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Abstrakt  

 

MATEJOVIČOVÁ, Lenka: Modelovanie imunitnej odpovede na vírusovú infekciu, 

[Bakalárska práca], Univerzita Komenského v Bratislave, Fakulta matematiky, fyziky 

a informatiky, Katedra aplikovanej matematiky a štatistiky, vedúci práce: Mgr. Katarína 

Boďová, PhD., Bratislava, 2012, 42s. 

 

Koevolúcia patogénov a ich hostiteľov viedla k vývoju mnohých imunitných 

mechanizmov, ktoré sú schopné rozoznávať molekulárne štruktúry typické pre 

patogény. Jedna z takých molekúl bežne rozoznávaná systémom vrodenej imunity je 

vírusová RNA, ktorá často vstupuje do bunky pri vírusových infekciách. Keď vírusovú 

RNA rozoznajú molekulárne receptory, bunka reaguje spustením signalizačnej kaskády 

s cieľom eliminovať zdroj tohoto potenciálne nebezpečného signálu. V práci skúmame 

vlastnosti tejto signalizačnej kaskády danej ako sústava obyčajných diferenciálnych 

rovníc modelujúcich koncentrácie jednotlivých molekúl v čase po infikovaní. Naším 

cieľom je zjednodušenie pôvodného zložitého systému zachovajúc jeho biologické 

vlastnosti a vyvodenie záverov o jeho charaktere, ekvilibriách a asymptotickej stabilite. 

 

Kľúčové slová: vrodená imunita, systémová biológia, obyčajné diferenciálne rovnice. 

 

  

  



  

 

Abstract 

 

MATEJOVIČOVÁ, Lenka: Modelling innate immune response to viral infection 

[Bachelor’s Thesis], Comenius University in Bratislava, Faculty of Mathematics, 

Physics and Informatics, Department of Applied Mathematics and Statistics; Supervisor 

Mgr. Katarína Boďová, PhD., Bratislava, 2012, 42 p. 

 

Co-evolution of pathogens and their hosts lead to the fact, that there are multiple 

immune mechanisms which recognise pathogen-associated molecular patterns. One of 

such molecules widely recognised by the innate immune system is viral RNA, which 

enters the host cell in the process of many viral infections. After recognition of the viral 

RNA by the receptor molecules, a signalling cascade leading to elimination of the 

intruder is activated. In this work we study properties of the given innate immune 

signalling cascade defined as a system of differential equations modelling 

concentrations of the molecules in time after infection. We focus on simplifying this 

complex system conserving the biological qualities of the model and drawing 

conclusions about its character, equilibria and asymptotic stability. 

 

Key words: innate immunity, systems biology, ordinary differential equations. 
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Introduction 

We often tend to think of size as the synonym to strength and invulnerability. However, 

yet an ordinary influenza infection caused by a pathogen, which is so small, that it 

cannot be seen even under a light microscope can cause severe problems to its host, no 

matter how large mass the host has.  

 

Co-evolution of pathogens and other organisms lead to the fact, that there are multiple 

immune mechanisms which recognise pathogen-associated molecular patterns. In higher 

organisms, we can distinguish between the two types of immune response: innate and 

adaptive.  

 

When a virus attempts to infect a cell, it injects its genetic information in form of a 

nucleic acid (RNA or DNA, depending on the type of a virus) into the host cell. In this 

work, we will be interested in a certain part of the innate immune response to viral 

infections triggered by foreign RNA recognition in a cell. Where applicable, we will use 

strains of Murine Norovirus (MNV) as our model virus and the data from MNV 

experiments. 

 

The recognition of foreign RNA and the signalling that follows is a very complex 

process, that involves many species and reactions. However, better understanding of the 

way this process works could help us in preventing or curing the diseases caused by 

viral infections. The system of immune signalling has been explored in more detail e.g. 

in [9], [12] and [6] and many of these reaction networks have been published in on-line 

databases of reactions ([4], [13]).  

 

However, pathways activated by two groups of special molecular receptors (see 

Background for more detail) are in literature treated separately based on structural 

relatedness, although there is a common trigger and significant crosstalk. Furthermore, 

immune signalling is a dynamic process, thus we find the exclusive use of cross-

sectional data and a purely static approach inappropriate. Inspired by the Yamada’s 

model of the JAK-STAT transduction pathway [15], the author of this work designed 
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a joint dynamic systems biology model [8] of innate immune response to MNV 

infection as a part of her summer research project.  

 

The model is very complicated, therefore the overarching aim of this thesis is to 

understand how the model works (e.g. through analysis of its subsystems), test its 

functionality and to design simple alternative system that would give qualitatively 

similar results using specialised mathematical and systems biology software (MATLAB 

SBToolbox). We hope to explore the potential of a simplified model to describe 

experimental data, and to study its mathematical properties. 
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1 Biological background 

This chapter will in more detail describe the processes and methods from life sciences 

and systems biology relevant to modelling of innate immune response to viral infection. 

In particular, we will be interested in immunology of a viral infection [2], modelling of 

biochemical reactions in a cell [11]. We will also introduce the nature of data selection 

that can be used to test and calibrate the model [3], and formulate our expectations from 

a functional model based on experimental results from [10] and [12]. 

1.1 Immunology of a viral infection  

Co-evolution of pathogens and their hosts lead to development of various strategies the 

hosts use to fight the pathogenous agents and contrary. The strategies differ in timing, 

triggers and targets. In higher organisms, we can distinguish between the two types of 

immune response: innate and adaptive. In this work, we will focus on the innate 

immunity of mammals, which is less specific, yet much faster in taking an action 

against the pathogen than the adaptive immunity [9].  

 

There is also a variety of pathogens using different strategies to attack the host (as 

mentioned in the Introduction, we will use murine norovirus (MNV) as our model 

virus). When an MNV attacks the cell, its genetic information in form of a ribonucleic 

acid (RNA) gets to the interior (cytoplasm) of a host cell. Then, the virus uses the cell’s 

own machinery to replicate viral genetic information and to produce structural proteins 

which self-assembly to form new viral particles. These new particles of MNV are 

released into the cell’s surroundings, ready to infect other cells right after the non-

functional infected cell bursts open. 

 

In mammals, normally only single-stranded RNA is present in the cytoplasm of the 

cells. On the other hand, viral RNA is usually present in structures specific for viruses 

that can be recognised by the molecule receptors of the innate immune system [9]. 

Recognition of such “foreign” structures inside the cytoplasm is therefore the sign of a 

threat to the cell and the organism as a whole and thus it leads to activation of several 

defence mechanisms. These typically include inflammation, apoptosis (programmed 

death of the infected cell) and interferon (IFN) production and release [2]. In this work, 
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we will focus on modelling of those pathways of the innate immune response triggered 

by viral RNA recognition in a cell, that lead to the type I interferon production. 

 

In mammals, the receptors that sense viral RNA of MNV come from two different 

families of receptors: RIG-I-like receptors (RLRs) and toll-like receptors (TLRs). 

Activation of receptors leads to the activation of group of molecules called adaptors. 

This causes interferon regulatory factors (IRF) to dimerise (form a complex of two 

molecules) and enter the nucleus, where the dimers act as transcription factors, resulting 

in production and release of type I interferons [14]. Interferons then close the loop with 

a positive feedback, as they seem to up-regulate the amount of receptors in the cell [5]. 

Apart from this effect, the interferons also activate the JAK-STAT pathway modelled in 

[15], which helps to clear the infection through production of antiviral proteins. 

 

Based on their structural relatedness, in literature the pathways activated by RLRs and 

TLRs are treated separately, although there is a common trigger and significant 

crosstalk. Therefore, the author of this work decided to design a joint systems biology 

model of innate immune response to MNV infection as a part of her summer research 

project [8]: 

 

 
Figure 1: The complex model (CM) of innate immune response to viral RNA 
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Description of the model: 

(Arrows denote change of state or combination of two molecules to form a complex, 

whereas small white circles denote catalysis of such reaction. Suffix “_star“ denotes 

activated species, “_n“ depicts location in nucleus. Pink circles denote either degraded 

species, or species we are not interested in, but are important in the modelling process.) 

1. Viral RNA catalyses the activation of receptors (shown in yellow). It has been 

shown, that RIG-I like receptors (RLR) MDA5 and RIG-I and toll-like receptor 

(TLR) TLR3 are involved in innate immune response to MNV in mice [6], [9]. 

2. Activated receptors contribute to signalling through adaptors (shown in green) in 

different ways. There is an interconnection of RLR and TLR signalling in 

proteins Traf3 and Tank. 

3. Final components of the adaptor signalling catalyse interferon regulatory factors 

(IRFs) activation. Particularly Irf3 and Irf7 were shown to be involved in type 

I interferon production pathway [4]. 

4. Activated IRFs are transferred to the nucleus, where they act as transcription 

factors [4], which means they catalyse the production of type I interferon mRNA 

(Ifnb1_mRNA).  

5. Back in the cytoplasm, the Ifnb1_mRNA is translated into type I interferon 

Ifnb1 (shown in blue). 

6. Type I interferons are shown to up-regulate RLRs [5] and the loop is complete. 

While looking at this model, we should be aware, that it is just a simplification and it 

can be rather incomplete. The reasons can be both our trying to keep only relevant 

species and reactions from the very complicated published networks [4], [13] (as we are 

dealing with quite a specific problem in immune signalling) and the possible 

incompleteness of the knowledge about the innate immunity response as such (some of 

the involved molecules might not even be known yet). 

1.2 Modelling of biochemical reactions in a cell 

Once we have the idea of reactants and reactions in the system, we could be interested 

in kinetics of the reactions. There are two basic types of kinetics: Michaelis-Menten 

kinetics and mass action kinetics. 
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Inspired by Yamada et al. in [15], we chose simple mass action kinetics, where the rate 

of the reaction relates directly to the concentrations of its reactants as described in [11]. 

 

Figure 2: Simple state transition 

Thus the rate of simple irreversible state transition (Figure 2) would be 
  

  
    , where 

  stands for the concentration of species X and   is the rate constant for this reaction. If 

the state transition was reversible, then the rate of the reaction would be characterised 

by 

   

  
        , (1)  

where    is a rate constant for the forward and    for the backward reaction. Since we 

assume conservation of the sum    , the rate of change of   concentration would be 

simply the opposite: 

   

  
   

  

  
          . (2)  

In Figure 3 there is a bimolecular reaction (heterodimer formation), which means that 

the two different molecules (A, B) combine to form a complex (C). 

 

Figure 3: Bimolecular reaction 

The rate of   production in this reversible reaction would be then 

   

  
         . (3)  

Whereas the rate of change in reactant concentrations would differ from the above only 

by a minus sign: 

   

  
 

  

  
  

  

  
          . (4)  
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Figure 4: Catalysis of simple state transition 

If the reaction of a state transition was catalysed by a species C (Figure 4), then the rate 

of the reversible reaction would be 

  
  

  
 

  

  
         . (5)  

We need to be aware that kf in simple state transition and kf in catalysed state transition 

and bimolecular reaction differ in units. 

1.3 Model versus experiment 

Once we have a model with species, reactions and kinetics, we would like to test its 

functionality. In this part of the Background we would like to discuss the link between 

our model and reality.  

 

Murine norovirus is a virus from Caliciviridae family causing infections in mice. It is 

very close to Human Norovirus (HuNV), which causes increasingly frequent massive 

outbreaks throughout the world. Although the HuNV infections are seldom lethal and 

only take a few days, outbreaks typically result in significant economic loss and 

closures of hospitals (nursing homes, kindergartens, etc.) [9]. 

 

It is believed, that with better knowledge of the way immune system responds to HuNV, 

the outbreaks could be handled more efficiently. However, it is complicated to culture 

HuNV and conduct a research on this type of norovirus. Therefore, the data from 

experiments on strains of MNV are used [3]. 

 

MNV is capable of causing an infection in several types of cells, particularly cells of 

gastro-intestinal system and innate immunity cells. As there is a widely known working 

cell-culture system for the latter types of cells and they are also capable of significant 

response to MNV, most of the experimental data available come from the research on 

the cells of innate immunity, namely bone marrow – derived macrophages (BMMs). 
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Therefore, when speaking about response of “cells” in the modelling process, we 

usually refer to response of these BMMs. 

 

BMMs used in the experiments can either come from cell cultures immortalized by 

a suitable mutation and can therefore divide “forever“ (actually, they accumulate 

mutations all the time they are left to divide, therefore the time of proper use of such 

cells is limited), or they are cultured on specific media from pluripotent cells from the 

bone marrow of mice. Since it involves less animal sacrifice, working with 

immortalised forms is sometimes preferred to experiments with pluripotent cells, 

although the latter seems to better reflect the reality. 

 

Experiment 

To measure the response of a cell, data from published micro-array experiments  were 

used. This means, that in each time point, the amount of RNA needed specifically to 

produce particular protein molecule is measured. Micro-array data are used, because it 

is cheaper than measuring the same number of protein species (these data are obtainable 

from public databases) and there is still a good correlation between the amount of that 

specific RNA and its protein. The experiments involve: 

1. Setting up an appropriate tissue culture. 

BMMs are cultured in vitro. This type of cells sticks to the bottom of the vessel, 

therefore enough time should be allowed for the cells in solution to stick to the bottom 

before an experiment starts.  

2. Triggering a response we would like to measure. 

A trigger in form of chemical, or infectious agent is added on the top of the cell culture. 

In our case, synthetic RNA called poly(I:C) and type I interferons were used in different 

experiments to activate different stages of the examined signalling system. 

3. RNA release and stabilisation in the defined time points. 

Using chemicals, the RNA is extracted from the cells in the defined time points. 

Because RNA is degraded easily, it needs to be stabilised by specific chemical 

preparations. 

4. Setting up the chips 

The sample with pieces of stabilised RNA is injected into the chip. Inside the chip, there 

is a specific slot for each measured sequence of RNA, which contains a compatible 

molecule binding that particular RNA in the slot. Thus, for each slot, there is a specific 
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RNA sequence fixed inside. The amounts of  different sequences “trapped” in different 

slots may differ resulting from different amounts of those particular sequences in the 

original solution after release and fixation. For each time point one such chip is made. 

5. Machine analysis of the RNA amounts. 

The micro-array machine is capable of defining  the amounts of RNA in the individual 

slots in artificial units (typically fold change), relative to the standard amounts of 

reference types of RNA in the sample. This way, we can say, whether a certain type of 

molecule coded in a specific RNA found in the sample was up-regulated, or down-

regulated compared to its usual amounts. 

1.3.1 Poly(I:C) experiment 

Addition of the pure double-stranded RNA (dsRNA) typical for MNV infections is 

crucial in the first stages of building a model, because there can be other substances 

interacting with the signalling pathway present in the actual virus. For this purpose, we 

use synthetic double-stranded RNA called poly(I:C), which is widely used because of 

the similar response it triggers in cells when compared to MNV infections. 

 

  

Figure 5: Poly(I:C) experiment.   

Typical graphs for change in amounts (y-axis, in fold change) of receptor (Ddx58) and type I interferon 

(Ifna4) in time (x-axis, in hours) after addition of poly(I:C) to the BMM culture. Red circles and green 

triangles represent two BMM samples (from two separate animals). 

 

After the poly(I:C) is added to the cell culture, it takes some (presumably short, yet 

unknown) time to enter the cells, so that it can be recognised by the receptors and 

trigger the examined signalling pathway. 
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1.3.2 IFN pulse experiment 

To verify the credibility and versatility of the activation signalling model like ours, we 

can sometimes use data from activation of its different parts. The original model is 

supposed to respond to viral RNA with a production of type I interferons (IFN), which 

close the loop with up-regulation of receptors, speeding up the signalling system in 

presence of viral RNA, producing more IFNs, etc. 

 

 

Figure 6: IFN pulse experiment.  

Typical graph for change in amounts (y-axis, in fold change) of receptor (Ddx58) in time (x-axis, in 

hours) after addition of one shot IFN  to the BMM culture. Red circles and green triangles represent two 

BMM samples (from two separate animals). 

 

Therefore, to the single shot pulse of IFNs added to the system, it reacts with steep 

increase in receptor numbers. Followed by slow decrease resulting e.g. from IFN and 

RNA degradation, as there is no viral RNA present to activate the signalling pathway 

and keep the amounts higher. 
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2 The complex model (CM) 

In this chapter we will make an attempt to analyse the qualities of the given complex 

model described in 1.1. Because the given CM is very complicated, we had to find a 

way to reduce the complexity of the problem and thus we chose to decompose the CM 

into its functional subsystems. In particular, we will pay attention to most 

incomprehensible subsystem of the CM – the system of adaptors. 

2.1 Adaptors 

The adaptors form the most complicated subsystem of the CM. The role of group of 

adaptor molecules (or just “adaptors”) is to transmit the signal from receptors to 

interferon regulatory factors (IRFs). 

 

 

Figure 7: System of adaptors is a subsystem of the original model 

Description of the model: 

1. To acknowledge that we have signal from two types of receptors (RLRs and TLRs), we 

have two types of signal (  ,   ) in yellow ellipses.  

2. There is an activation chain of reactions, where an activated molecule of a particular 

type of adaptor is needed to catalyse (small white circle) an activation of another type of 

adaptor molecule. 

3. Activated form of a certain type of molecule is shown as “     ” (or later with a 

subscript:             ). 
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4. All the activation reactions are reversible, but no catalysts are needed for the reverse 

reactions. 

5. Molecule        acts as a catalyst only and the model does not allow for change in its 

level. 

6. To explore the types of activation signal we can get from the system of adaptors, a 

fictive molecule of “      ” was created (shown in dark green), which is modelled as a 

linear combination of           ,           and           . 

The system of differential equations describing the subsystem of adaptors is as follows: 

 

        

  
                           (6)  

          

  
                               (7)  

 
  
        

  
                                                    (8)  

         

  
                                   (9)  

        

  
                                            (10)  

         

  
                                          (11)  

        

  
                                  (12)  

         

  
                                    (13)  

 

Mass conservation of each type of molecule   (either activated or not) holds, i.e. 

                . Thus, activated molecules (shown as moleculestar) have the 

same rate as non-active forms, but with the minus sign (
      

  
   

  

  
  at all times 

   , for all molecules  ). 

 

As most of the rate constants   and initial conditions values are not known, we usually 

run the simulations with a common value for most of the parameters and also the same 
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values for most initial concentrations of non-activated molecules and zero 

concentrations of activated molecules. 

2.2 Equilibrium 

In equilibrium, the concentrations of molecules do not change in time, hence values of 

all of the expressions (6) to (13) are equal to zero.  

From putting (6) equal to zero in equilibrium we have 

         
                   (14)  

where superscript e denotes the concentration of a molecule in an equilibrium. 

 

Let us denote the ratio 
   

   
    for all i = 1, 2, ...8. Then, assuming that the sum of each 

molecule and its activated form (moleculestar) concentrations remains constant (Smolecule) 

with the time, we have: 

 
      

     

       
 (15)  

 
        

  
           

       
 (16)  

and similarly: 

 

 

 
 
 
 
 

          
 

          
 

         
 

        
 

         
 

        
 

         
  

 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

             

       

                    
          

 

            
          

    

                  
 

          
    

                  
           

 

           
           

    

                  
        

          
           

                  
 

           
    

                   
 

           
     

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (17)  

 

Then, stating that        is a linear combination of the three output molecules 

(           and      ), in an equilibrium we have: 
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  (18)  

where c1, c2 and c3 are the weights of respective molecules in their linear combination 

      . Using the equilibrium formulas: 

 

           
                 

 

           
   

   
                

 

           
   

   
                

       

          
         

 (19)  

 

Which can be extended further (showing            
  as  ,         

  as   and        

as  ): 

   

        
        
        

  
        
        

   

   

       
        
        

  
        
        

   

   

         
        

           
      

 
        
        

  
           

      
  

        
        

   

       

   
        

           
      

 
        
        

  
           

      
  

        
        

   

          

 

   (20)  

Although the formula for equilibrium output         seems to be complex, it does not 

reflect the rate of convergence to this equilibrium in any way. 

2.3 Behaviour 

As we can notice, there are two pathways of the signal transduction, which act on two 

distinct time scales. The “faster” one, “fed” by input    and going through        and 

      straight to molecules interacting with IRFs (    ,      ), whereas the second, 

“slower” pathway, “fed” by input    going through     ,       and      it takes 

one step more to reach the final      . 

 

Having these two pathways of signal transmission with different numbers of steps, we 

could expect, that the behaviour of contributions to output from respective pathways can 

differ in terms of the time scales. Although the graphs of output were typically just 

simple saturation curves like blue and red lines (Figure 8) our intuition was proven right 

graphically using coefficients slowing down the “slower” pathway and speeding up the 

faster one.  



   

 23 

 

Figure 8: Two time scales in output and their combination 

Green curve in the picture denotes the output, which is the sum of           ,           

(two blue lines) and 20 000 times           (red line) in this case. (Because of the 

impact of coefficient values on concentrations described in 2.3.1, the concentration of 

          was approximately 2*10
-5

 smaller than those of           and         , so 

we had to multiply it to make the effect of the slower branch visible in the linear 

combination.) We can see that at first, the green curve denoting the output rises quickly, 

adopting the behaviour of the blue line and only later it adopts the mild growth of the 

slower branch behaviour, shown in red. 

 

The difference in time scales and ordinal change in the equilibrium concentration can be 

explained by the choice of coefficients    and    , and demonstrated by the following 

simple example. 

2.3.1 Example 

Let us have this simple example of state transition between molecules A and B, which 

can be described by the following differential equations: 

 
  
  

  
           (21)  

 
  
  

  
               (22)  

And the same type of reaction between molecules C and D: 
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           (23)  

 
  
  

  
               (24)  

Setting rates constants for first reaction            and constants for second 

reaction            , and identical initial conditions             and 

            we can see, that the second reaction runs slower and the equilibrium 

is achieved later, however at the exact same values: 

 

Figure 9: Difference in rate of convergence to equilibrium for reactions with higher (A to B) and 

lower (C to D) rate constants 

If we change the ratio of the forward and backward reaction constants ( 
   

   
), the 

equilibrium concentrations of the two molecules participating in the reaction will 

change.  

 

It is known, that the equilibrium concentrations (      ) of the two molecules 

participating in a reaction with simple mass action kinetics is determined by the ratio of 

the forward and backward reaction constants (
   

   
   ),  and sum of the reacting 
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species concentrations ( ) [11]. The reason for it is that in equilibrium, the change of 

concentrations is equal to zero, hence  

   

  
               

   . (25)  

Then it follows:  

 

   
 
   

    

  
   

    

 
    

    
 (26)  

 
   

 

  
   

    

 
 

    
 

(27)  

  

Setting       and        and we have    
 

 
 ,    

 

 
. 

 

Figure 10: Difference in position of the equilibrium for reactions with different ratio of forward 

and backward reaction rate constants 
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2.4 CM: summary 

Despite the high level of model complexity, the obtainable results are relatively simple. 

For example, from the subsystem of adaptors, we typically get an S-shaped saturation 

curve as the time-course simulation for the concentration of       . The most complex 

result would be a linear combination of three of such lines, which can exhibit signs of 

different timescales (Figure 8). Thus, since in this stage of modelling there is no 

obvious added value of having seventeen interacting species instead of two, the 

simplification of the CM seems to be a straightforward and a logical thing to do. 
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3 The “simple” model (SM) 

In this chapter we focus on simplifying the complex system (CM introduced in 1.1) 

conserving the expected biological qualities of the model and drawing conclusions 

about its character, equilibria and linear stability. Especially, the number of reacting 

species in the original model will be reduced only into its intuitive subsystems 

(receptors, adaptors and interferons) with their activated forms and simple reactions 

among them.  

3.1 Introduction of the SM 

In this “simple” model, we made an attempt to make the number of species, interactions 

and their complexity as low as possible while still maintaining the expected biological 

qualities as described in Chapter 1 so that it makes sense to interpret the results in 

biological terms. 

 

 

Figure 11: The "simple" model (SM) 

 

Description of the model: 

(Arrows denote state transition or combination of two species to form a new species, 

whereas small white circles denote catalysis of a reaction. Suffix “_s” denotes activated 

form of a species. Pink circles denote either degraded species, or species we are not 

interested in, but are important in the modelling process.) 

1. In reaction labelled r0, the viral RNA ( , shown in red) can be replicated (    ) or 

degraded (    ) with rate depending on its concentration. 
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2. In reaction labelled r1 viral RNA ( ) combines with a generic receptor (R, shown in 

yellow) to form an activated receptor (  ).  

3. This activated receptor   combines with a generic adaptor ( , shown in green) to form 

an activated adaptor (  ) in reaction r2, with no way of recycling receptors or  .  

(Together with      option, these are the only two ways in which the viral RNA can 

be removed from a cell in this model.) 

4. The activated adaptors    then act as catalyst, presence of which is necessary in 

interferon ( , shown in blue) production denoted by the reaction labelled r3, until they 

are deactivated and recycled back to become adaptor molecules again in r4. 

5. Since the receptors are used up in the process of recognition and binding  , there is 

a necessity to produce new receptors during the infection. This happens in reaction r5, 

catalysed by interferons ( ). 

6. Interferons degrade (or leave the cell interior in other ways) with the rate directly 

proportionate to their concentration in the reaction labelled  . 

Considering that the sum of adaptor ( ) and activated adaptor (  ) concentrations is 

constant at all times (       ), the model can be described by the following 

differential equations: 

 
 
  

  
          (28)  

    

  
                  (29)  

    

  
                  (30)  

   

  
         (31)  

 
  
  

  
          (32)  

Constraints and assumptions: 

1. In this model, the sum of adaptor and activated adaptor concentrations is constant at all 

times (              , for all times  ). 

2. All of the constants    to k  ,   and A0 are positive numbers. 

3. In this model we assume that in time t  0 there are no activated molecules 

 (RS 0  AS 0  0). 

4. At all times, concentrations of all of the species are non-negative. 
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Constraints 1. and 4. together define the region  , which is the space of all biologically 

feasible combinations of species concentrations (and is a domain of the SM): 

                                                (33)  

3.2 Behaviour 

Observing the behaviour of the model  we can state, that with particular sets of 

parameters and initial conditions, for example 

 

 

 
 
 
 

  

  

   
   
   
   
  

 
 
 
 

 

 

 
 
 
 

 
    
   
   
   
   
     

 
 
 
 

    

 

 
 

 
  

  

 
  

 
 

     

 

 

 
 

   
 
 
 
    

 
 

        (34)  

 

the model manifests the required qualities when the simulations are compared to data 

from the “poly (I:C)” experiment (Figure 5). 

 Setting the       ,        and the     , we should model the conditions from 

the poly (I:C) experiment, where a certain amount of foreign, double-stranded RNA 

(hence       ) can be recognised, but it cannot replicate itself (hence     ). 

 

Figure 12: Simulated interferon concentration in time.  

Both time on the x-axis and concentration on the y-axis are in artificial units. 
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In this picture, we can see, that our expectations about the behaviour of interferon ( ) 

concentration can be satisfied. First, the concentration of  rises steeply, peaks at 

approximately       time units and then it decreases. 

 

Figure 13: Simulated receptor concentration in time.  

Both time on the x-axis and concentration on the y-axis are in artificial units. 

With the same set of parameters and initial values, the expectations about receptor ( ) 

concentration can be satisfied: first, there is small decrease in   due to binding the RNA 

before the whole system feeding back to the receptors begins to work. Then it rises 

steeply to reach a plateau. 

 

Setting the       ,       , we should model the conditions from the “IFN pulse” 

experiment, where a certain amount of interferon is introduced to the cells 

(hence       ), but no viral RNA, nor its equivalent is present (      ). 

 

Apparently, SM is too simple to explain the data from the “IFN pulse” experiment 

(Figure 10). The reason for this is that the visible decrease in receptor ( ) level could 

only be achieved in SM by receptors binding viral RNA. However, modelling the 

conditions for “IFN pulse” experiment, we set the        and to make such decrease 

possible, new reactions would have to be added (for example spontaneous 

concentration-dependent receptor degradation). 
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3.3 Equilibrium 

In an equilibrium, the concentrations of molecules do not change in time, hence values 

of all of the expressions (28) to (32) are equal to zero.  

 

First common sense equilibrium would be when      (hence the name “zero” 

equilibrium). Concentrations in this equilibrium are denoted with an additional 

superscript:           . The receptor molecules have nothing to bind, therefore there 

are no activated receptors, nor adaptors and there are no reactions running in the 

“simple” model. The “zero” equilibrium concentrations are as follows: 

        
     

                          (35)  

Note:  It is not possible to express any constraints for the “zero” equilibrium 

concentration of receptors (   ), because in differential equations (28) to (32),      is 

only found in a product with     , which is always equal to zero (        ) if 

    . 

 

In all the other (“non-zero”) equilibria,     . Putting (28) equal to zero, for 

equilibrium concentration of receptors (which is   ), where      we have: 

 
   

  

  
 (36)  

With use of (35), the “non-zero” equilibrium concentrations are as follows: 

 

      
    

             
   

 

       
   

 

  
 
 
  

  
     

  

  
   

  

  
  (37)  

with a constraint  

     

   
   (38)  

The necessary condition (38) for “non-zero” equilibrium can be interpreted as a balance 

between excitation (rate constant of IFN production    and receptor production   ) and 

damping (rate constant of IFN degradation   and adaptor deactivation   ) the “simple” 
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model. Since all of the model processes are stopped if viral RNA is not present in the 

system, the condition is not necessary for existence of the “zero” equilibrium. 

Note: As there was not enough information in the system of differential equations, the 

equilibrium concentrations could not be expressed in the explicit form. Therefore, we 

chose    as the reference value, which is needed to express all the other equilibrium 

concentrations. 

3.4 Host vs. virus 

Using this “simple” model, the ability of host cell fighting the viral RNA can be 

observed and some marginal values of parameters, or initial conditions can be derived.  

For example, the marginal relationships between the parameter values could be studied. 

If    is low enough in comparison with other parameter and initial conditions values, 

the viral RNA can be degraded (and infection cleared) in a reasonable amount of time: 

 

Figure 14: Viral RNA is degraded, because its replication was too slow 

This result was achieved with values 
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However, if the    rate constant of the viral replication is too high, it can defeat the 

immune system: 

 

Figure 15: Immune system defeated, viral RNA replicated too fast 

These results were achieved with values 
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And a “non-zero” equilibrium can be found experimenting with the values of 

parameters in numerical simulations as well: 
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Figure 16: An example of “non-zero” equilibrium.  

Concentration on y-axis and time on x-axis in artificial units. 

This equilibrium was achieved using values  

 

 
 
 
 

  

  

   
   
   
   
  

 
 
 
 

 

 

 
 
 
 

       
    
    
   
   
   
    

 
 
 
 

    

 

 
 

 
  

  

 
  

 
 

     

 

 

 
 

   
 
 
 
    

 
 

        

We can see, that the    
  

  
 calculated earlier in this chapter is approximately satisfied. 

Since               , the condition  
    

   
   is satisfied in this non-zero 

equilibrium. 

 

Note: Of course, that this model is assumedly too simple, but this particular analysis 

could be quite useful in the real-world applications. For example, the problem with 

norovirus is, that it stays persistent in immunodeficient individuals, which can become 

the source of new outbreak for the wide population in conditions suitable for the virus. 

However, if the individuals immunodeficient in that particular way (in SM e.g. too low 

   resulting from mutation in receptors) favourable for norovirus could be detected and 

isolated from others or cured, it could help significantly with handling the norovirus 

outbreaks. 
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3.5 Asymptotic stability of the equilibrium 

To explore the character of an equilibrium, we can use a Jacobi matrix for the system of 

differential equations (28) to (32): 
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which for “zero” equilibrium (    ) is             
     

            

 

    

 

 
 
 
 

000

000

000

000

0000

5

0

1

4

302

020

0

10

kRk

dk

kAk

Akk

Rkk

e

e











 

 
 
 
 

 (40)  

 

and for “non-zero” equilibrium (    ) it is           
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If a particular equilibrium is stable, the Jacobi matrix in that equilibrium has no positive 

eigenvalues [1]. 

 

    is a triangular matrix, hence all of its eigenvalues       
  ,       ,    ,     

and one zero can be found on the diagonal of    .  If the “zero” equilibrium is stable,     

has no positive eigenvalues. Since all of the constants    to     and    are positive 

numbers, eigenvalues       ,    and     are negative. Eigenvalue        
   is not 
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positive, if  
  

  
    . However, there is still at least one zero eigenvalue, which does 

not allow for standard asymptotical stability analysis based on linearization and 

examination of the Jacobi matrix eigenvalues. 

3.6 Invariance 

Some of the solutions                   do make sense in real world and some of 

them may not. To specify the region of acceptable solutions, we defined the region   in 

(33). All of the reactant concentrations are non-negative numbers in   and the overall 

amount of adaptors stays conserved through the time. 

 

In this part, we will show, that the “simple” model (SM) allows only for those  

trajectories with origin in region   , which do not leave it at any time    . In other 

words, if in time     all of the concentrations are non-negative and the overall amount 

of adaptors is   , there is no set of circumstances, under which the concentration values 

would change so that they would not conform with these two requirements. 

 

Proposition: The region   is invariant with respect to the system of differential 

equations (28) to (32). 

 

Proof: We will show that at any boundary of the region   trajectories move towards 

interior of   or stay at the boundary. Since at the boundary some of the conditions 

                             is satisfied, we need to show that the variable 

defining the boundary does not cross it. We can do so using time derivatives of that particular 

variable, which must not be negative at the zero boundaries and must not be positive at this 

particular boundary:      . 

 

For example, if we want to show, that   cannot transition into the negative numbers, we 

need to prove, that at the boundary, where    , the 
  

  
   for all of the 

                 (hence the   cannot further decrease and become negative at this 

point). 

If        
  

  
                                         . 
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Therefore, not only are the trajectories passing through boundary     staying in the 

region  , but they even stay at that particular boundary, i.e. the region  

                                                

itself is invariant with respect to the SM. 

 

And, similarly:  

if         
   

  
                                          , 

if         
   

  
                                            . 

 

However, the overall amount of adaptors stays conserved (       ) and we need 

non-negative concentration of   as well. Therefore we need to prove that the constraint 

      stays conserved. Thus we need to show, that at the boundary, where      , 

the 
   

  
   for all of the                  (hence the    cannot further increase 

and become higher than    at this point). 

If          
   

  
                                            , 

if         
  

  
                                  , 

if         
  

  
                               

   . 

 

We have just shown that at any boundary of the region   trajectories move towards interior 

of   or stay at the boundary, therefore the region   is invariant with respect to the system 

of differential equations (28) to (32). 
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Conclusions 

In this work, we first understood the biological problem of innate immunity signalling 

in response to viral infection. We defined the field of our interest as the part of innate 

immunity signalling, which has not been widely studied with mathematical tools, yet it 

is known to be crucial for recognition and response to certain types of viral infection in 

mammals (such as infections with murine norovirus). We translated this biological 

problem into mathematical model with use of differential equations and described the 

ideal qualities we could expect from the model.  

 

In the second chapter, we studied the original complex model (CM). We examined how 

the parameters and initial values in the model can affect the behaviour of a system and 

demonstrated it on a simple example. We uncovered the two communicating pathways 

in the subsystem of adaptors, operating on two distinct time scales and we also found 

out, that the complexity of the subsystem of adaptors does not add significant variability 

into the behaviour of the output.  

 

The latter idea lead to the simplification of the CM, which is described and further 

examined in Chapter 3. The simulations of the “simple” model (SM) are compared to 

the experimental data and also the mathematical attributes of the model were examined. 

We studied the ability of system to “fight” the viral RNA depending on parameter and 

initial conditions values of the model and suggested applications of this approach in the 

real world. Inthis chapter we proved, that the domain of SM we defined on the basis of 

biological expectations from the model, is invariant with respect to the system of 

differential equations forming the SM. We found two types of equilibria in the model; 

“zero” equilibrium, where the equilibrium concentration of viral RNA is zero and “non-

zero” equilibrium, for equilibria with non-zero concentration of viral RNA. We studied 

asymptotic stability of the “zero” equilibrium and found necessary condition  
  

  
     

for the asymptotic stability of the “zero” equilibrium. However, this condition is not 

sufficient, because there would be still at least one zero eigenvalue found in the 

corresponding Jacobi matrix.  
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Although we did not succeed in examining the asymptotic stability through the standard 

procedure with Jacobi matrices, it can be achieved by other means, namely by finding a 

Lyapunov function of a system [7]. 

 

In the stage of the knowledge about innate immune signalling nowadays, where a lot of 

reaction parameters, reactions itself or even species remain unknown, we consider 

understanding the basic dynamics of the system crucial. Our SM could explain the 

experimental results from the poly(I:C) experiment, but was not complex enough to 

explain the data from IFN pulse experiment. This suggests, that the SM should be 

modified at least to meet our expectations in terms of interpreting the experimental data 

we already have. These modifications could include simple reactions, that make sense 

in biology, for example RNA or protein degradation. The “up-to-bottom” approach 

could make the complex model even more complex, including all possible known 

reactions and then use software algorithms to simplify it out and keep only the relevant 

species or groups of them. 
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Resumé 

Pri niektorých vírusových infekciách sú v bunke prítomné typické štruktúry RNA (napr. 

dvojvláknová RNA), ktoré sú rozoznávané a vyhodnocované ako “cudzie” 

mechanizmami vrodenej imunity. Na takýto podnet od molekulárnych receptorov 

potom bunka reaguje spustením signalizačnej kaskády s cieľom eliminovať zdroj tohoto 

potenciálne nebezpečného signálu. V práci sa zaoberáme jedným typom takýchto 

signalizačných dráh aktivovaných naším modelovým vírusom, ktorý vyúsťuje do 

produkcie interferónov typu  1. Tieto látky zvyšujú produkciu antivírusových molekúl 

priamo v danej bunke, alebo po uvoľnení do medzibunkového priestoru signalizujú 

prítomnosť vírusu aj okolitým bunkám. Proces modelujeme pomocou sústavy 

obyčajných diferenciálnych rovníc. Cieľom práce je identifikovať dôležitejšie a menej 

dôležité prvky pri modelovaní špecifickej časti vrodenej imunitnej odpovede na 

vírusovú infekciu, zjednodušiť pôvodný model [8] zachovajúc biologický význam jeho 

jednotlivých zložiek a analyzovať vlastnosti získaného jednoduchšieho modelu.  

 

V prvej kapitole sme zhrnuli základné poznatky z imunológie a dynamiky chemických 

reakcií potrebné na vytvorenie modelu. Predstavujeme súvisiace experimenty a na 

základe ich výsledkov formulujeme charakteristiky, ktorými by dobrý model mal 

disponovať. Uvádzame tu tiež pôvodný model (Figure 1). 

 

V druhej kapitole skúmame pôvodný model a analyzujeme jeho podsystém adaptorov 

(Figure 7). Na jednoduchých príkladoch tu ilustrujeme vplyv výberu koeficientov 

rýchlostí priamej a spätnej reakcie na vlastnosti výstupu: pomer hodnôt priamej 

a spätnej reakcie determinuje rozdelenie koncentrácií molekúl v ekvilibriu, zatiaľčo 

absolútna veľkosť týchto parametrov vplýva na rýchlosť konvergencie systému k 

ekvilibriu. Objavili sme dve signalizačné cesty v systéme adaptorov, ktoré môžu 

fungovať v dvoch rôznych časových škálach a našli sme kombinácie parametrov 

a počiatočných podmienok na vizualizáciu týchto rôznych časových škál. Ukazuje sa, že 

relatívna zložitosť podsystému adaptorov nenapomáha k vysvetleniu experimentálnych 

dát, ani k dosiahnutiu želateľného správania modelu. 
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V tretej kapitole predstavujeme zjednodušený model (Figure 11) a študujeme sústavu 

obyčajných diferenciálnych rovníc, ktorá ho popisuje. Simulácie naznačujú, že hoci je 

model veľmi jednoduchý, môže stačiť na interpretáciu výsledkov niektorých typov 

experimentov, no pre jeho všeobecnejšie aplikácie je nutné model rozšíriť o ďalšie 

prvky (napr. o spontánnu degradáciu proteínov). Hodnoty jednotlivých koncentrácií 

v ekvilibriu sústavy obyčajných diferenciálnych rovníc vyjadrujeme pomocou 

rovnovážnej koncentrácie vírusovej RNA v systéme, keďže sústava neobsahuje 

dostatočné množstvo informácie na ich explicitné vyjadrenie. Objavili sme dva typy 

ekvilibrií: „nulové“ ekvilibrium bez prítomnosti vírusovej RNA a „nenulové“ 

ekvilibrium kde je rovnovážna koncentrácia vírusovej RNA nenulová. Asymptotická 

stabilita ekvilibrií je daná vlastnými hodnotami Jacobiho matice zodpovedajúcej 

ekvilibriám, no keďže tieto boli pre naše ekvilibriá záporné a nulové, nemožno 

o stabilite ekvilibrií rozhodnúť jednoznačne. Ukážeme, že systém obyčajných 

diferenciálnych rovníc spĺňa zmysluplný prepoklad, že biologicky relevantný stavový 

priestor   definovaný v (33) je invariantný vzhľadom na systém. 
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