the latter seems to better reflect the reality.

Experiment

To measure the response of a cell, data from published micro-array experiments were
used. This means, that in each time point, the amount of RNA needed specifically to
produce particular protein molecule is measured. Micro-array data are used, because it
is cheaper than measuring the same number of protein species (these data are obtainable
from public databases) and there is still a good correlation between the amount of that
specific RNA and its protein. The experiments involve:
1. Setting up an appropriate tissue culture.
BMMs are cultured in vitro. This type of cells sticks to the bottom of the vessel,
therefore enough time should be allowed for the cells in solution to stick to the bottom
before an experiment starts.
2. Triggering a response we would like to measure.
A trigger in form of chemical, or infectious agent is added on the top of the cell culture.
In our case, synthetic RNA called poly(l:C) and type I interferons were used in different
experiments to activate different stages of the examined signalling system.
3. RNA release and stabilisation in the defined time points.
Using chemicals, the RNA is extracted from the cells in the defined time points.
Because RNA is degraded easily, it needs to be stabilised by specific chemical
preparations.
4. Setting up the chips
The sample with pieces of stabilised RNA is injected into the chip. Inside the chip, there
is a specific slot for each measured sequence of RNA, which contains a compatible

molecule binding that particular RNA in the slot. Thus, for each slot, there is a specific
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RNA sequence fixed inside. The amounts of different sequences “trapped” in different
slots may differ resulting from different amounts of those particular sequences in the
original solution after release and fixation. For each time point one such chip is made.
5. Machine analysis of the RNA amounts.

The micro-array machine is capable of defining the amounts of RNA in the individual
slots in artificial units (typically fold change), relative to the standard amounts of
reference types of RNA in the sample. This way, we can say, whether a certain type of
molecule coded in a specific RNA found in the sample was up-regulated, or down-

regulated compared to its usual amounts.

1.3.1 Poly(l:C) experiment

Addition of the pure double-stranded RNA (dsRNA) typical for MNV infections is
crucial in the first stages of building a model, because there can be other substances
interacting with the signalling pathway present in the actual virus. For this purpose, we
use synthetic double-stranded RNA called poly(l:C), which is widely used because of
the similar response it triggers in cells when compared to MNV infections.

o ]
21 o & _ °
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Figure 5: Poly(l:C) experiment.

Typical graphs for change in amounts (y-axis, in fold change) of receptor (Ddx58) and type | interferon
(Ifnad) in time (x-axis, in hours) after addition of poly(l:C) to the BMM culture. Red circles and green

triangles represent two BMM samples (from two separate animals).

After the poly(l:C) is added to the cell culture, it takes some (presumably short, yet
unknown) time to enter the cells, so that it can be recognised by the receptors and

trigger the examined signalling pathway.
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1.3.2 IFN pulse experiment

To verify the credibility and versatility of the activation signalling model like ours, we
can sometimes use data from activation of its different parts. The original model is
supposed to respond to viral RNA with a production of type I interferons (IFN), which
close the loop with up-regulation of receptors, speeding up the signalling system in

presence of viral RNA, producing more IFNSs, etc.

N
v <
v 1% &
§ 26 .
O-E"
m_.’.

L L L A
0 5 10 20

Figure 6: IFN pulse experiment.

Typical graph for change in amounts (y-axis, in fold change) of receptor (Ddx58) in time (x-axis, in
hours) after addition of one shot IFN to the BMM culture. Red circles and green triangles represent two

BMM samples (from two separate animals).

Therefore, to the single shot pulse of IFNs added to the system, it reacts with steep
increase in receptor numbers. Followed by slow decrease resulting e.g. from IFN and
RNA degradation, as there is no viral RNA present to activate the signalling pathway

and keep the amounts higher.
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2 The complex model (CM)

In this chapter we will make an attempt to analyse the qualities of the given complex
model described in 1.1. Because the given CM is very complicated, we had to find a
way to reduce the complexity of the problem and thus we chose to decompose the CM
into its functional subsystems. In particular, we will pay attention to most

incomprehensible subsystem of the CM — the system of adaptors.

2.1 Adaptors

The adaptors form the most complicated subsystem of the CM. The role of group of
adaptor molecules (or just “adaptors”) is to transmit the signal from receptors to

interferon regulatory factors (IRFs).

MAVS

< Il

el e2
SH=

Tank_star

MAVS_star

‘ Tradd

‘ Thkbp1

Tradd_star

Ikbkg_star L Thk1_star

‘ Ikbhke Ikbke_star

Figure 7: System of adaptors is a subsystem of the original model

Description of the model:
1. To acknowledge that we have signal from two types of receptors (RLRs and TLRs), we
have two types of signal (e1, e2) in yellow ellipses.
2. There is an activation chain of reactions, where an activated molecule of a particular
type of adaptor is needed to catalyse (small white circle) an activation of another type of
adaptor molecule.

[3

3. Activated form of a certain type of molecule is shown as “_star” (or later with a

subscript: moleculeg;q,)-
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4. All the activation reactions are reversible, but no catalysts are needed for the reverse
reactions.

5. Molecule Tbkbp1 acts as a catalyst only and the model does not allow for change in its
level.

6. To explore the types of activation signal we can get from the system of adaptors, a
fictive molecule of “output” was created (shown in dark green), which is modelled as a

linear combination of Ikbkg_star, Thk1_star and I[kbke_star.

The system of differential equations describing the subsystem of adaptors is as follows:

d(MAVS)
—— = —ey * MAVS x ki + MAV Sqiar * ki ©)
d(Ticaml) , .
—a = —ey * Ticaml x kyr + Ticam1sq, * kyp v
d(Traf3) )
— - —Ticamlggy * MAVSgqr * Traf3 * Traddgq, + Traf3seqr * kap 8
d(Tradd)
— = —Tradd x MAV Sgqr * kg + Traddsqr * kap ©)
d(Tank)
— —Traddseqr * Traf 3gpqr * Tank * ksg + Tankgq, * ksp (10)
d(lkbkg)
———— = —Tbkbpl « Tanksq, * Ikbkg * ks + Ikbkgsear * Kev (11)
d(Thk1)
——— = ~Traf3gar * Thk1 * kyy + ThkLseqr * Koy (12)
d(lkbke)
— - —lkbke * Traf3siqr * kgy + Ikbkegiqr * kg (13)

Mass conservation of each type of molecule X (either activated or not) holds, i.e.

X + Xstqr = constant. Thus, activated molecules (shown as moleculeg,) have the

. . . f aX. ax .
same rate as non-active forms, but with the minus sign (% =——at all times

t > 0, for all molecules X).

As most of the rate constants k and initial conditions values are not known, we usually

run the simulations with a common value for most of the parameters and also the same
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values for most initial concentrations of non-activated molecules and zero

concentrations of activated molecules.

2.2 Equilibrium
In equilibrium, the concentrations of molecules do not change in time, hence values of
all of the expressions (6) to (13) are equal to zero.
From putting (6) equal to zero in equilibrium we have
MAVSgar * kyp = €1 x MAVS® * kq (14)

where superscript e denotes the concentration of a molecule in an equilibrium.

Let us denote the ratio ? = K; forall i = 1, 2, ...8. Then, assuming that the sum of each
ib

molecule and its activated form (moleculess,) concentrations remains constant (Smolecute)

with the time, we have:

Smavs
MAVS® = = =% (15)
S xe; x K
MAVSG = =0 19
and similarly:
STicaml * € * KZ
1+ €, * Kz
Strars * K3 * Ticam1%q, * MAVSS, o,
1+ Ticam1¢,,, * MAVSStaT * K3
Ticam1$,,, Stradd * Ka * MAVSE or
Traf3giar 1+ MAVSE o * Ka
Traddg,, Stank * Ks * Tradd?, g, * Traf 354
I’I;C(Z;;I;Ssttc;i i L+ Traddgtar * Traf3star * Ks an
Tbk1Siqr / Stkbkg * Ke * Tankqr * Thkbp®
IkbkeSqy 1+ Tankgy,, = Thkbp® * K¢
Stoir * K7 * Traf 34
1+ Trafgstar * K7
Sikpke * Kg * Traf3%qr

1+ Traf3¢, * Kg

Then, stating that output is alinear combination of the three output molecules
(Ikbke, Tbk1 and Ikbkg), in an equilibrium we have:
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output® = ¢y * Ikbkegq, + c; * Tbk1%,, + c3 * Ikbkgs, o, (18)

where ¢y, ¢, and c3 are the weights of respective molecules in their linear combination

output. Using the equilibrium formulas:

SikpkeKsTraf3¢tar c Stok1K7Traf3¢ar c SikvigKeTankyq, Thkbp®
11+ Traf38.,.Ks 2 1+ Traf3%q. K, % 1+ Tank,,, ThkbpeKg

output® = c

(19)

Which can be extended further (showing Ticam1%.,, as T, MAVSg.q, as M and Sty 3

as S):

ani —+ * + T % *
. g S*KxTxM 5. g SxKyxT+M S"‘b"gK61+5rraaa*K4*M*45*K3*T*M* ;
Ikbke 81+T>s<M>s<K3_’_ Thk1 71+T*M*K3+ 1+M=+K, 1+T+M+*K; 5
611+S*K3*T*M*K ‘21+5*1<3*T*M*K €3 o« Straw K+ M S+K;xT+M
1+T*Mx*K; 78 1+T*«Mx*K; 7 14 Tank®5 14+ M x K, 1+T*MxK;
1+5Tradd*K4*M* S*K3*T*M*
1+M=K, 1+T«Mx*Ky 75

* Thkbp®

* Thkbp® * K¢

(20)
Although the formula for equilibrium output output® seems to be complex, it does not

reflect the rate of convergence to this equilibrium in any way.

2.3 Behaviour

As we can notice, there are two pathways of the signal transduction, which act on two
distinct time scales. The “faster” one, “fed” by input e2 and going through Ticam1 and
Traf3 straight to molecules interacting with IRFs (Tbhk1, Ikbke), whereas the second,
“slower” pathway, “fed” by input el going through MAVS, Tradd and Tank it takes

one step more to reach the final Ikbkg.

Having these two pathways of signal transmission with different numbers of steps, we
could expect, that the behaviour of contributions to output from respective pathways can
differ in terms of the time scales. Although the graphs of output were typically just
simple saturation curves like blue and red lines (Figure 8) our intuition was proven right
graphically using coefficients slowing down the “slower” pathway and speeding up the

faster one.
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Figure 8: Two time scales in output and their combination
Green curve in the picture denotes the output, which is the sum of Ikbkeg;o, , Thk1gq,
(two blue lines) and 20 000 times Ikbkgg:,, (red line) in this case. (Because of the
impact of coefficient values on concentrations described in 2.3.1, the concentration of
lkbk gy, Was approximately 2*10™ smaller than those of Ikbkeg,q, and Thk1g.,,, SO
we had to multiply it to make the effect of the slower branch visible in the linear
combination.) We can see that at first, the green curve denoting the output rises quickly,
adopting the behaviour of the blue line and only later it adopts the mild growth of the

slower branch behaviour, shown in red.

The difference in time scales and ordinal change in the equilibrium concentration can be
explained by the choice of coefficients k; and k; , and demonstrated by the following

simple example.

2.3.1 Example

Let us have this simple example of state transition between molecules A and B, which

can be described by the following differential equations:

dB
dA

And the same type of reaction between molecules C and D:

23



dD

d_t = szC - kZbD (23)
dc

Setting rates constants for first reaction k;f =k, =1 and constants for second
reaction k,; =k,, = 0.1, and identical initial conditions A(0) = C(0) =1 and
B(0) = D(0) = 0 we can see, that the second reaction runs slower and the equilibrium

is achieved later, however at the exact same values:

1 T T T T T

\ — A (state)
— B (state) []
— C (state)
—— D (state) ||

01F 4

0 5 10 15 20 25 30
Time

Figure 9: Difference in rate of convergence to equilibrium for reactions with higher (A to B) and
lower (C to D) rate constants
. . k;
If we change the ratio of the forward and backward reaction constants ( k—‘f), the
ib

equilibrium concentrations of the two molecules participating in the reaction will

change.

It is known, that the equilibrium concentrations (A€ B¢) of the two molecules

participating in a reaction with simple mass action kinetics is determined by the ratio of

the forward and backward reaction constants (? = K;), and sum of the reacting
1b

24



species concentrations (S) [11]. The reason for it is that in equilibrium, the change of

concentrations is equal to zero, hence

dB
E: klf(S_Be)_klee == 0 (25)
Then it follows:
ks
kip SK
e 1b 1
b= klf 1+ Kl (26)
1 t
1b
S S
Ae = =
kip
m|
Setting k,; = 1 and k,, = 2 and we have C¢ = % , D¢ = %

— A (state)
— B (state)

state)
state)

1
0 0s 1 15 2 25 3 35 4 45 5
Time

Figure 10: Difference in position of the equilibrium for reactions with different ratio of forward

and backward reaction rate constants
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2.4 CM: summary

Despite the high level of model complexity, the obtainable results are relatively simple.
For example, from the subsystem of adaptors, we typically get an S-shaped saturation
curve as the time-course simulation for the concentration of output. The most complex
result would be a linear combination of three of such lines, which can exhibit signs of
different timescales (Figure 8). Thus, since in this stage of modelling there is no
obvious added value of having seventeen interacting species instead of two, the

simplification of the CM seems to be a straightforward and a logical thing to do.
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3 The “simple” model (SM)

In this chapter we focus on simplifying the complex system (CM introduced in 1.1)
conserving the expected biological qualities of the model and drawing conclusions
about its character, equilibria and linear stability. Especially, the number of reacting
species in the original model will be reduced only into its intuitive subsystems
(receptors, adaptors and interferons) with their activated forms and simple reactions

among them.

3.1 Introduction of the SM

In this “simple” model, we made an attempt to make the number of species, interactions
and their complexity as low as possible while still maintaining the expected biological
qualities as described in Chapter 1 so that it makes sense to interpret the results in

biological terms.

Figure 11: The "simple’ model (SM)

Description of the model:

(Arrows denote state transition or combination of two species to form a new species,
whereas small white circles denote catalysis of a reaction. Suffix “ s” denotes activated
form of a species. Pink circles denote either degraded species, or species we are not
interested in, but are important in the modelling process.)

1. In reaction labelled r0, the viral RNA (7, shown in red) can be replicated (k, > 0) or

degraded (k, < 0) with rate depending on its concentration.
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In reaction labelled r1 viral RNA (V) combines with a generic receptor (R, shown in
yellow) to form an activated receptor (Ry).

This activated receptor Rgcombines with a generic adaptor (4, shown in green) to form
an activated adaptor (A4g) in reaction r2, with no way of recycling receptors or V.
(Together with k, < 0 option, these are the only two ways in which the viral RNA can
be removed from a cell in this model.)

The activated adaptors Ag then act as catalyst, presence of which is necessary in
interferon (I, shown in blue) production denoted by the reaction labelled r3, until they
are deactivated and recycled back to become adaptor molecules again in r4.

Since the receptors are used up in the process of recognition and binding V, there is
a necessity to produce new receptors during the infection. This happens in reaction r5,
catalysed by interferons (7).

Interferons degrade (or leave the cell interior in other ways) with the rate directly

proportionate to their concentration in the reaction labelled d.

Considering that the sum of adaptor (A4) and activated adaptor (As) concentrations is

constant at all times (A + As = A,), the model can be described by the following

differential equations:

av
dRs
- kiVR — k;(Ag — Ag)Rs (29)
dAs
a ky(Ag — As)Rs — k3Ag (30)
dl
= = kyds — I (31)
dR
—= = ksl Iy VR (32)

Constraints and assumptions:

1.

In this model, the sum of adaptor and activated adaptor concentrations is constant at all
times (A(t) + Ag(t) = A, , for all times t).

All of the constants k; to ks , d and A, are positive numbers.

In this model we assume that in time t = 0 there are no activated molecules

(Rs(0) = Ag(0) = 0).

At all times, concentrations of all of the species are non-negative.
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Constraints 1. and 4. together define the region €, which is the space of all biologically

feasible combinations of species concentrations (and is a domain of the SM):

€ = {(V,Rs, A5, LR)T C R®| V,R;, ,R=0and 0 < As < 4y}  (33)

3.2 Behaviour

Observing the behaviour of the model we can state, that with particular sets of

parameters and initial conditions, for example

E) () s

|k3 = | I

)

, A, =0.1 (34)

the model manifests the required qualities when the simulations are compared to data

from the “poly (I:C)” experiment (Figure 5).
Setting the V(0) > 0, 1(0) = 0 and the k, = 0, we should model the conditions from

the poly (I:C) experiment, where a certain amount of foreign, double-stranded RNA

(hence V(0) > 0) can be recognised, but it cannot replicate itself (hence k, = 0).

0.035

| (state)
003 1

0.025 - B
002 y
0.015F 4
0.01 .

0.005 1

0

1 1 1 1 i 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time

Figure 12: Simulated interferon concentration in time.

Both time on the x-axis and concentration on the y-axis are in artificial units.
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In this picture, we can see, that our expectations about the behaviour of interferon (I)
concentration can be satisfied. First, the concentration of Irises steeply, peaks at

approximately t = 250 time units and then it decreases.

12¢ 1

D 1 1 1 1 1 1 1 1 1
0 200 400 B0O0O 800 1000 1200 1400 1600 1800 2000
Time

Figure 13: Simulated receptor concentration in time.
Both time on the x-axis and concentration on the y-axis are in artificial units.
With the same set of parameters and initial values, the expectations about receptor (R)
concentration can be satisfied: first, there is small decrease in R due to binding the RNA
before the whole system feeding back to the receptors begins to work. Then it rises

steeply to reach a plateau.

Setting the V(0) = 0, 1(0) > 0, we should model the conditions from the “IFN pulse”
experiment, where a certain amount of interferon is introduced to the cells

(hence I1(0) > 0), but no viral RNA, nor its equivalent is present (V' (0) = 0).

Apparently, SM is too simple to explain the data from the “IFN pulse” experiment
(Figure 10). The reason for this is that the visible decrease in receptor (R) level could
only be achieved in SM by receptors binding viral RNA. However, modelling the
conditions for “IFN pulse” experiment, we set the V(0) = 0 and to make such decrease
possible, new reactions would have to be added (for example spontaneous

concentration-dependent receptor degradation).
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3.3 Equilibrium

In an equilibrium, the concentrations of molecules do not change in time, hence values

of all of the expressions (28) to (32) are equal to zero.

First common sense equilibrium would be when V¢ = 0 (hence the name “zero”
equilibrium). Concentrations in this equilibrium are denoted with an additional
superscript: molecule®. The receptor molecules have nothing to bind, therefore there
are no activated receptors, nor adaptors and there are no reactions running in the

“simple” model. The “zero” equilibrium concentrations are as follows:

(VBO, R§0; AEO; 180' Reo) = (OI 0' Oy 0; Reo) (35)

Note: It is not possible to express any constraints for the “zero” equilibrium
concentration of receptors (R¢°), because in differential equations (28) to (32), R®%is
only found in a product with V¢° , which is always equal to zero (V¢°R®® = 0) if
Ve =0.

In all the other (“non-zero”) equilibria, V¢ # 0. Putting (28) equal to zero, for

equilibrium concentration of receptors (which is R®), where V¢ # 0 we have:

R® = o 36
s (36)
With use of (35), the “non-zero” equilibrium concentrations are as follows:
koV® k k k
(Ve,RE,AS,16,R) = | Ve, e, — Ve, 2V, (37)
kOV k3 k5 kl
k2 (Ao = =4~
3
with a constraint
kyks
=1
Tod (38)

The necessary condition (38) for “non-zero” equilibrium can be interpreted as a balance
between excitation (rate constant of IFN production k, and receptor production ks) and

damping (rate constant of IFN degradation d and adaptor deactivation k) the “simple”
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model. Since all of the model processes are stopped if viral RNA is not present in the

system, the condition is not necessary for existence of the “zero” equilibrium.

Note: As there was not enough information in the system of differential equations, the
equilibrium concentrations could not be expressed in the explicit form. Therefore, we
chose V¢ as the reference value, which is needed to express all the other equilibrium

concentrations.

3.4 Host vs. virus

Using this “simple” model, the ability of host cell fighting the viral RNA can be

observed and some marginal values of parameters, or initial conditions can be derived.

For example, the marginal relationships between the parameter values could be studied.
If k, is low enough in comparison with other parameter and initial conditions values,

the viral RNA can be degraded (and infection cleared) in a reasonable amount of time:

0.1 ; : 5 , ! , : -
: : : : : | ———V (state)
0.03 | (state) [
0.6 —R {state)
Q07 LR / 4444444444 .......... .......... .......... 4
23] TR S 44444 ¥ 4 .......... .......... .......... .......... .......... 4
B 0 | \ » i AAAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA i
N — o - - - .......... _— — ]
DD st s .......... .......... .......... .......... .......... .......... 4
002k .......... .......... .......... .......... .......... .......... 4
BDT Fewnsnnass .......... .......... .......... .......... .......... -
N I T
0 50 100 150 200 250 300 350 400

Time

Figure 14: Viral RNA is degraded, because its replication was too slow

This result was achieved with values

32



However, if the k, rate constant of the viral replication is too high, it can defeat the

immune system:

0.5 : : , , : :

: : —V (state)
045 ........... ........... , .......... , .......... .......... I(State) H
b : : : R:’(state)

0.35

03

025

0.2

0.15

0.1

0.05

Time

Figure 15: Immune system defeated, viral RNA replicated too fast

These results were achieved with values

ko 0.011
(kl\ (,u3 \ 1% 0.1
k, 0.15 st 0 \
, Ao

| ks |=| 01 |, | A4 =] 0 =0.1.
ky | 0.1 1/ 0/
k5/ 0.1 R/.., \o1
d 0.1

And a “non-zero” equilibrium can be found experimenting with the values of

parameters in numerical simulations as well:
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Figure 16: An example of “non-zero” equilibrium.
Concentration on y-axis and time on x-axis in artificial units.

This equilibrium was achieved using values

ko 0.01054
/kl\ / 0.3 \ 14 0.1
e | [ oas | [x) (%)
l ks =1 o1 |, [4a ] =[o] 4=01
k., 0.1 I 0

ke 0.1 R/.., \01

d 0.1

We can see, that the R¢ = % calculated earlier in this chapter is approximately satisfied.
1

Since k3 = k, = ks =d = 0.1, the condition % = 1 is satisfied in this non-zero
3

equilibrium,

Note: Of course, that this model is assumedly too simple, but this particular analysis
could be quite useful in the real-world applications. For example, the problem with
norovirus is, that it stays persistent in immunodeficient individuals, which can become
the source of new outbreak for the wide population in conditions suitable for the virus.
However, if the individuals immunodeficient in that particular way (in SM e.g. too low
k, resulting from mutation in receptors) favourable for norovirus could be detected and
isolated from others or cured, it could help significantly with handling the norovirus

outbreaks.
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3.5 Asymptotic stability of the equilibrium

To explore the character of an equilibrium, we can use a Jacobi matrix for the system of
differential equations (28) to (32):

(—k1R+k0 0 0 0 —klvw
klR _kz(Ao_As) kZRs 0 k1V |
J(V,Rs, A5, I,R) = 0 k,(A,-A) -k,R -k, 0 0 (39)
0 0 K, —d 0
-kR 0 0 k. —kV

which for “zero” equilibrium (V¢ = 0) is J¢° = J(V¢°, RE?, A0, 10, R€0)

ko—kR® 0 0 0 0\
0|

K, -k,A, O 0
Jeo :i 0 k,A, -k, 0 0 i (40)
0 0 k, —-d O
\ —k,R*° 0 0 Kk 0/
and for “non-zero” equilibrium (V¢ # 0) itis J¢ = J(V¢, RE, AS, 16, R®)
0 0 0 0 -—kV°©
K, —k{AO—ﬁVe] ko—\; 0 kV°©
ks A, _0ye
k3
r=l kz{Ao—ﬁVeJ _ko—\li_ks o o (41)
ks A —__0ye
K
0 K, —d 0
-k, 0 0 ke —kV*©

If a particular equilibrium is stable, the Jacobi matrix in that equilibrium has no positive
eigenvalues [1].

J¢%is a triangular matrix, hence all of its eigenvalues ko — k,R®°, —k,A, , —d , —k;
and one zero can be found on the diagonal of J¢°. If the “zero” equilibrium is stable, J¢°
has no positive eigenvalues. Since all of the constants k; to ks and A, are positive

numbers, eigenvalues —k,A, , —d and —k5 are negative. Eigenvalue k, — k;R¢° is not
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positive, if k—" < R°°. However, there is still at least one zero eigenvalue, which does

1

not allow for standard asymptotical stability analysis based on linearization and

examination of the Jacobi matrix eigenvalues.

3.6 Invariance

Some of the solutions (V, R, Ag,I, R)T € R’ do make sense in real world and some of
them may not. To specify the region of acceptable solutions, we defined the region € in
(33). All of the reactant concentrations are non-negative numbers in € and the overall

amount of adaptors stays conserved through the time.

In this part, we will show, that the “simple” model (SM) allows only for those
trajectories with origin in region € , which do not leave it at any time t > 0. In other
words, if in time t = 0 all of the concentrations are non-negative and the overall amount
of adaptors is A, there is no set of circumstances, under which the concentration values

would change so that they would not conform with these two requirements.

Proposition: The region € is invariant with respect to the system of differential
equations (28) to (32).

Proof: We will show that at any boundary of the region € trajectories move towards

interior of € or stay at the boundary. Since at the boundary some of the conditions

V =0,Rs =0,A5 =045 = Ay, = 0,R = 0 is satisfied, we need to show that the variable
defining the boundary does not cross it. We can do so using time derivatives of that particular
variable, which must not be negative at the zero boundaries and must not be positive at this

particular boundary: Ag = A,.

For example, if we want to show, that V cannot transition into the negative numbers, we
need to prove, that at the boundary, where V =0, the Z—Z > (0 for all of the
(0,Rs, Ag, I, R)T c @ (hence the V cannot further decrease and become negative at this
point).

If V=0 => =k —kVR=0x(ky—k;R) =0, V (0,Rs, A5, R)" < C.
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Therefore, not only are the trajectories passing through boundary V = 0 staying in the

region €, but they even stay at that particular boundary, i.e. the region
{(V,Rs, A5, LT € R®| V = 0,R5,,R = 0 and 0 < As < Ap} € €

itself is invariant with respect to the SM.

And, similarly:
if Rg =10 %3 = VR — ky(Ag — As)Rs = k;VR 2 0, ¥ (V,0,A5, LR)" € G,
if A =0 285 = ky(Ag — As)Rs — k3As = koAgRs 2 0, ¥ (V,Rg,0,L,R)T € G.

However, the overall amount of adaptors stays conserved (A + As = A,) and we need
non-negative concentration of A as well. Therefore we need to prove that the constraint

Ag < A, stays conserved. Thus we need to show, that at the boundary, where A; = A,,

the % < 0 for all of the (V,Rs,A4,,1,R)T c € (hence the Ag cannot further increase

and become higher than A, at this point).

If As=A) =  ZS=1ky(Ag— As)Rs — k;As = —k;As < 0, ¥ (V, R, Ay, ,R)T € G,
if 1 =0 = % = k,As —dl = k,As = 0, ¥ (V,Rs, A5, 0,R)T C G,
if R=0 = =k —kVR=ksl 20, ¥(V,RsA51,0)7 cC.

We have just shown that at any boundary of the region € trajectories move towards interior
of € or stay at the boundary, therefore the region € is invariant with respect to the system
of differential equations (28) to (32).
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Conclusions

In this work, we first understood the biological problem of innate immunity signalling
in response to viral infection. We defined the field of our interest as the part of innate
immunity signalling, which has not been widely studied with mathematical tools, yet it
Is known to be crucial for recognition and response to certain types of viral infection in
mammals (such as infections with murine norovirus). We translated this biological
problem into mathematical model with use of differential equations and described the

ideal qualities we could expect from the model.

In the second chapter, we studied the original complex model (CM). We examined how
the parameters and initial values in the model can affect the behaviour of a system and
demonstrated it on a simple example. We uncovered the two communicating pathways
in the subsystem of adaptors, operating on two distinct time scales and we also found
out, that the complexity of the subsystem of adaptors does not add significant variability

into the behaviour of the output.

The latter idea lead to the simplification of the CM, which is described and further
examined in Chapter 3. The simulations of the “simple” model (SM) are compared to
the experimental data and also the mathematical attributes of the model were examined.
We studied the ability of system to “fight” the viral RNA depending on parameter and
initial conditions values of the model and suggested applications of this approach in the
real world. Inthis chapter we proved, that the domain of SM we defined on the basis of
biological expectations from the model, is invariant with respect to the system of
differential equations forming the SM. We found two types of equilibria in the model;
“zero” equilibrium, where the equilibrium concentration of viral RNA is zero and “non-

zero” equilibrium, for equilibria with non-zero concentration of viral RNA. We studied

asymptotic stability of the “zero” equilibrium and found necessary condition % < R®°
1

for the asymptotic stability of the “zero” equilibrium. However, this condition is not
sufficient, because there would be still at least one zero eigenvalue found in the

corresponding Jacobi matrix.
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Although we did not succeed in examining the asymptotic stability through the standard
procedure with Jacobi matrices, it can be achieved by other means, namely by finding a

Lyapunov function of a system [7].

In the stage of the knowledge about innate immune signalling nowadays, where a lot of
reaction parameters, reactions itself or even species remain unknown, we consider
understanding the basic dynamics of the system crucial. Our SM could explain the
experimental results from the poly(l:C) experiment, but was not complex enough to
explain the data from IFN pulse experiment. This suggests, that the SM should be
modified at least to meet our expectations in terms of interpreting the experimental data
we already have. These modifications could include simple reactions, that make sense
in biology, for example RNA or protein degradation. The “up-to-bottom” approach
could make the complex model even more complex, including all possible known
reactions and then use software algorithms to simplify it out and keep only the relevant

species or groups of them.
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Resumé

Pri niektorych virusovych infekciach st v bunke pritomné typické struktury RNA (napr.
dvojvlaknova RNA), ktoré si rozoznavané a vyhodnocované ako ‘“cudzie”
mechanizmami vrodenej imunity. Na takyto podnet od molekularnych receptorov
potom bunka reaguje spustenim signaliza¢nej kaskady s cielom eliminovat’ zdroj tohoto
potencidlne nebezpeéného signalu. V praci sa zaoberame jednym typom takychto
signalizacnych drah aktivovanych nasim modelovym virusom, ktory vyutstuje do
produkcie interferénov typu 1. Tieto latky zvySuju produkciu antivirusovych molekul
priamo Vv danej bunke, alebo po uvolneni do medzibunkového priestoru signalizuju
pritomnost’ virusu aj okolitym bunkam. Proces modelujeme pomocou ststavy
obyc¢ajnych diferencialnych rovnic. Cielom prace je identifikovat' doleZitejSie a menej
dolezité prvky pri modelovani Specifickej casti vrodenej imunitnej odpovede na
virusovu infekciu, zjednodusit’ povodny model [8] zachovajic biologicky vyznam jeho

jednotlivych zloziek a analyzovat’ vlastnosti ziskaného jednoduchsieho modelu.

V prvej kapitole sme zhrnuli zakladné poznatky z imunoldgie a dynamiky chemickych
reakcii potrebné na vytvorenie modelu. Predstavujeme suvisiace experimenty a na
zaklade ich vysledkov formulujeme charakteristiky, ktorymi by dobry model mal

disponovat’. Uvadzame tu tiez povodny model (Figure 1).

V druhej kapitole skimame pévodny model a analyzujeme jeho podsystém adaptorov
(Figure 7). Na jednoduchych prikladoch tu ilustrujeme vplyv vyberu koeficientov
rychlosti priamej a spdtnej reakcie na vlastnosti vystupu: pomer hodndt priame;j
a spétnej reakcie determinuje rozdelenie koncentracii molekul v ekvilibriu, zatial¢o
absolutna velkost tychto parametrov vplyva na rychlost konvergencie systému k
ekvilibriu. Objavili sme dve signalizaéné cesty v systéme adaptorov, ktoré moézu
fungovat’ v dvoch réznych casovych Skédlach anasli sme kombindcie parametrov
a pociatocnych podmienok na vizualizaciu tychto réznych casovych skal. Ukazuje sa, ze
relativna zlozitost” podsystému adaptorov nenapomaha k vysvetleniu experimentalnych

dat, ani k dosiahnutiu zelate'ného spravania modelu.
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V tretej kapitole predstavujeme zjednoduseny model (Figure 11) a studujeme ststavu
obyc¢ajnych diferencidlnych rovnic, ktord ho popisuje. Simulacie naznacuju, ze hoci je
model vel'mi jednoduchy, méze stadit’ na interpretaciu vysledkov niektorych typov
experimentov, no pre jeho vSeobecnejSie aplikacie je nutné model rozsirit' 0 d’alSie
prvky (napr. o spontannu degradaciu proteinov). Hodnoty jednotlivych koncentracii
v ekvilibriu sustavy obyc¢ajnych diferencidlnych rovnic vyjadrujeme pomocou
rovnovaznej koncentracie virusovej RNA v systéme, kedZe sustava neobsahuje
dostato¢né mnozstvo informacie na ich explicitné vyjadrenic. Objavili sme dva typy
ekvilibrii: ,nulové* ekvilibrium bez pritomnosti virusovej] RNA a ,nenulové®
ekvilibrium kde je rovnovazna koncentracia virusovej RNA nenulova. Asymptoticka
stabilita ekvilibrii je dana vlastnymi hodnotami Jacobiho matice zodpovedajucej
ekvilibriam, no kedZe tieto boli pre nase ekvilibria zaporné a nulové, nemozno
o stabilite ekvilibrii rozhodnut jednoznacne. Ukazeme, Zze systém obycajnych
diferencialnych rovnic spiita zmysluplny prepoklad, Ze biologicky relevantny stavovy

priestor € definovany v (33) je invariantny vzhl'adom na systém.

41



Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Brunovsky, P.: Diferencné a diferencidlne rovnice, text to lectures, Comenius
University in Bratislava, Bratislava (2006)

Chain, B. M., Playfair, J. H. L.: Immunology at a Glance. Wiley-Blackwell, Chichester,
2009

Chettle, J.: The impact of murine norovirus infection on the immune response and on
co-infection by other enteric pathogens, Doctoral Thesis, Department of Veterinary
medicine, University of Cambridge (work in progress)

Kanehisa Laboratories: RIG-I-like receptor signaling pathway, KEGG PATHWAY
Database, available on internet (14.12.2011): http://www.genome.jp/kegg/pathway.html

Kang, D. Et al.: Expression analysis and genomic characterization of human melanoma
differentiation associated gene-5, mda-5: a novel type | interferon-responsive
apoptosis-inducing gene, Oncogene 23 (2004), 1789

Kato, H. et al.: Differential roles of MDAS5 and RIG-I helicases in the recognition of
RNA viruses, Nature 441 (2006), 101

Lyapunov, A. M.: Stability of Motion, Academic Press, New-York & London, 1966

Matejovicova, L. et. al.: Modelling the Innate Immune Response to Murine Norovirus
Infection. Amgen Scholars Programme Summer project at University of Cambridge,
2011

McCartney, S. A. et al.: MDA-5 recognition of a murine norovirus, PLoS Pathogens 7
(2008), Paper 90

Olex, A. L. et al.: Dynamics of dendritic cell maturation are identified through a novel
filtering strategy applied to biological time-course microarray replicates, BMC
Immunology 11 (2010), 41

Phillips, R., Kondev, J., Theriot, J.: Physical Biology of the Cell, Garland Science, New
York, 2008

Raza, S. et al.: Construction of a large scale integrated map of macrophage pathogen
recognition and effector systems, BMC Syst Biol. 4 (2010) Paper 63

REACTOME Team: REACTOME, Pathway database, available on internet (16.8.2011):
http://www.reactome.org

Takaoka, A., Hideyuki, Y.: Interferon signalling network in innate defence, Cellular
Microbiology 8 (2006), 907

Yamada, S. et al.: Control mechanism of JAK/STAT signal transduction pathway. Febs.
Lett. 534 (2003), 190

42


http://www.genome.jp/kegg/pathway.html
http://www.reactome.org/

