
Comenius University, Bratislava
Faculty ofMathematics, Physics and Informatics

One-Shot-Learning Gesture Recognition using
HOG-HOF Features

Bachelor Thesis

2013

Jakub Konečný

Comenius University, Bratislava
Faculty ofMathematics, Physics and Informatics

One-Shot-Learning Gesture Recognition using
HOG-HOF Features

Bachelor Thesis

Study programme: Mathematics of Economy and Finance

Study field: 9.1.9. Applied Mathematics (1114)

Department: Department of Applied Mathematics and Statistics

Supervisor: doc. Mgr. Radoslav Harman, PhD.

Bratislava, 2013

Jakub Konečný

34796695

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Jakub Konečný
Študijný program: ekonomická a finančná matematika (Jednoodborové

štúdium, bakalársky I. st., denná forma)
Študijný odbor: 9.1.9. aplikovaná matematika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický

Názov: One-Shot-Learning Gesture Recognition using HOG-HOF Features

Cieľ: Create a learning system capable of learning from a single training example
a gesture classification problem using data obtained from Microsoft Kinect.
Practice with development data (a large database of 50,000 labeled gestures is
available).

Vedúci: doc. Mgr. Radoslav Harman, PhD.
Katedra: FMFI.KAMŠ - Katedra aplikovanej matematiky a štatistiky
Vedúci katedry: prof. RNDr. Daniel Ševčovič, CSc.

Dátum zadania: 10.10.2012

Dátum schválenia: 03.11.2012 doc. RNDr. Margaréta Halická, CSc.
garant študijného programu

študent vedúci práce

Acknowledgement

I would like to thank my supervisor doc. Mgr. Radoslav Harman, PhD. for his help.

iv

Abstract

The purpose of this thesis is to describe one-shot-learning gesture recognition systems de-

veloped on the ChaLearn Gesture Dataset [3]. We use RGB and depth images and combine

appearance (Histograms of Oriented Gradients) and motion descriptors (Histogram of Op-

tical Flow) for parallel temporal segmentation and recognition. The Quadratic-Chi distance

family is used to measure differences between histograms to capture cross-bin relationships.

We also propose a new algorithm for trimming videos — to remove all the unimportant

frames from videos. Our two methods both outperform other published methods and help

narrow down the gap between human performance and algorithms on this task. The code has

been made publicly available in the MLOSS repository.

Keywords: ChaLearn, Histogram of Oriented Gradients, Histogram of Optical Flow, Dy-

namic Time Warping

v

Abstrakt

Ciel’ tejto práce je popísat’ systémy na rozpoznávanie gest na základe jedného trénovacieho

príkladu, vytvorené pre ChaLearn Gesture Dataset [3]. Používame farebný aj hĺbkový ob-

raz a kombinujeme statické (Histogram of Oriented Gradients) a dynamické (Histogram of

Optical Flow) deskriptory na paralelné rozpoznávanie gest a segmentáciu v čase. Na mera-

nie vzdialeností medzi histogramami sme použili metriku Quadratic-Chi aby sme zachytili

vzt’ahy medzi jednotlivými bunkami. Taktiež predstavujeme nový algoritmus na orezávanie

videí, aby sme odstránili všetky nepodstatné snímky z videa. Naše obe metódy prekonávajú

iné publikované metódy a pomohli zmenšit’ rozdiel medzi výkonom l’udí a algoritmov v

tejto úlohe. Zdrojový kód sme zverejnili v databáze MLOSS.

K ’lúčové slová: ChaLearn, Histogram of Oriented Gradients, Histogram of Optical Flow,

Dynamic Time Warping

vi

Contents

Acknowledgement iv

Abstract v

Abstrakt vi

Introduction 1

1 Related Work 3

2 Data and Problem Setting 5

3 Preprocessing 7
3.1 Depth noise removal . 7

3.2 Trimming . 8

4 Feature Representation and Distance Measure 11
4.1 Histogram of Oriented Gradients . 11

4.2 Histogram of Optical Flow . 12

4.3 Measuring Distance of the Histograms . 14

5 Recognition 16
5.1 Single Model — Dynamic Time Warping 16

5.2 Multiple Models — Sliding Frame . 18

6 Results 21

7 Discussion and Conclusions 25

A Algorithm 1 27

B Algorithm 2 28

vii

Introduction

Gesture recognition can be seen as a way for computers to understand human body lan-

guage. Improving state-of-the-art algorithms for gesture recognition thus facilitates the

human-computer communication beyond primitive text user interfaces or GUIs (graphical

user interfaces). With rapidly improving comprehension of human gestures we can start

building NUIs (natural user interfaces) for controlling computers or robots. With the avail-

ability of such technologies, conventional input devices like keyboard or mouse could be

replaced in situations in which they are inconvenient in future. Other applications of gesture

recognition include sign language recognition, socially assistive robotics and astonishing

game technology.

In this thesis, we focus on the ChaLearn Gesture Dataset [3]. The dataset was released

jointly with a competition, which purpose was to develop a system capable of learning to

recognize new categories of gestures from a single training example of each gesture. The

large dataset of hand and arm gestures was pre-recorded using an infrared sensor, KinectT M,

providing both RGB and depth images [8, 7].

The purpose of this work is to describe methods developed during the ChaLearn Gesture

Challenge by team Turtle Tamers (author of this thesis and Michal Hagara). The thesis

itself is based on our paper submitted to the Journal of Machine Learning Research. We

finished in the 2nd place in round 2 and were invited to present our solution at the International

Conference on Pattern Recognition 2012, Tsukuba, Japan. The code has been made publicly

available in the MLOSS repository.1

The rest of this work is organised as follows: Related work is summarized in Chapter 1.

In Chapter 2 we describe the dataset and the problem thoroughly. In Chapter 3 we focus on

the preprocessing needed to deal with some of the problems in the dataset. Chapter 4 covers

feature representation, using Histogram of Oriented Gradients and Histogram of Optical

Flow, as well as a method used to compare similarities between these representations. In

1https://mloss.org/software/view/448/

1

CONTENTS 2

Chapter 5 we describe the actual algorithms, and in Chapter 6 we briefly describe algorithms

of other participants and compare their results with ours, as well as with other published

works. We finish by concluding in Chapter 7.

Chapter 1

Related Work

In this section we highlight selected works in the area of action recognition and motivate

our choices of models.

One possible approach to this problem consists in analysing motion descriptors obtained

from video. For example [10] use output of Human Motion Capture systems with combi-

nations of Hidden Markov Models. Authors of [23] use Extended Motion History Image as

a motion descriptor and applies the method on the ChaLearn Gesture Dataset. They fuse

duo modalities inherent in the Kinect sensor using Multiview Spectral Embedding [24] in a

physically meaningful manner.

An evolution of Bag-of-Words [15], a method used in document analysis, where each

document is represented using the apparition frequency of each word in a dictionary, is one

of the most popular in Computer Vision. In the image domain, these words become visual

elements of a certain visual vocabulary. First, each image is decomposed into large set of

patches, obtaining a numeric descriptor. This can be done using for example SIFT [16],

or SURF [1]. A set of N representative visual words are selected by means of a clustering

process over the descriptors in all images. Once the visual vocabulary is defined, each im-

age can be represented by a global histogram containing the frequencies of visual words.

Finally, this histogram can be used as input for any classification technique. Extensions to

image sequences have been proposed, the most popular being Space-Time Interest Points

[13]. An evaluation of a number of feature descriptors and bag-of-feature models for action

recognition is presented in [22]. This study concluded that different sampling strategies and

feature descriptors were needed to achieve the best results on alternative action data sets.

Recently an extension of these models to the RGB-D images, with a new depth descriptor

was introduced by [9].

3

CHAPTER 1. RELATED WORK 4

These above outlined methods usually ignore particular spatial position of a descriptor.

We wanted to exploit the specifics of the dataset, particularly the fact that the user position

does not change within the same batch, thus also the important parts of the same gestures will

occur roughly at the same place. We use a combination of appearance descriptor, Histogram

of Oriented Gradients [4] and local motion direction descriptor, Histogram of Optical Flow

[11]. We adopted Quadratic-Chi distance [20] to measure differences between these his-

tograms. This approach works well only at high resolutions of descriptors. An alternative to

this could be to use a non-linear support vector machine with a χ2 kernel [14]. Another pos-

sible feature descriptor that includes spatio-temporal position of features could be HOG3D

[12], which was applied to this specific dataset by [6].

Chapter 2

Data and Problem Setting

In this Section, we will discuss the easy and difficult aspects of the dataset and the goal of

the competition.

As mentioned earlier, the purpose of the ChaLearn Gesture Challenge1 was to develop

a system capable of learning to recognize new categories of gestures from a single training

example of each gesture. A large dataset of gestures was collected before the competition,

which includes more than 50, 000 gestures recorded with the KinectT M sensor, providing

both RGB and depth videos. Resolution of these videos is 240 × 320 pixels, at 10 frames

per second. The gestures are grouped in more than 500 batches of 100 gestures, each batch

including 47 sequences of 1 to 5 gestures drawn from small gesture vocabularies from 8

to 14 gestures. The gestures come from over 30 different gesture vocabularies, and were

performed by 20 different users.

During the challenge, development batches devel01-480 were available, with truth labels

of gestures provided. Batches valid01-20 and final21-40 were provided with labels for only

one example of each gesture class in each batch (training set). These batches were used for

evaluation purposes. The goal is to automatically predict the gesture labels for the unlabelled

gesture sequences (test set). The gesture vocabularies were selected from nine categories

corresponding to various settings or applications:

1. body language gestures (for example scratching your head, crossing your arms)

2. gesticulations performed to accompany speech

1The challenge was organized by ChaLearn and sponsored in part by Microsoft (Kinect for Xbox 360). The

submission website was hosted by Kaggle.com. Other sponsors include Texas Instrument. This effort was initi-

ated by the DARPA Deep Learning program and was supported by the US National Science Foundation (NSF)

under grants ECCS 1128436 and ECCS 1128296 , the EU Pascal2 network of excellence and the Challenges

in Machine Learning foundation. Website: http://gesture.chalearn.org/.

5

http://gesture.chalearn.org/

CHAPTER 2. DATA AND PROBLEM SETTING 6

3. illustrators (like Italian gestures)

4. emblems (like Indian Mudras)

5. signs (from sign languages for the deaf)

6. signals (like referee signals, diving signals, or marshalling signals to guide machinery

or vehicle)

7. actions (like drinking or writing)

8. pantomimes (gestures made to mimic actions)

9. dance postures

Easy aspects of the dataset include fixed camera, availability of the depth data. Within a

batch, there is always a single user, homogeneous recording conditions and a small vocab-

ulary. In every sequence, different gestures are separated by the user returning to a resting

position. Gestures are usually performed by hands and arms. The challenging aspects of the

data are that within a single batch there is only one labelled example of each gesture. Be-

tween different batches there are variations in recording conditions, clothing, skin color and

lightning. Some users are less skilled than others, thus there are some errors or omissions in

performing the gestures. And in some batches, parts of the body may be occluded.

For the evaluation of results the Levenshtein distance was used. That is the minimum

number of edit operations (insertion, deletion or substitution) needed to be performed to

go from one vector to another. For each unlabelled video distance D(T, L) was computed,

where T is the truth vector of labels, and L is our predicted vector of labels. This dis-

tance is also known as “edit distance”. For example, D([1, 2], [1]) = 1, D([1, 2, 3], [2, 4]) = 2,

D([1, 2, 3], [3, 2]) = 2.

The overall score for a batch was computed as a sum of Levenshtein distances divided

by the total number of gestures performed in the batch. This is similar to an error rate (but

can exceed 1). We multiply the result by factor of 100 to resemble the fail percentage. For

simplicity, in the rest of this work, we call it error rate.

Chapter 3

Preprocessing

In this Section we discuss possible problems in the dataset as well as the solutions. In the

first subsection we focus on depth noise removal. Later we describe the need for trimming

the videos — removing set of frames — and the method employed.

3.1 Depth noise removal

One of the problems present is the noise (or missing values) in the depth data. Whenever

the Kinect sensor does not receive response from a particular point, the sensor outputs a 0,

resulting in black areas visualized in Figure 3.1. This noise occurs usually along edges of

objects or, particularly in this dataset, humans. We can see the noise also if the object is out

of range of the sensor — 0.8 to 3.5 meters.

Figure 3.1: Examples of depth images with various levels of noise

The level of noise is usually the same within a single batch. However, there is a big

difference in level of noise across different batches. If the level is not too high, it looks

like ‘salt and pepper’ noise. Later, in Section 4, we use Histograms of Oriented Gradients

(HOGs), which work best with sharp edges, so we need a filter that preserves the edges. One

of the best filters for removing this kind of noise is the median filter, and also has our desired

7

CHAPTER 3. PREPROCESSING 8

property. Median filter replaces every pixel with median of pixels in small area around itself.

The effect of median filter is shown in Figure 3.2. We can see this filter cannot deal with

too big areas of noise, however, this is not a problem in our methods. As mentioned earlier,

HOG features are sensitive to the edges, but these large areas usually occur along the edges,

so the difference in computed features will not be significant.

Figure 3.2: Effect of median filter on depth image

3.2 Trimming

In most batches we can find videos with quite long parts at the beginning or at the end

of the video, where nothing important happens. Sometimes the user is not moving at all,

sometimes trying to turn on/off the recorder.1 Another problem occurring less often is in

batches, where gestures are rather static. There is often variation in time the user stays in

particular gesture setting.2 This is a problem for most possible approaches for tackling the

one-shot-learning problem. A solution can be to remove frames from the beginnings and

ends of the videos, as well as a part with too big inactivity from middle parts.

One possible approach to removing parts of inactivity can be to watch the amount of

motion in the video, and remove parts where nothing happens. This is the idea we employed.

A naive but effective way is to take the depth video and compute differences for every

pixel between two consecutive frames. Taking depth videos allows us to ignore problems

of texture of clothing or background. We then count simply the number of pixels whose

change exceeds a given threshold, or we can simply sum the differences. After numerous

1An example is batch devel12, video 23.
2An example is batch devel39, particularly video 18.

CHAPTER 3. PREPROCESSING 9

experiments we ended up with Algorithm 1 described in detail in Appendix A. Suppose we

have a video, n frames long. First we remove the background3 from individual frames and

apply the median filter. Then we do not compute differences of consecutive frames, but

rather between frames i and i + 3. This is to make the motion curve smoother and thus the

method more robust. We also found important to even out the amount of motion between,

for instance, hand in front of body and hand in front of background. To that end, we set an

upper boundary constraint on the difference at 15 (on a scale 0 to 255). Then we computed

the actual motion as an average of differences between the chosen frames, as previously

described, above particular frame, for example

motion(2)← (mot(1) + mot(2))/2,

motion(12)← (mot(9) + mot(10) + mot(11) + mot(12))/4. (3.1)

In mot variable we store the average change across all pixels. Then we scaled the motion to

range [0, 1].

Once we have the motion in expected range, we can start actually removing frames.

At first, we remove sequences from beginning and end of the video with motion below a

threshold (set to 0.1), under the condition that they are of length at least minTrim (set to

5) frames. Then we find all sequences in the middle of the video with motion below the

threshold of length more than 5, and uniformly choose 5 frames to remain in the video.

For example if we were to trim a sequence of length 13, only frames {1, 4, 7, 10, 13} would

remain. Then we return the video with remaining frames.

Figure 3.3: Example of a motion graph, batch devel11, video 32

3Using an algorithm bgremove provided in sample code of the Challenge [3].

CHAPTER 3. PREPROCESSING 10

One possible modification of this algorithm is in the step in which we scale the mo-

tion to the range of [0, 1]. In this case, we simply subtract min(motion), and divide by

(max(motion) − min(motion)). However, especially in videos with 4 or 5 gestures, some-

times a too big outlier makes a problem, because then the threshold is too big. Since the

motion curve tends to be relatively smooth, we could instead of max(motion) choose the

value of the second highest local maximum. This scaling performs slightly better on long

videos, but does not work on short videos. Since we do not know how many gestures to

expect in advance, we used the simpler method.

Chapter 4

Feature Representation and Distance
Measure

In this Section, we briefly describe the methods used for extracting features we use. Dif-

ferent gestures differ from each other both in appearance and the amount of motion while

performing a particular gesture. A good descriptor of the static part of a gesture is the

Histogram of Oriented Gradients, proposed by [4]. A good method for capturing size and

direction of motion is computing the Optical Flow using the Lucas-Kanade method [11, 17]

and creating a histogram of flow. Motivation behind these choices is explained in Section 1.

Finally, we describe the Quadratic-Chi distance family proposed by [20] for measuring dis-

tances between histograms.

4.1 Histogram of Oriented Gradients

In this section we briefly describe the HOG features. The basic idea is that a local object

appearance and shape can often be characterized rather well by the distribution of local in-

tensity gradient (or edge) directions, even without precise knowledge of the corresponding

gradient (or edge) positions. In practice this is implemented by dividing the image win-

dow into small spatial regions (“cells”), for each cell accumulating a local 1-D histogram

of gradient directions (or edge orientations) over the pixels of the cell. It is also useful to

contrast-normalize the local responses before using them. This can be done by accumulating

a measure of local histogram “energy” over somewhat larger spatial regions (“blocks”) and

using the results to normalize all of the cells in the block.

We used a simple [−1, 0, 1] gradient filter, applied in both directions and discretized the

gradient orientations into 16 orientation bins in 0◦ − 180◦. We had cells of size 40 × 40

pixels and blocks of size 80 × 80 pixels, each containing 4 cells. The histogram in each

11

CHAPTER 4. FEATURE REPRESENTATION AND DISTANCE MEASURE 12

cell is normalized with sum of euclidean norms of histograms in the whole block. Each cell

(except marginal ones) belongs to 4 blocks, thus for one cell we have 4 locally normalized

histograms, the sum of which is used as resulting histogram for the cell. Since this method

cannot be used to normalize histograms of marginal cells, from 240×320 image we get only

4 × 6 spatial cells of 16 orientation bins each. Figure 4.1 provides an example visualisation

of the HOG features at their actual resolution. The space covered is smaller than the orig-

inal image, but that is not a problem, since the gestures from the dataset are not performed

on margin of the frames. Authors of [4] conclude, that fine-scale gradients, fine orienta-

tion binning, relatively coarse spatial cells, and high-quality local contrast normalization in

overlapping descriptor blocks are all important for good performance.

Figure 4.1: Example visualisation of the HOG features

As in Figure 4.1, we computed the HOG features from depth images, since it captures only

the edges we are interested in, and not textures of clothing and so on. We used the efficient

implementation from Piotr’s toolbox [5], function

hog(image, 40, 16).

4.2 Histogram of Optical Flow

In this section we describe the general optical flow principle and the Lucas-Kanade method

[11, 17] for estimating the actual flow. The optical flow methods try to estimate the motion

between two images (in our case two consecutive frames of video), at times t and t + ∆t at

every position. For our case, a location (x, y, t) with intensity I (x, y, t) will have moved by

∆x, ∆y, and ∆t between the two frames. The following image constraint equation can be

CHAPTER 4. FEATURE REPRESENTATION AND DISTANCE MEASURE 13

given:

I (x, y, t) = I (x + ∆x, y + ∆y, t + ∆t) .

Assuming the movement to be small, the image constraint at I (x, y, t) can be expanded with

Taylor series to

I (x + ∆x, y + ∆y, t + ∆t) = I (x, y, t) +
∂I
∂x

∆x +
∂I
∂y

∆y +
∂I
∂t

∆t + H.O.T 1

Taking these two equations, and dividing by ∆t we get:

∂I
∂x

∆x
∆t

+
∂I
∂y

∆y
∆t

+
∂I
∂t

∆t
∆t

= 0

or
∂I
∂x

Vx +
∂I
∂y

Vy +
∂I
∂t

= 0,

where Vx and Vy are the components of velocity, or optical flow in (x, y, t), and ∂I
∂x , ∂I

∂y and ∂I
∂t

are the partial derivatives of the image at (x, y, t) in corresponding directions.

This is an equation in two variables and cannot be solved without additional constraints.

All optical flow methods introduce additional conditions for estimating the actual flow. The

Lucas-Kanade method assumes that the flow is essentially constant in a local neighbourhood

of the pixel under consideration, and solves the basic optical flow equation for all the pixels

in a neighbourhood. The velocity vector
(
Vx,Vy

)
must satisfy

∂I
∂x

(q1) Vx +
∂I
∂y

(q1) Vy +
∂I
∂t

(q1) = 0,

∂I
∂x

(q2) Vx +
∂I
∂y

(q2) Vy +
∂I
∂t

(q2) = 0,

...

∂I
∂x

(qn) Vx +
∂I
∂y

(qn) Vy +
∂I
∂t

(qn) = 0,

where q1, q2, . . . , qn are the pixels inside the neighbourhood and the partial derivatives

are evaluated at points qi at the current time t. The equations can be written in matrix form

Av = b, where

A =



∂I
∂x (q1) ∂I

∂y (q1)
∂I
∂x (q2) ∂I

∂y (q2)
...

...
∂I
∂x (qn) ∂I

∂y (qn)


, v =

Vx

Vy

 , b =



∂I
∂t (q1)
∂I
∂t (q2)
...

∂I
∂t (qn)


.

1Higher Order Terms

CHAPTER 4. FEATURE REPRESENTATION AND DISTANCE MEASURE 14

This system is usually over-determined, since it has more equations than unknowns. The

Lucas-Kanade method obtains a solution by the least squares principle. Thus the solution is

v =
(
AT A

)−1
AT b.

After obtaining the optical flow in every point of the image we divide the image (of 240×

320 pixels) to a grid of 6 × 8 spatial cells. We then put each optical flow vector into one of

16 orientation bins in each spatial cell, and scale them so they sum to 1 to get a histogram

of 6 × 8 × 16 fields. We also tried to scale in each spatial cell separately, and the difference

of error rate in our methods on all development batches was less than 0.5. We computed the

optical flow from color videos, converted to grayscale, again using efficient implementation

of the Flow estimation from Piotr’s toolbox [5], function

optFlowLk(image1, image2, [] , 4, 2, 9e−5);

4.3 Measuring Distance of the Histograms

Our method relies on making comparisons between pairs of frames in two videos, which

requires as a component, to measure differences between histograms. The relatively simple

methods based on the sum of bin-to-bin distances suffer from the following limitation: If

the number of bins is too small, the measure is not discriminative and if it is too large it is

not robust. Distances, that take into account cross-bin relationships, can be both robust and

discriminative. With the HOG and HOF feature at the resolution that we selected, simple

bib-to-bin comparisons are not robust, as exemplified in Figure 4.2. Thus we would like a

measure that would look into surrounding orientation bins and, after experimenting, also to

surrounding spatial cells. Thus we would also like a measure, that would reduce the effect

of big differences, and also look into surrounding spatial cells. We adopted the following

Quadratic-Chi distance family introduced by [20].

Let P and Q be two histograms. Let A be a non-negative symmetric bounded bin-similarity

matrix, such that each diagonal element is bigger or equal to every other element in its row.

Let 0 ≤ m < 1 be a normalization factor. A Quadratic-Chi histogram distance is defined as:

QCA
m (P,Q) =

√√√√∑
i, j

(
(Pi − Qi)

(
∑

c (Pc + Qc) Aci)m

) 
(
P j − Q j

)
(∑

c (Pc + Qc) Ac j

)m

 Ai j

where we define 0
0 = 0. The normalization factor m reduces the effect of big differences

(the bigger it is, the bigger reduction; in our methods set to 0.5). During comparing ith

orientation bins of two histograms, we want to look into the matching orientation bins, to

CHAPTER 4. FEATURE REPRESENTATION AND DISTANCE MEASURE 15

Figure 4.2: Example of need for cross-bin similarities: the same moment in performance

of the same gesture in two different videos. The right hand stays at the same place, the left

hand is moving. This illustrates how the same element can result in different neighbouring

orientation bins in HOG being big in different cases.

4 surrounding orientation bins (2 left, 2 right), and into the same orientation bins within 8

surrounding spatial cells. MATLAB code for creating the matrix A which captures these

properties is in Appendix B.

Chapter 5

Recognition

In this Section we describe the methods used for recognition. In our first method we create

a single model and look for cheapest path of a new video through the model. In our second

method we create a separate model for every training video and using sliding frame window

look for similar parts of training videos.

5.1 Single Model — Dynamic Time Warping

In this method (we will call it S M) we use both Histograms of Oriented Gradients and

Histograms of Optical Flow and perform temporal segmentation simultaneously with recog-

nition.

At first, we create a model illustrated in Figure 5.1 for whole batch. Every row in the

Figure represents a single training video. Every node represents single frame of the video.

In a node we store HOG and HOF features belonging to the particular frame. Recall that the

HOF needs two consecutive frames. Thus if a video has f frames, the representation of this

video has f − 1 nodes, ignoring the HOG of first frame. We add an arbitrary node, called

Resting Position (RP), obtained as average representation of first frames of each video.

We want to capture the variation in speed of performing gestures, thus we set the transi-

tions in the following way: When being in a particular node n in time t, moving to time t + 1

we can either stay in the same node (slower performance), move to node n + 1 (the same

speed of performance), or move to node n + 2 (faster performance). Experiments suggested

allowing transition to node n + 3 is not needed with the trimming described in Section 3. It

even made the whole method perform worse. From the RP we can move to the first three

nodes of any video, and from the last three nodes of every video we can move to the RP.

16

CHAPTER 5. RECOGNITION 17

Figure 5.1: Model for Dynamic Time Warping

When we have this model, we can start inferring the gestures present in a new video. First,

we compute representations of all the frames in the new video. Then we compute similarities

of every node of our model with every frame representation of the new video. We compute

similarities of both matching HOGs and HOFs, using the Quadratic-Chi distance described in

Section 4.3, and simply sum the distances. This makes sense since the empirical distribution

functions of distances of HOGs and HOFs are similar. We can represent these distances as

a matrix of size N × (F − 1), where N is the number of all nodes in the model, and F is the

number of frames in the new video. Using the Viterbi algorithm we find the shortest path

through this matrix (we constrain the algorithm to begin in RP or in any of first three nodes

of any gesture). Every column is considered a time point, and in every time point we are in

one state (row of the matrix). Between neighbouring time points the states can change only

along the transitions in the model. This approach is also known as Dynamic Time Warping

[2].

Result of the Viterbi algorithm is a path — sequence of nodes which correspond to states

in which our new video was in time. From this path we can easily infer which gestures were

present (which rows in Figure 5.1), and in what order. The flow of states in time is displayed

in Figure 5.2 (the color represents the cumulative cost up to a particular point — the darker

the bigger).

CHAPTER 5. RECOGNITION 18

Figure 5.2: Example of flow of states in model — devel01, video number 11 — true labels

are {9, 4, 4, 9}. The gray levels represent the shortest cumulative path ending in a particular

point.

5.2 Multiple Models — Sliding Frame

In this method (we will call it MM) we used only the Histogram of Oriented Gradients and

perform temporal segmentation prior to recognition. We created similar model as in S M, but

separately for every training video, illustrated in Figure 5.3. Again, every node represents

HOG features of a single frame. Thus if we have k different gestures, we have k similar

models. We do not need a RP node, since we will be looking for short sequences in these

models similar to short sequences of frames of a new video. Again, the transitions between

states in models want to capture variation in speed of performing gestures.

Figure 5.3: Model for every video in MM

CHAPTER 5. RECOGNITION 19

MM differs from S M mainly in approach to inferring gestures present. First, we compute

all the HOG representations of a new video and compute their similarities with all the nodes

in k models. Then we employ the idea of sliding frame. The idea is to take a small sequence

of the new video and monitor which parts of which training videos does it resemble to. First

we select frames 1 to l (we set l = 10) and treat this similarly as in S M. We look for the

shortest path through our first model without constraint on where to begin or end. We do

the same with every model. This results in numbers representing the resemblance of a small

part of our new video with any part of every training video, and optionally also numbers of

nodes resembling it. Then we select frames 2 to (l + 1), repeat the whole process, and move

forward through the whole video.

Finally we obtain a matrix of size k × (f − l + 1), where k is the number of gestures and

f number of frames in new video. Every column represents a time instant and every row a

gesture. An example of such matrix is shown in Figure 5.4. Humans can fairly easily learn

to recognize where and which gestures are present, but it is a bit more challenging task for a

computer. We tried to treat columns as feature vectors and feed it to S M and tried to build a

Hidden Markov Model to infer gestures present. We also tried to include information of what

nodes of a particular model were present for every time instant, so we can prefer gestures

where most of the nodes were included. That was difficult to take into account, because

the start and end of most videos are very similar (Resting Position). All the methods had

problems identifying two identical gestures occurring after each other, and also two similar

gestures occurring after each other. We did not find satisfactory solutions to these problems

without deteriorating performance.

Figure 5.4: Example of sliding frame matrix — devel01, video number 11.

None of these methods manages to beat the naive approach. We resorted to first segment

the video using an algorithm provided by organizers in the sample code called dtw_segment.

The algorithm is very fast and segments the videos very well. After segmenting, we simply

summed along the rows in corresponding parts of the scores matrix and picked the minimum.

An improvement was to perform a weighed sum that emphasizes the center of the video,

since the important information is usually in the middle.

CHAPTER 5. RECOGNITION 20

We used only HOG features in this method because every try to include HOF features

gave considerably worse results. One possible explanation for this can be we do not need

to focus on the overall movement while looking only for short segments of videos, but it is

more important to capture the static element.

Chapter 6

Results

In this section we discuss results of our methods. We also compare our results with those

of other challenge participants as well as with other already published methods with experi-

ments on this dataset.

All our experiments were conducted on a processor Intel Core i7 3610QM, with memory

2 × 4GB DDR3 1600 MHz. The running time of S M was approximately 115% of real-time

(takes longer to process than to record), while MM was approximately 90% of real-time.

However, none of our methods could be trivially converted to an online method, since we

need to have the whole video in advance.

We summarize the performances of our methods on all available datasets in Table 6.1.

The results also show our preprocessing steps positively influences the final results. The

MM looks better on the first 20 development batches, but performs worse overall. All other

published works provide results only on first 20 batches, which is too few for any reliable

conclusions. Therefore we suggest providing results on all the batches for bigger relevance.

As mentioned in Section 1, we chose our descriptors to exploit specific properties of the

dataset — the user stays at the same place, and thus the important parts of gestures have

always roughly the same position within the image. Hence it is not surprising that our model

is not translation nor scale invariant. Organizers of the challenge [7] created 20 translated

and scaled data batches, and analyse robustness of methods of top ranking participants. In

general, the bag-of-features models have this property, but they are usually rather slow. If we

wanted to incorporate translation invariance, one method could be to extract body parts from

image (the algorithm is provided within Kinect Development Toolkit) and align the images

so the user is at the same position.

21

CHAPTER 6. RESULTS 22

Batches S M MM

devel01-20 23.78 21.99

devel01-480 29.40 34.43

valid01-20 20.01 24.48

final01-20 17.02 23.08

final21-40 10.98 18.47

devel01-20 (without trimming) 26.24 22.82

devel01-20 (without medfilt) 24.70 23.92

devel01-20 (S M; only HOG) 24.53

devel01-20 (MM; HOG and HOF) 28.73

Table 6.1: Overview of our results on datasets

Figure 6.1: Scores of our methods on first 20 development batches

The results of our method on each of the first 20 batches is displayed in Figure 6.1.

Often our methods perform similarly, but one can spot significant differences in batches

devel06 (S M — 11.11, MM — 36.67), devel10 (S M — 54.95, MM — 29.67), devel17

(S M — 34.78, MM — 9.78). In batches devel10 and devel17, the gestures are only static

and all occurs in the same place in space. In this particular setting, the information about any

motion (HOF) can be redundant. This can be a reason why MM performs better, since we

do not include any motion descriptors into the representation. In devel06, the problem is, the

gestures are performed very quickly, thus the videos are often very short. This is a problem

since the matrix in Figure 5.4 has only few columns, resulting in poor performance of MM.

CHAPTER 6. RESULTS 23

But this brings us to a new preprocessing step. Suppose we have more algorithms for

solving this one-shot-learning task. If we were able to describe in any way what types of

gestures does which algorithm recognize the best, we could boost the overall performance

by picking the right algorithm in advance, after seeing the training videos. This is a problem

we have unsuccessfully tried to solve, and which remains open for future work. If we always

pick the better from our two methods, we would achieve score of 19.04 on the batches

devel01-20.

The methods used by other challenge participants — alfnie, Pennect, Joewan [21], One-

MillionMonkeys, Manavender [19] — are summarized by [8, 7]. We briefly describe other

published works applied on this dataset. We provide comparison of all of these methods in

Table 6.2.

Method / team devel01-20 valid01-20 final01-20 final21-40

S M (ours) 23.78 20.01 17.02 10.98

MM (ours) 21.99 24.48 23.08 18.47

alfnie NA 9.51 7.34 7.10

Pennect NA 17.97 16.52 12.31

Joewan 19.45 16.69 16.80 14.48

OneMillionMonkeys NA 26.97 16.85 18.19

Mananender 26.34 23.32 21.64 19.25

Wu et al. 26.00 25.43 18.46 18.53

BoVDW 26.62 NA NA NA

Lui 28.73 NA NA NA

Fanello et al. 25.11 NA NA NA

Table 6.2: Comparison of results of methods from the competition as well as published

methods

Wu et al. [23] pre-segment videos and represent motions of users by Extended-Motion-

History-Image and use maximum correlation coefficient classifier. The Multi-view Spectral

Embedding algorithm is used to fuse duo modalities in a physically meaningful manner.

The paper [9] present a Bag-of-Visual-and-Depth-Words (BoVDW) model for gesture

recognition, that benefits from the multimodal fusion of visual and depth features. They

combine HOG and HOF features with a new proposed depth descriptor.

CHAPTER 6. RESULTS 24

Tensor representation of action videos is proposed by [18]. Aim of his work is to demon-

strate the importance of the intrinsic geometry of tensor space which yields a very dis-

criminating structure for action recognition. The methods is assessed using three gesture

databases, including Chalearn gesture challenge dataset.

Finally Fanello et al. [6] develop a real-time learning and recognition system for RGB-D

images. The proposed method relies on descriptors based on 3D Histogram of Flow, Global

Histogram of Oriented Gradient and adaptive sparse coding. The effectiveness of sparse

coding techniques to represent 3D actions is highlighted in their work.

Chapter 7

Discussion and Conclusions

In this thesis we presented two methods for solving the one-shot-learning gesture recog-

nition task introduced in the ChaLearn Gesture Challenge [3]. We have significantly helped

narrow down the gap between human and machine performance (the baseline method achieved

50% error rate on final evaluation set, our method 11%, while the human error rate is under

2%). Our methods outperform other published methods and we suggest that other authors

provide results on whole dataset for greater relevance of achieved results.

We combine static — Histograms of Oriented Gradients — and dynamic — Histogram of

Optical Flow — descriptors in first method, where we create one model and perform tem-

poral segmentation simultaneously with recognition using Dynamic Time Warping. We use

only static descriptors and use pre-segmentation as a preprocessing step in second method,

where we look for similar parts in training videos using sliding frame.

Our first method is similar to one developed by team Pennect in the Challenge, and also

performs similarly. They also used HOG features, but at different scales, and used a one-

vs-all linear classifier, while we use the Quadratic-Chi distance [20] to measure distances

between individual frames. The recognition was also parallel with temporal segmentation

using a DTW model. Surprisingly, the Pennect team used only the color images.

Bag-of-features models provide comparable [21] of slightly worse [9] results than ours.

The advantage against our methods is they are scale and translation invariant - which is nec-

essary for real-world applications like in gaming industry. On the other hand, these methods

rely on presegmentation of videos to single gestures, and are considerably slower, hence cur-

rently not applicable. An interesting property of these methods is their results seem to have

lower variance — error rate at difficult datasets (for instance devel10) is smaller, but struggle

to obtain strong recognition rate on easy datasets (devel08, devel09).

25

CHAPTER 7. DISCUSSION AND CONCLUSIONS 26

We present a novel video trimming technique, based on amount of motion. Its motiva-

tion is to remove unimportant segments of videos and thus reduce probability of confusing

gestures. The method improves overall results of our methods (Table 6.1), and small im-

provement was confirmed by [23] — 2% and [21] — 0.5%.

Finally, we suggest an area for future work. Having more well working methods at dis-

posal, we can analyse their results on different types of gesture vocabularies, users and other

settings. Overall performance could be boosted if we were able to decide which recognizer

to use in advance. Especially, deeper analysis of differences of results between Bag-of-words

models and Dynamic Time Warping models is needed to obtain better description of their

behaviour on different types of gesture recognition tasks.

Appendix A

Algorithm 1

In this Appendix, we provide algorithm for trimming video described in Section 3.2.

Algorithm 1 Trimming a video
n← length(video)

gap← 3 maxDi f f ← 15 threshold ← 0.1 minTrim← 5

for i = 1→ n do
video(i)← bgremove(video(i)) . Background removal

video(i)← med f ilt(video(i)) . Median filter

end for
for i = 1→ (n − gap) do

di f f (i)← abs(video(i) − video(i + gap))

di f f (i)← min{di f f (i),maxDi f f }

mot(i)← mean(di f f (i)) . Mean across all pixels

end for
motion← avgMotion(mot) . As in Equation 3.1

motion← scale(motion) . Scale motion so its range is 0 to 1

f rames← vector(1 : n)

if |beginS equence(motion < threshold)| ≥ minTrim then
f rames← trimBegin(f rames) . Remove all frames

end if
if |endS equence(motion < threshold)| ≥ minTrim then

f rames← trimEnd(f rames) . Remove all frames

end if
for all |sequence(motion < threshold)| > minTrim do

f rames← trimMiddle(sequence, f rames) . Remove all frames but minTrim

end for
return video(f rames)

27

Appendix B

Algorithm 2

In this Appendix, we provide MATLAB algorithm for creating similarity matrix used in the

Quadratic-Chi distance described in Section 4.3. We have histograms of h × w spatial cells,

and p orientation bins in each of the spatial bins.

Algorithm 2 MATLAB code producing the similarity matrix

gauss = fspecial('gaussian', 3, 0.56);

B = diag(ones(1,h)) + 2*(diag(ones(1, h−1), 1) + diag(ones(1, h−1), −1));

C = diag(ones(1,w)) + 2*(diag(ones(1, w−1), 1) + diag(ones(1, w−1), −1));

D = kron(C, B); % Kronecker tensor product

D(D == 1) = gauss(5);

D(D == 2) = gauss(2);

D(D == 4) = gauss(1);

A = imfilter(eye(p), gauss, 'circular');

A = sparse(kron(D, A)); % The final similarity matrix

28

Bibliography

[1] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features.

In Computer Vision–ECCV 2006, pages 404–417. Springer, 2006.

[2] Donald J. Berndt and James Clifford. Using dynamic time warping to find patterns in

time series. In KDD workshop, volume 10, pages 359–370, 1994.

[3] ChaLearn Gesture Dataset (CGD2011), ChaLearn, California. http://gesture.

chalearn.org/data, 2011.

[4] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.

In Computer Vision and Pattern Recognition, 2005, volume 1, pages 886–893. IEEE,

2005.

[5] Piotr Dollár. Piotr’s Image and Video Matlab Toolbox (PMT). http://vision.

ucsd.edu/~pdollar/toolbox/doc/index.html.

[6] Sean Ryan Fanello, Ilaria Gori, Giorgio Metta, and Francesca Odone. One-shot learn-

ing for real-time action recognition. 2013.

[7] Isabelle Guyon, Vassilis Athitsos, Pat Jangyodsuk, Hugo Jair Escalante, and Ben Ham-

ner. Results and analysis of the chalearn gesture challenge 2012. 2013.

[8] Isabelle Guyon, Vassilis Athitsos, Pat Jangyodsuk, Ben Hamner, and Hugo Jair Es-

calante. Chalearn gesture challenge: Design and first results. In Computer Vision and

Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference

on, pages 1–6. IEEE, 2012.

[9] Antonio Hernández-Vela, Miguel Ángel Bautista, Xavier Perez-Sala, Victor Ponce,

Xavier Baró, Oriol Pujol, Cecilio Angulo, and Sergio Escalera. BoVDW: Bag-of-

Visual-and-Depth-Words for gesture recognition. In International Conference on Pat-

tern Recognition, pages 449–452, 2012.

29

http://gesture.chalearn.org/data
http://gesture.chalearn.org/data
http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html

BIBLIOGRAPHY 30

[10] Nazlı Ikizler and David Forsyth. Searching video for complex activities with finite

state models. In Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE

Conference on, pages 1–8. IEEE, 2007.

[11] Takeo Kanade and Bruce D. Lucas. An iterative image registration technique with an

application to stereo vision. In Proceedings of the 7th international joint conference on

Artificial intelligence, 1981.

[12] Alexander Klaser and Marcin Marszalek. A spatio-temporal descriptor based on 3d-

gradients. 2008.

[13] Ivan Laptev. On space-time interest points. International Journal of Computer Vision,

64(2-3):107–123, 2005.

[14] Ivan Laptev, Marcin Marszalek, Cordelia Schmid, and Benjamin Rozenfeld. Learning

realistic human actions from movies. In Computer Vision and Pattern Recognition,

2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008.

[15] David D Lewis. Naive (bayes) at forty: The independence assumption in information

retrieval. In Machine learning: ECML-98, pages 4–15. Springer, 1998.

[16] David G Lowe. Object recognition from local scale-invariant features. In Computer vi-

sion, 1999. The proceedings of the seventh IEEE international conference on, volume 2,

pages 1150–1157. Ieee, 1999.

[17] Bruce D. Lucas. Generalized Image Matching by the Method of Differences. PhD

thesis, Robotics Institute, Carnegie Mellon University, July 1984.

[18] Yui Man Lui. Human gesture recognition on product manifolds. Journal of Machine

Learning Research, 13:3297–3321, 2012.

[19] Manavender R Malgireddy, Ifeoma Inwogu, and Venu Govindaraju. A temporal

bayesian model for classifying, detecting and localizing activities in video sequences.

In Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Com-

puter Society Conference on, pages 43–48. IEEE, 2012.

[20] Ofir Pele and Michael Werman. The quadratic-chi histogram distance family. Computer

Vision–ECCV 2010, pages 749–762, 2010.

[21] Jun Wan, Qiuqi Ruan, Wei Li, and Shuang Deng. One-shot learning gesture recognition

from rgb-d data using bag of features. submitted to JMLR, 2013.

BIBLIOGRAPHY 31

[22] Heng Wang, Muhammad Muneeb Ullah, Alexander Klaser, Ivan Laptev, Cordelia

Schmid, et al. Evaluation of local spatio-temporal features for action recognition. In

BMVC 2009-British Machine Vision Conference, 2009.

[23] Di Wu, Fan Zhu, and Ling Shao. One shot learning gesture recognition from rgbd

images. In Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE

Computer Society Conference on, pages 7–12. IEEE, 2012.

[24] Tian Xia, Dacheng Tao, Tao Mei, and Yongdong Zhang. Multiview spectral embed-

ding. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,

40(6):1438–1446, 2010.

	Acknowledgement
	Abstract
	Abstrakt
	Introduction
	Related Work
	Data and Problem Setting
	Preprocessing
	Depth noise removal
	Trimming

	Feature Representation and Distance Measure
	Histogram of Oriented Gradients
	Histogram of Optical Flow
	Measuring Distance of the Histograms

	Recognition
	Single Model — Dynamic Time Warping
	Multiple Models — Sliding Frame

	Results
	Discussion and Conclusions
	Algorithm 1
	Algorithm 2

