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Abstract

Baran£ok, Peter: Computational investigation of echo-state network properties [Bach-

elor Thesis], Comenius University in Bratislava, Faculty of Mathematics, Physics and

Informatics, Department of Applied Mathematics and Statistics; Supervisor: prof. Ing.

Igor Farka², PhD., Bratislava, 2014.

Reservoir computing provides a promising approach to e�cient training of recurrent

neural networks, by exploiting the computational properties of the reservoir structure.

Various approaches, ranging from suitable initialization to reservoir optimization by

training have been proposed. In this work, we take a closer look at echo state network

introduced by Jaeger. In particular we focus on short-term memory capacity introduced

by Jaeger in case of echo state networks, information storage at each neuron and

information transfer between each neuron and the rest of the network and the mutual

information between each neuron and input. Memory capacity, information storage

and information transfer have recently been investigated with respect to criticality, the

so called edge of chaos, when the network switches from a stable regime to an unstable

dynamics regime. We calculate these measures for various stochastic input data sets

and show how the statistical properties of data a�ect network properties. We also

investigate the e�ect of reservoir sparsity in this context.

Keywords: echo state network, memory capacity, edge of chaos, information

storage, information transfer



Abstrakt

Baran£ok, Peter: Výpo£tová analýza vlastností stiete s echo stavmi [Bakalárska práca],

Univerzita Komenského v Bratislave, Fakulta matematiky, fyziky a informatiky, Kat-

edra aplikovanej matematiky a ²tatistiky; ²kolite©: prof. Ing. Igor Farka², PhD.,

Bratislava, 2014.

Rezervoárové po£ítanie poskytuje s©ubný prístup pre efektívne trénovanie rekurent-

ných neurónových sietí, ktoré vyuºíva výpo£tové vlastnosti ²truktúry rezervoára. Bolo

navrhnutých viacero prístupov od vhodnej inicializácie po optimalizáciu rezervoára.

V tejto práci bliº²ie skúmame siete s echo stavmi zavedené Jaegerom. Predov²etkým

skúmame krátkodobú pamä´ovú kapacitu, ktorú pre siete s echo stavmi zaviedol Jaeger,

uchovávanie informácií u kaºdého neurónu, prenos informácií medzi jednotlivými neurónmi

a zbytkom siete a vzájomnú informáciu medzi kaºdým neurónom a vstupom. Pamä´ová

kapacita, uchovávanie informácií a prenos informácií boli nedávno skúmané v závislosti

od kritickosti, takzvanej hranice chaosu, kedy sie´ prechádza zo stabilného do nestabil-

ného dynamického reºimu. Pre rôzne sady náhodných vstupných dát po£ítame miery

pre tieto vlastnosti a skúmame ako ²tatistické vlastnosti vstupných dát ovplyv¬ujú

vlastnosti siete. Taktieº sa zaoberáme efektom riedkosti rezervoáru na tieto vlastnosti.

K©ú£ové slová: sie´ s echo stavmi, pamä´ová kapacita, hranica chaosu, uchovávanie

informácií, prenos informácií
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Introduction Introduction

Introduction

The paradigm, known as reservoir computing (RC) [12], turns out to be a computa-

tionally e�cient approach for online computing in spatiotemporal tasks, compared to

classical recurrent neural networks su�ering from complicated training methods and

slow convergence. RC utilizes appropriate initialization of the input and recurrent

part (reservoir) of the network, and only the output part (readout) of the network is

trained (in supervised way). More recently, research has also focused on various ways,

how to optimize the reservoir properties. Numerous methods for unsupervised, semi-

supervised or supervised optimization methods have been investigated, see e.g. [12]

for a comprehensive survey. In addition, it has been shown that the computational

capabilities of reservoir networks are maximized when the recurrent layer is close to

the border between a stable (ordered) and an unstable (chaotic) dynamics regime, the

so called edge of chaos, or the criticality [10]. This is interesting because it has been

recently shown that the human brain lives on the edge of chaos [9].

In RC, various quantitative measures for assessing the network information process-

ing have been proposed. One of the indicators is memory capacity (MC), introduced

and de�ned by Jaeger [6], as the ability to reconstruct the past input signal from the

immediate state of the system. It has been shown, for instance, that MC can bene�t

from enriching the reservoir dynamics by spreading the eigenvalues of the reservoir

matrix over a disc [14], or can be very robust against noise by reservoir orthogonal-

ization [18]. These results for discrete networks also served as inspiration for reservoir

optimization in continuous-time networks [4]. Other measures for assessing the net-

work information processing are active information storage (AIS) introduced in [11]

and transfer entropy (TE) introduced in [15], with which we are able to quantify the

computational capabilities of the individual units of the network.

In our work we take a closer look at MC, AIS and TE at the edge of chaos in case of

(discrete-time analog) echo state networks (ESNs) [7] and their dependence on input

data statistics and reservoir properties, because these issues have not been su�ciently

dealt with in the literature.
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1 ECHO STATE NETWORKS

1 Echo state networks

Arti�cial recurrent neural networks (RNNs) represent a large class of computational

models with architecture analogous to the biological brain modules. In an RNN com-

putational units representing neurons are interconnected by links representing synaptic

connections in the brain. These connections enable states of units representing activa-

tions of neurons to propagate through the network. Recurrent neural networks di�er

from more widely used feedforward neural networks in their topology which can include

cycles. This means that RNNs can be viewed as dynamical systems and can preserve

in states of their units information about the input history, that is, memory, which is

one of the objects of investigation of this work.

Despite their widely acknowledged capabilities, RNNs were used in nonlinear mod-

elling tasks with limits in the past. The reason for this were the shortcomings in

gradient-descent-based training methods, which aim at decreasing the training error

in each iteration. Convergence of these methods cannot be guaranteed. Also update

of a single parameter can be computationally expensive and may require many update

cycles, which leads to long training times.

In 2001, Wolfgang Maass [13] and Herbert Jaeger [5] independently introduced new

approach to RNN design and training under the name of Liquid State Machines for

binary(spiking) neurons and Echo State Networks for analog neurons, respecitvely.

Together they are known as Reservoir Computing. Like all recurrent neural networks,

echo state networks consist of several input units, recurrently connected hidden units

(also called the reservoir) and output units. Unlike RNNs, only their connections to

the output units are updated during training. Figure 1 shows the basic architecture of

ESNs.

ESNs are usually used with a discrete-time model, that is, the network dynamics

are de�ned for discrete time steps and for network with K input units, N reservoir

units and L output units can be described by the following di�erence equation:

x(t) = f
(
Win · u(t) + W · x(t− 1) + Wfb · y(t− 1)

)
, (1)

where u(t) = [u1(t), u2(t), . . . , uK(t)]T , x(t) = [x1(t), x2(t), . . . , xN(t)]T and y(t) =

[y1(t), y2(t), . . . , yL(t)]T are the real-valued vectors of activations of input, reservoir

11



1 ECHO STATE NETWORKS

Figure 1: General structure of the echo state networks. Trainable connections are indicated

by dashed arrows.

and output units at time t, respectively. Matrices Win ∈ RN×K , W ∈ RN×N and

Wfb ∈ RN×L correspond to the input, reservoir and output feedback synaptic connec-

tion weights, respectively. Vector of internal units' activation functions is denoted as

f = [f1, f2, . . . , fN ]T .

The otuput of the ESN is computed according to the following equation:

y(t) = g
(
Wout · [u(t);x(t);y(t− 1)]

)
(2)

where g = [g1, . . . , gL]T is a vector of output units' activation functions. Wout ∈

RL×(K+N+L) is a matrix of output synaptic connection weights and [u(t);x(t);y(t −

1)] is the concatenation of activations of input and reservoir units at time t and the

activations of output units at time t− 1.

Two commonly used activation functions for reservoir units, which we also consider

in our work, are hyperbolic tangent function de�ned as the ratio of hyperbolic sine and

hyperbolic cosine functions:

tanh(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x

and the unipolar sigmoid function, also referred to as logistic function:

S(x) =
1

1 + e−x
.

12



1.1 Echo states 1 ECHO STATE NETWORKS

In our work, we consider only networks with tanh activation funciotns. We also consider

only networks with one input unit and with no output feedback connections. Equation

1 for network dynamics then simpli�es to

x(t) = tanh
(
win · u(t) + W · x(t− 1)

)
(3)

for networks whose neurons a have tanh function as their activation function. Vector

of input weights is denoted win and u(t) is the single scalar input at time t.

In our work we use identity function as an activation function of the output units and

consider no connections from the input units to the output units as well as recurrent

connections amongst the output units. Equation 2 for computing network output then

becomes

y(t) = Wout · x(t) (4)

Output weights can be now computed o�ine via linear regression using least-squares

estimation:

Wout = Ỹ ·XT ·
(
X ·XT

)−1
, (5)

where X is a matrix of concatenated vectors of activations of reservoir units and Ỹ is

a matrix of concatenated vectors of corresponding desired activations of output units.

1.1 Echo states

In this part we summarize the fundamental property � the echo state property � of the

echo state networks with no output feedback connections, that is, Wfb = 0 in equation

1, that has been outlined in [5] along with condition stated in [5, 19] under which

network will have echo states.

In order to de�ne echo states, generic conditions are placed on RNNs:

• input of the network is drawn from a compact input state U ;

• network states lie in a compact set A, that is, for every input u ∈ U and x(t) ∈ A,

it holds that x(t+ 1) given by equation 1 lies in A.

Following [5], we will call these standard compactness conditions. For the networks

with no output feedback connections, echo states are de�ned as follows:

13



1.1 Echo states 1 ECHO STATE NETWORKS

De�nition 1.1 (Echo state property). Assume standard compactness conditions. As-

sume that the network has no output feedback connections. Then, the network has

echo states, if the network state x(t) is uniquely determined by any left-in�nite input

sequence ū−∞. More precisely, this means that for every input sequence . . . ,u(t −

1),u(t) ∈ U−N, for all state sequences . . . ,x(t− 1),x(t) and . . . ,x′(t− 1),x′(t) ∈ A−N,

where x(i) and x′(i) are given by (1) with Wfb = 0, it holds that x(t) = x′(t).

In other words, RNN has echo states if di�erent initial states converge. However, this

condition is hard to check in practice. Therefore, Jaeger [5] proposed a su�cient one

for network to has echo states:

Proposition 1.2. Assume a network with tanh function as activation function of

reservoir units. Let the weight matrix W satisfy σmax < 1, where σmax is its largest

singular value. Then ‖x(t + 1) − x′(t + 1)‖2 ≤ σmax · ‖x(t) − x′(t)‖2, where x(t + 1),

x′(t + 1) are given by (1) with Wfb = 0 for all inputs u(t + 1) and for all states

x(t),x′(t) ∈ [−1, 1]N . This implies echo states for all inputs u(t + 1), for all states

x(t),x′(t) ∈ [−1, 1]N .

Proof.

‖x(t+ 1)− x′(t+ 1)‖2 = ‖ tanh(Win · u(t+ 1) + W · x(t))−

− tanh(Win · u(t+ 1) + W · x′(t))‖2 ≤

≤ ‖(Win · u(t+ 1) + W · x(t))−

− (Win · u(t+ 1) + W · x′(t))‖2 =

= ‖W · x(t)−W · x′(t)‖2 =

= ‖W · (x(t)− x′(t))‖2 ≤

≤ ‖W · ‖2 · ‖x(t)− x′(t)‖2 =

= σmax · ‖x(t)− x′(t)‖2,

i.e., the distance between two states shrinks by a factor σmax < 1 at every step, regard-

less of the input, which results in echo states.

However, this condition is too restrictive and the past inputs are washed out very fast,

so it is not frequently used. In practice one usually scales random reservoir weight

14



1.2 Stability of echo state networks 1 ECHO STATE NETWORKS

matrix W so that its spectral radius is less than unity, which is necessary condition

for network to have echo states as was shown in [5]. However, this is insu�cient to

guarantee network that has echo states as was shown in [19].

In [19] authors proposed a less restrictive condition for networks with special reser-

voir weight matrices:

Proposition 1.3. The network given by equation 1 with Wfb = 0 with reservoir weight

matrix W satis�es the echo state property for any input if W is diagonally Schur stable,

that is, there exists a positive de�nite diagonal matrix P such that WT ·P ·W−P is

negative de�nite.

The proof of this proposition can be found in [19, Appendix].

The diagonal Schur stability was recently investigated in [8]. Also the following

types of matrices are proven to be diagonally Schur stable:

• matrices A = (aij) such that ρ(|A|) < 1 where |A| = (|aij|);

• triangular matrices A such that ρ(A) < 1;

• matrices A such that ρ(A) < 1 and there exists a nonsingular diagonal matrix

D such that D−1 ·A ·D is symmetric.

Therefore, the network with reservoir weight matrix which belongs to one of the above

types has echo states. In [19] authors provided an easy way to construct the reservoir

weight matrices for ENSs using the �rst of the above types of matrices:

1. Create a random matrix W = (wij) such that wij ≥ 0,∀i, j.

2. Scale W so that ρ(W) < 1.

3. Change the signs of some entries of W to get negative connections weights as

well.

1.2 Stability of echo state networks

ESNs can be viewed as input-driven dynamical system. As such, they can operate in

two regimes: stable and unstable. In a stable regime, small di�erences in the initial

15



1.2 Stability of echo state networks 1 ECHO STATE NETWORKS

conditions of two otherwise equal systems should eventually vanish. In an unstable

regime, they will persist and amplify. The common way how to determine whether a

dynamical system is in stable or unstable regime, is to look at the average sensitivity to

perturbations of the initial conditions [1, 3]. A measure for the exponential divergence

of two trajectories of a dynamical system in the state space with very small initial

separation is the (characteristic) Lyapunov exponent (LE). The rate of divergence is

dominated by the largest exponent, which is de�ned as:

λ = lim
t→∞

1

t
ln(

γt
γ0

), (6)

where γ0 is the initial distance between the perturbed and the unperturbed trajectory

(given by their state vectors), γt is the distance between the two state vectors at time

t. Stable regime occurs for λ < 0, whereas λ > 0 implies unstable regime. Hence,

a phase transition occurs at λ ≈ 0 (the critical point, or the edge of chaos). As one

can see from (6), echo states, where the distance γt between the two state vectors of

the input-driven network will eventually be close to zero and γt << γ0, can occur only

if network is in the stable dynamics regime. However, in our work we also consider

networks that are in an unstable dynamics regime in order to get better insight into

changes that occur during phase transition from stable to unstable dynamics regime.

Since λ is an asymptotic quantity, it has to be estimated for most dynamical systems.

Following [2], we adopt here the method described in [17, chap. 5.6] (see Figure 2 for

illustration of the steps):

1. Simulate two identical networks for a su�ciently large number of steps in order

to eliminate transient random initialization e�ects.

2. Add a small perturbation ε into a unit of one network in order to separate their

reservoir states. The initial distance of the state vectors of two networks is

γ0 = ‖xp(0)− xu(0)‖ = ε. We used ε = 10−12 as appropriate [17].1

3. Run the simulation one step.

4. Record the distance of the state vectors at t-th time step γt = ‖xu(t)− xp(t)‖
1The perturbation should be as small as possible, but still large enough so that its in�uence will

be measurable with limited numerical precision on a computer.
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1.2 Stability of echo state networks 1 ECHO STATE NETWORKS

5. Reset xp(t) to xu(t) + (γ0/γt)(x
p(t) − xu(t)), which keeps the two trajectories

close to each other in order to avoid numerical over�ows.

Figure 2: Illustration of the algorithm of estimating the largest Lyapunov exponent. (Illus-

tration after [20].)

As performed in [17], γt is added to a running average and steps 3 to 5 are performed

repeatedly until the average converges. We then average the logarithm of the distances

along the trajectory as λn = 〈ln(γt/γ0)〉t. For each tested reservoir with N units,

we calculate N di�erent λn values, choosing a di�erent reservoir unit to be perturbed

each time. The average of these values is then taken as a �nal estimate of LE, that

is, λ ≈ 〈λn〉n.

17



2 MEMORY CAPACITY

2 Memory capacity

Echo state networks are widely used in time series modelling and prediction tasks.

Many of these task require systems with signi�cant short-term memory spans, that is,

the output of the system y(t) should depend on the previous inputs u(t), u(t− 1), . . . .

Standard approach to achieve this is to make �nite window of previous inputs available

to the system. Since topology of ESNs contains cycles, if they are driven by external

input u(t) states of their reservoir units preserve some information about the previous

inputs.

The concept of short-term memory of network is based on network's ability to re-

trieve the past information (for various k) from the reservoir using the linear combina-

tions of internal unit activations. A quantitative measure MC of short-term memory

capacity of RNNs was de�ned in [6].

De�nition 2.1. Let u(t) ∈ U (where −∞ < t <∞ and U ⊂ R is a compact interval)

be a single-channel stationary input signal. Assume that we have a RNN, speci�ed by

its reservoir weight matrix W, its input weight (column) vector win and the unit output

functions f , g. The network receives u(t) as its input. Network dynamics are given

by equation (1) and output of network is computed according to equation (2) without

recurrent connections between output units. For a given delay k and an output unit yk

with connection weight (row) vector wout
k we consider the determination coe�cient

d[wout
k ](u(t− k), yk(t)) =

cov2(u(t− k), yk(t))

σ2(u(t)) · σ2(yk(t))
, (7)

where cov denotes covariance and σ2 variance.

1. The k-delay short-term memory capacity of the network if de�ned by

MCk = maxwout
k
d[wout

k ](u(t− k), yk(t)). (8)

2. The short-term memory capacity of the network is

MC =
∞∑
k=1

MCk. (9)

In practice, MC is approximated by using maximum delay kmax. In our work we

used 300 output units, which provided su�ciently large delays to see a signi�cant

18



2 MEMORY CAPACITY

decrease in performance for networks we used, as shown in Figure 3. To approximate

ŵout
k = argmaxwout

k
d[wout

k ](u(t − k), yk(t)) we used least-square estimation given by

equation (5). Since output units do not interact with one another, they can all be

trained at the same time.

Figure 3: Gradual decrease of k-delayed memory capacity of network with 150 reservoir

units and with 300 output units driven by a single input uniformly drawn from the interval

[−1, 1].

The determination coe�cient of two signals A and B is their squared Pearson's

correlation coe�cient ρ2 ∈ [0, 1], which represents the fraction of variance explainable in

one signal by the other. Therefore k-delay the short-term memory capacity of network

measures how much variance of the delayed input can be recovered form output units.

The main result of [6] is formulated in the following proposition:

Proposition 2.2. The memory capacity for recalling an i.i.d. input by a N-unit RNN

with linear function as activation function of output units is bounded by N .

The proof of this proposition can be found in [6].
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2.1 Interval shift 2 MEMORY CAPACITY

We experimented with ESNs driven by various types of stochastic time series and

calculated the MC as a function of LE. The networks had N = 150 reservoir units. As

in [2], we used ESNs whose reservoir weights were drawn from a normal distribution

with zero mean and variance σ2. For each σ, we generated 30 instantiations of ESN

that can slightly di�er in their LE and MC astimates. Also, two ESN instances with

the same LE can di�er in their MC. For all networks, LE was estimated as described in

Subection 1.2. Input weights were drawn uniformly from the interval [−0.1; 0.1]. We

looked at the e�ect of the following parameters on MC:

a) interval shift (given by its mean),

b) interval length,

c) sparsity of the reservoir.

For our experiments we generated 7000 data points for time series, discarded the

�rst 1000 points to get rid of transients from initialization. Another set of 1000 points

was used for calculating Wout and the remaining subset was used for calculating MC.

As our baseline for comparison we used MC pro�le for network driven by single

input uniformly drawn for interval [−1, 1]. MC gradually increases as network is set

up closer to the edge of chaos, reaches its maximum of around 40 just before the edge

of chaos and then sharply decrease to zero as network is set up in unstable regime as is

shown in Figure 4 (each symbol `+' corresponds to one instance of ESN, characterized

by its LE and MC values).

2.1 Interval shift

To investigate the e�ect of interval shift, we simulated networks driven by inputs uni-

formly drawn from intervals of the same length but with di�erent mean values. The

e�ect of shifting interval to positive values on MC is shown in Figure 5. It can be seen

that higher input values lead to lower MC. The results are symmetric with respect to

zero, so for example the range [−9,−11] leads to the same result as [9, 11]. This is due

to oddity of the tanh activation function.
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Figure 4: Pro�le of memory capacity for network driven by uniformly drawn input from

interval [−1, 1].

2.2 Interval length

Next, in order to investigate the e�ect of the interval size, we simulated networks

driven by inputs uniformly drawn from intervals all centred around zero with di�erent

lengths. Results are shown in Figure 6 which reveals that the range matters. For

smaller intervals, MC is constantly higher than for larger intervals. It is to be noted

that this e�ect can also be obtained by means of scaling the input weights.

2.3 Sparsity of the reservoir

Last but not least, we investigated the e�ect of reservoir sparsity on memory capac-

ity. MC for networks with various sparse reservoirs driven by input uniformly drawn

form interval [−1, 1] is shown in Figure 7. The sparsity values were selected from the

interval 10�100% with a step 10% to highlight the di�erences. It is observed that more
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Figure 5: E�ect of random data interval shift on memory capacity, as a function of the

Lyapunov exponent. Higher random values lead to lower MC that does not peak sharply at

the edge of chaos.

signi�cant changes appear for very sparse reservoirs. Consistently with previous �nd-

ings, the maximum MC is not a�ected by sparsity, so in all cases the critical networks

have similar memory capacity. What changes, however, is that the sparser connectivity

pushes the networks toward more stable regimes which have shorter memory span, as

is shown by shifting the points in Figure 7 to the left. Hence, sparser reservoirs tend

to lead to stable networks.

The second comparison, related to sparsity, relates to one ESN with full connectivity,

that is, with 1502 connections in the reservoir and another network with the same

number of connections but only 20% connectivity, which can be approximately achieved

with network with 335 reservoir neurons. As can be seen in Figure 8, the networks

with more neurons have higher MC at the edge of chaos.
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Figure 6: E�ect of random data interval size on memory capacity. It can be observed that

the smaller range leads to higher MC, especially at the edge of chaos.

Figure 7: Memory capacity for random data, for reservoirs with di�erent number of connec-

tions between units. Signi�cant changes in MC pro�le appear at sparse connectivity below

50%.
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Figure 8: Memory capacity for two networks with the same number of reservoir connections.
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3 Information-theoretical measures

To investigate information processing of the network as it undergoes the phase transi-

tion from stable to unstable regime, we use measures for information storage at each

neuron and information transfer between each neuron and the rest of the network and

between each neuron and input. First, we need to review basic concepts of information

theory [16] in order to introduce these measures.

The most basic concept of information theory is entropy of a random variable. The

entropy, HX , estimates the average uncertainty in a sample x of a stochastic variable

X. For a discrete random variable it is de�ned as

HX = −
∑
x

p(x) log2 p(x), (10)

where p(x) is the probability that a discrete random variable X will have a value x.

The joint entropy of two discrete random variables X and Y , HX,Y , is the generaliza-

tion of the entropy of a discrete stochastic variable to measure the average uncertainty

of their joint distribution. Namely,

HX,Y = −
∑
x

∑
y

p(x, y) log2 p(x, y), (11)

where p(x, y) is the joint probability of discrete random variables X and Y .

The conditional entropy of a discrete random variable X given Y is the average

uncertainty that remains about x when y is known:

HX|Y = −
∑
x,y

p(x, y) log2 p(x|y), (12)

where p(x|y) is the conditional probability of X = x given Y = y.

The mutual information of two discrete random variables X and Y measures the

average reduction in uncertainty about x that results from learning the value of y, or

vice versa:

IX;Y = HX −HX|Y = HY −HY |X =
∑
x,y

p(x, y) log2

p(x, y)

p(x)p(y)
(13)

The conditional mutual information between discrete random variables X and Y

given Z is the mutual information between X and Y when Z is known:

IX;Y |Z = HX|Z −HX|Y,Z =
∑
x,y,z

p(x, y, z) log2

p(x, y|z)

p(x|z)p(y|z)
(14)
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Information storage of a neuron is the amount of information in its past states

that is relevant to predicting its future states. We measure this using the quantity

called active information storage [11] which measures the amount of information that

is currently in use in computing the next state. For a neuron n it is de�ned as the

mutual information between its next state xn(t + 1) and its semi-in�nite past xk
n =

{xn(t), xn(t− 1), . . . , xn(t− k + 1)}:

An = lim
k→∞

∑
xn(t+1),xk

n

log2

p
(
xk
n, xn(t+ 1)

)
p (xk

n) p (xn(t+ 1))
(15)

In our work we only used the previous state of a neuron as to measure the amount

of information that is transferred from one time step to the next. Equation 15 for

computing the active information storage at neuron n then becomes

An =
∑

xn(t+1),xn(t)

log2

p (xn(t), xn(t+ 1))

p (xn(t)) p (xn(t+ 1))
(16)

To arrive at one value for each network we took average of An over all neurons in net-

work's reservoir. We will denote this averaged active information storage of individual

neurons as AIS.

Information transfer between two dynamical systems is measured using the quan-

tity called transfer entropy introduced in [15]. For two systems A and B the transfer

entropy from A to B is the mutual information between the state of the system A at

time t, a(t), and the state of the system B at time t + 1, b(t + 1), conditioned on the

semi-in�nite past of the system bk = {b(t), b(t− 1), . . . , b(t− k + 1)}:

TA→B = lim
k→∞

∑
bk,b(t+1),a(t)

p
(
bk, b(t+ 1), a(t)

)
log2

p
(
b(t+ 1), a(t)|bk

)
p (b(t+ 1)|bk) p (a(t)|bk)

. (17)

Information transfer between the input and the neuron n is then measured by trans-

fer entropy from input to neuron n:

Tu→n = lim
k→∞

∑
vn

p (vn) log2

p
(
xn(t+ 1), u(t+ 1)|xkn

)
p (xn(t+ 1)|xkn) p (u(t+ 1)|xkn)

, (18)

where vn = {xn(t+1),xk
n, u(t+1)}. Since inputs are drawn independently from uniform

distribution, they contain no information about states of neurons, which means that

transfer entropy form input to neuron n can be computed without past states of the
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neuron. Equation 18 then simpli�es to

Tu→n =
∑

xn(t+1),u(t+1)

p (xn(t+ 1), u(t+ 1)) log2

p (xn(t+ 1), u(t+ 1))

p (xn(t+ 1)) p (u(t+ 1))
. (19)

To arrive at one value for each network we took average of Tu→n over all neurons in

network's reservoir. We will denote this averaged transfer entropy of individual neurons

as TEu.

Information transfer between neurons of the rest of the reservoir (we will denote

their activations x−n) and the neuron n is measured by transfer entropy from the rest

of the reservoir to neuron n:

T−n→n = lim
k→∞

∑
vn

p (vn) log2

p
(
xn(t+ 1),x−n(t)|xk

n

)
p (xn(t+ 1)|xk

n) p (x−n(t)|xk
n)
, (20)

where vn = {xn(t + 1),xk
n,x−n(t)}. As for measuring active information storage, we

only used the previous state of neuron n. Equation 20 then becomes

T−n→n =
∑
vn

p (vn) log2

p (xn(t+ 1),x−n(t)|xn(t))

p (xn(t+ 1)|xn(t)) p (x−n(t)|xn(t))
, (21)

where vn = {xn(t+ 1), xn(t),x−n(t)}.

Since states of neurons of the reservoir of the network are given by equation 3, we

estimated transfer entropy form the rest of the reservoir to neuron n as follows:

T−n→n ≈ Hx − An − Tu→n, (22)

where Hx is entropy (given by equation 10) of activations of neuron, in order to avoid

estimating high dimensional probabilities which tend to require too many data points

for good estimation. To arrive at one value for each network we took average of ap-

proximated T−n→n over all neurons in network's reservoir. We will denote this averaged

transfer entropy of individual neurons as TEy. We also averaged Hx over all neurons in

network's reservoir to measure average uncertainty about states of neurons of network.

Since these measures are for discrete variables and both neuron activation and input

are continuous variables, we quantized the interval [−1, 1] of possible neuron states and

intervals from which inputs were drawn into smaller intervals of length 0.05. We then

computed empirical probabilities that neuron activation falls into concrete interval.

Analogously, we computed empirical probabilities that input falls into concrete interval.
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For each network simulated in Section 2 we computed AIS, TEu, Hx and TEy in

order to investigate information processing of networks driven by various time�series.

As in Section 2, we used the measures for network driven by input uniformly drawn

form the interval [−1, 1] as our baseline for comparisons. The pro�les for AIS, TEu,

Hx and TEy are shown in Figure 9. Active information storage is very low for networks

Figure 9: Pro�le of AIS (top left), TEu (top right), Hx (bottom left) and TEy (bottom

right) for network driven by uniformly drawn input from interval [−1, 1].

in stable regime. There is a sharp increase up to a value 1.4 around the edge of chaos

followed by a sharp decrease to values around 0.3. Then as the network is set up farther

in the unstable regime, AIS slowly decreases. Transfer entropy gradually decreases as

network is set up closer to the edge of chaos. It reaches its minimum of around 0.1

just before the edge of chaos. For networks in unstable regime it stays slightly elevated

around 0.25. Both Hx and TEy shows sharp increase at the edge of chaos followed by

gradual decrease in unstable regime.
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3.1 Interval shift

Figures 10, 11, 12 and 13 show e�ect of interval shift on AIS, TEu, Hx and TEy,

respectively. It can be seen that higher input values lead to smaller values of AIS,

TEu, Hx and TEy. Again, results are symmetric with respect to zero.

Figure 10: E�ect of random data interval shift on information storage. Higher random

values lead to lower AIS.

Figure 11: E�ect of random data interval shift on information transfer between input and

individual neurons. Higher random values lead to lower TEu.

This provides the explanation for the decrease in memory capacity for higher input

values. Concept of memory capacity is based on network's ability to reconstruct the

past inputs given current states of neurons in reservoir which is harder for higher input

values because less information is passed from states of neurons at time t to states at

time t+ 1.
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Figure 12: E�ect of random data interval shift on entropy of states of neurons. Higher

random values lead to lower Hx.

Figure 13: E�ect of random data interval shift on information transfer between individual

neurons and the rest of the reservoir. Higher random values lead to lower TEy.

3.2 Interval length

The e�ects of interval size for zero-mean input data on AIS, TEu, Hx and TEy are

shown in Figures 14, 15, 16 and 17, respectively. It is observed that longer intervals

lead to smaller values of AIS, larger values of TEu for networks in both stable and

an unstable regime. Values of Hx and TEy are higher for networks in a stable regime

and remain the same for networks close to the edge of chaos and for networks in an

unstable regime.

Although information transfer between neurons in reservoir is higher, due to higher

values of TEu for longer intervals, there is less information about past activations of

neurons in states of neurons which can cause the decrease in memory capacity.
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Figure 14: E�ect of random data interval size on information storage. Smaller ranges lead

to higher values of AIS at the edge of chaos.

Figure 15: E�ect of random data interval size on information transfer between input and

individual neurons. Larger intervals lead to higher values of TEu.

3.3 Sparsity of the reservoir

Values of AIS, TEu, Hx and TEy for networks with various sparse reservoirs driven by

input uniformly drawn from interval [−1, 1] are shown in Figures 18, 19, 20 and 21,

respectively. As for values of memory capacity, they remain approximately the same

for reservoirs with di�erent number of connections.
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Figure 16: E�ect of random data interval size on entropy of states of neurons. Larger

intervals lead to higher Hx in stable regime.

Figure 17: E�ect of random data interval size on information transfer between individual

neurons and the rest of the reservoir. Longer intervals lead to higher TEy in stable regime.

Figure 18: Information storage for reservoirs with di�erent number of connections between

units.
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Figure 19: Information transfer between input and individual neurons for reservoirs with

di�erent number of connections between units.

Figure 20: Entropy of activations of neurons for reservoirs with di�erent number of connec-

tions between units.

Figure 21: Information transfer between individual neurons and the rest of the reservoir for

reservoirs with di�erent number of connections between units.

33



Conclusion Conclusion

Conclusion

In this thesis we investigated several properties of echo state networks (with tanh activa-

tion function) at the edge of chaos. Although, both memory capacity and information�

theoretic measures have been recently investigated with respect to criticality of net-

works, there is no comprehensive study of their dependence on the properties of input

signal.

First we focused on their key feature: memory. Thanks to recurrent connections

ESNs are able to store some information about past inputs in current states of reser-

voir neurons. We investigated dependence of quantitative measure MC on input data

statistics and reservoir properties. We found out that for uniformly distributed input

data, the shift of interval form whom inputs are drawn a�ects the memory capacity,

such that higher absolute input values lead to smaller memory capacity. Similarly, the

larger interval range seems to decrease memory capacity at the edge of chaos. Last but

not least, we investigate dependence of memory capacity on reservoir sparsity. It was

observed, that sparser reservoirs shift network towards more stable regimes (with neg-

ative Lyapunov exponents) which reduces their memory capacity. However, memory

capacity of networks at the edge of chaos remains approximately the same for reservoirs

with di�erent number of connections.

Then we investigated dependence of information-theoretic measures, namely en-

tropy, information storage of neurons and information transfer between individual neu-

rons and input and between individual neurons and the rest of the reservoir, on input

data statistics and reservoir properties. We found out that higher absolute input values

lead to smaller values of all those measures. Smaller interval range increase information

storage at the edge of chaos but decreases entropy and information transfer between

individual neurons and the rest of the reservoir in stable regime and decreases infor-

mation transfer between input and individual neurons. As for the memory capacity,

reservoir sparsity has no e�ect on the measures. Using these measures we were also

able to gain a little insight into why memory capacity is e�ected by various inputs.
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