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COMPUTATIONAL STUDIES OF ANISOTROPIC DIFFUSE INTERFACE
MODEL OF MICROSTRUCTURE FORMATION

IN SOLIDIFICATION

MICHAL BENEŠ

Abstract. The growth of microstructure non-convex patterns is studied by means of the modi-
fied anisotropic phase-field model. The numerical algorithm is designed using the finite-difference
spatial discretisation in the method of lines. Results of numerical analysis of the model are based
on the a-priori estimates, the compactness and monotonicity arguments. As a quantitative re-
sult, we present the convergence studies of the dendritic growth when the mesh size and the

diffuse parameter tend to zero.

1. Introduction

The aim of the article is to present numerical convergence of non-convex patterns for the sys-
tem of phase-field equations endowed by anisotropy. The equations represent a mathematical
model of solidification of pure crystallic substances at microscale.

The mentioned physical phenomenon is accompanied by presence of an interface between
phases which can move in space and is determined intrinsicly by the state of the physical
system, its boundary and initial data.
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Among various approaches to the mathematical treatment of the problem (e.g. see [22]),
the diffuse-interface model yields a well controlled smooth approximation of the characteristic
function of phase as a part of the solution. This fact originally observed in the form of a wave-
like solution of reaction-diffusion systems (see [1], [21]) leads to the formulation of a model
of solidification with additional consequences in understanding physics of phase transitions
([19], [20]).

The model equations consist of the heat equation with nearly singular heat source coupled
to a semilinear or quasilinear parabolic equation for the order parameter known as the Allen-
Cahn equation or equation of phase. The equations in various setting were studied in, e.g.
[13], [14], and applied in simulation of physical phenomena ([23], [2], [7]).

The application of models based on the phase-field theory rose several quantitative ques-
tions concerning relation to the sharp-interface analogue ([7]). Problems of choice of the
small parameter versus mesh size, and problems with interface stability lead to various mod-
ifications mainly in the Allen-Cahn equation (see [12], [15], [3], [5]).

Quantitative comparison, performed especially in case of curve motion (or hypersurface
motion) driven by mean curvature (see [11]) showed a satisfactory agreement of numerical
computations with the analytical solution (where it was possible) or with results obtained
by numerical solution of other models, and rised a question about how the anisotropy can be
incorporated into the Allen-Cahn equation without loosing a possibility of weak formulation
which requires a second-order space differential operator in the divergence form (see [4]).
This has been done e.g. in [8] for the case of mean-curvature flow, and in [4] for the full
phase-field model. The viscosity solution concept allowed to treat even a fully anisotropic
(i.e. the case when the kinetic term is also direction-dependent) Allen-Cahn equation not
coupled to the heat equation – [16].
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The paper extends the scope of [4], where the anisotropic model has been presented in
the following form:

∂u

∂t
= ∇2u + Lχ′(p)

∂p

∂t
,

ξ
∂p

∂t
= ξ∇ · T 0(∇p) +

1
ξ
f0(p) + F (u)ξΦ0(∇p),

(1.1)

with initial conditions
u|t=0 = u0 , p|t=0 = p0,

and with boundary conditions of Dirichlet type

u|∂Ω = 0 , p|∂Ω = 0,

for simplicity. Here, ξ > 0 is the “small” parameter (thickness of the interface), and f0 the
derivative of double-well potential. The coupling function F (u) is bounded and continuous,
or even Lipschitz-continuous. The anisotropy is included using the monotone operator T 0

converting the gradient (see below).
We consider f0(p) = ap(1 − p)(p − 1

2 ) with a > 0. The enthalpy is given by H(u) =
u − Lχ(p), where the coupling function χ is monotone with bounded, Lipschitz-continuous
derivative: χ(0) = 0, χ(0.5) = 0.5, χ(1) = 1, supp(χ′) ⊂ 〈0, 1〉. For the sake of simplicity, Ω is
rectangle. Obviously, the extension to higher dimensions, and to other boundary conditions
is possible. Similarly, the forcing term F (u)ξΦ0(∇p) can be modified into F (u)ξΦ̃0(∇p)
where Φ̃0 is another anisotropy – see [10].

The analysis presented in this article has been motivated by numerical studies obtained
by the model both for the case of curve dynamics in the plane (see [8], and [10]), and for the
case of microstructure growth in solidification (see [4]). The model works with an anisotropy
rigorously implemented into the equations. Finally, the model gives reasonable results even
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in case of non-convex anisotropies, when the mentioned theory is not applied. Our aim is to
present numerical convergence results for the onset of dendritic growth.

2. Mathematical aspects of the model

The anisotropy is incorporated into the phase-field model according to the approach devel-
oped by the author in [4] and [8], which also is influenced by the literature cited therein.
Main idea is in replacing isotropic Euclidean norm in R2 by another norm exhibiting the
desired anisotropy, and in replacing derivatives in a corresponding way.

For this purpose, we introduce a nonnegative function Φ0 : R2 → R+
0 which is smooth,

strictly convex, C2(Rn \ {0}) and satisfies:

Φ0(tη) = |t|Φ0(η), t ∈ R, η ∈ R2,(2.1)

λ|η| ≤ Φ0(η) ≤ Λ|η|,(2.2)

where λ, Λ > 0. The function satisfies the following relation

Φ0(η) = Φ0
η(η) · η, η ∈ R2,

where the index η denotes derivative of Φ0 (i.e., Φ0
η = (∂η1Φ

0, ∂η2Φ
0)). We define the map

T 0 : R2 → R2 as

T 0(η) := Φ0(η)Φ0
η(η) for η 6= 0,

T 0(0) := 0.

The Φ0-normal vector (the Cahn-Hoffmann vector – see [24]) and velocity of a level set

Γ(t) = {x ∈ R2 | P (t, x) = const.},

http://www.river-valley.com
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given by a suitable field P depending on time and space are

nΓ,Φ = −T 0(∇P )
Φ0(∇P )

, vΓ,Φ =
∂tP

Φ0(∇P )
.

The anisotropic curvature is given by the formula

κΓ,Φ = div(nΓ,Φ).

In [8], the law
vΓ,Φ = −κΓ,Φ + F,

has been studied by the phase-field method, in particular by the Allen-Cahn equation as in
(1.1).

Example. In case of R2, we may use the polar coordinates of a vector η ∈ R2 denoted by
% and θ to define

Φ0(η) = %f(θ),

for a suitable 2π-periodic function f (we choose f(θ) = 1 + A cos(m(θ − θ0)) where A is the
anisotropy strength and m ∈ N0 the anisotropy type). Φ0 therefore belongs to C1(R2) and
C2(R2 \ {0}) provided Ψ belongs to C2(〈0, 2π〉per). Figure 2.1 depicts the Frank diagram for
an example of f – see [17] for definitions. Note that in case of m being odd, the rule (2.1)
does not hold, but Φ0 still can be used in the model.

The above given setting allows to study the model (1.1) by the monotonicity and com-
pactness methods.

We denote:

(u, v) =
∫

Ω

uv dx for u, v ∈ L2(Ω),

http://www.river-valley.com
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the usual L2-scalar product. We define the weak solution of (1.1) as the mapping u, p :
(0, T ) → H1

0(Ω) satisfying a.e. in (0, T ) and for each v, q ∈ H1
0(Ω) the equalities

d

dt
(u− Lχ(p), v) + (∇u,∇v) = 0,(2.3)

u(0) = u0,

ξ2 d

dt
(p, q) + ξ2(T 0(∇p),∇q) = (f0(p), q) + ξ2(F (u)Φ0(∇p), q),(2.4)

p(0) = p0,

Consider a strongly monotone operator T 0 (strictly convex anisotropy). We then have a
basic theorem (see [9]):

Figure 2.1. The Frank diagram of anisotropy.
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Theorem 2.1. If u0, p0 ∈ H1
0(Ω) and ξ remains fixed, then there is a unique solution

uξ, pξ ∈ L2(0, T ; H1
0(Ω)) of the weak problem (2.3)–(2.4), for which

∂uξ

∂t
,
∂pξ

∂t
∈ L2(0, T ; L2(Ω)).

The matched asymptotics as used e.g. in [6] gives the recovery of the Stefan condition
and the Gibbs-Thomson law at the phase interface (see also [9]):

Theorem 2.2. On the manifold Γ0, the Stefan condition for the absolute terms in the
outer expansion of temperature holds:

|∇r|2
(

∂u0

∂r

∣∣∣∣
s

− ∂u0

∂r

∣∣∣∣
l

)
= LvΓ,Φ,0,

and the Gibbs-Thomson law for the absolute term in the inner expansion of the phase function
holds: ∫

R

(
−κΓ,Φ,0

∂p̄0

∂z
− F (ū0)

∣∣∣∣∂p̄0

∂z

∣∣∣∣− ∂p̄0

∂z
vΓ,Φ,0

)
∂p̄0

∂z
d z = 0.

Remark. Concerning the statement of Theorem 2.2, the solution and other quantities of
(1.1) are formally expanded into the series in powers of ξ far from Γh:

u(t, x; ξ) = u0(t, x) + u1(t, x)ξ + u2(t, x)ξ2 +O(ξ3),

p(t, x; ξ) = p0(t, x) + p1(t, x)ξ + p2(t, x)ξ2 +O(ξ3),

and near Γh with the change to radial-tangential coordinates r, s and stretching r = ξz

ū(z, s, t; ξ) = ū0(z, s, t) + ū1(z, s, t)ξ + ū2(z, s, t)ξ2 +O(ξ3),

p̄(z, s, t; ξ) = p̄0(z, s, t) + p̄1(z, s, t)ξ + p̄2(z, s, t)ξ2 +O(ξ3).

http://www.river-valley.com
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3. Numerical scheme

We solve the equations (1.1) numerically by means of the tools used in [11], [6]. For this
purpose, we set Ω = (0, L1)× (0, L2), denote Hh the space of grid functions and denote

h1 = L1
N1

, h2 =
L2

N2
,

ωh = {[ih1, jh2] | i = 1, . . . , N1 − 1; j = 1, . . . , N2 − 1},

ω̄h = {[ih1, jh2] | i = 0, . . . , N1; j = 0, . . . , N2},

xij = [x1
ij , x

2
ij ], uij = u(xij),

ux̄1,ij = uij−ui−1,j

h1
, ux1,ij =

ui+1,j − uij

h1
,

ux̄2,ij = uij−ui,j−1
h2

, ux2,ij =
ui,j+1 − uij

h2

ux̄1x1,ij =
1
h2

1

(ui+1,j − 2uij + ui−1,j) ,

and

∇̄hu = [ux̄1 , ux̄2 ], ∇hu = [ux1 , ux2 ], ∆hu = ux̄1x1 + ux̄2x2 .

http://www.river-valley.com


Home Page

Title Page

Contents

JJ II

J I

Page 9 of 20

Go Back

Full Screen

Close

Quit

We propose a semi-discrete scheme for the problem (1.1) based on spatial discretisation by
finite differences as follows

u̇h = ∆huh + Lχ′(ph)ṗh,(3.1)

uh |γh
= 0, uh(0) = Phu0,

ξ2ṗh = ξ2∇h · T 0(∇̄hph) + f0(ph) + ξ2Φ0(∇̄hph)F (uh) on ωh,(3.2)

ph |γh
= 0, ph(0) = Php0,

where the solution is a map uh, ph :< 0, T >→ Hh, Ph restricts the initial condition u0 and
u0 on the grid ω̄h. As in [6], [8] and related work, the semi-discrete scheme is solved by
the Mersn variant of the 4-th order Runge-Kutta method. We mention, that the scheme
(3.1)–(3.2) is convergent (see [9]).

Theorem 3.1. If uini, pini ∈ H2(Ω)∩H1
0(Ω), then the solution of the semi-discrete scheme

(3.1)–(3.2) for the method of lines converges in L2(0, T ; L2(Ω)) to the weak solution of (2.3)–
(2.4).

4. Computational results

We have performed a series of computations by using (3.1)–(3.2) to show that it yields a good
approximation of the original problem and to investigate the solution itself. In this text, we
show the quantitative solution analysis for the dendritic growth. We measure the difference

http://www.river-valley.com
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between two computations by means of the following norms:

ErrorL∞−L2 = max
k=0,··· ,NT

(∫
Ω

|Ihuh(k∆t)− Ih̃uh̃(k∆t)|2 dx

) 1
2

,

ErrorL∞−L∞ = max
k=0,··· ,NT

max
x∈Ω

|Ihuh(k∆t)− Ih̃uh̃(k∆t)|,

ErrorL∞−H = max
k=0,··· ,NT

%∗(Γh(k∆t),Γh̃(k∆t)),

where Ih is the piece-wise linear interpolation operator, k is the index of the output time slice
considered in this measurement varying from 0 to NT , %∗ the Hausdorff distance between
compact sets. The level set is

Γh(t) =
{

x ∈ Ω | Ih(ph(t))(x) =
1
2

}
.

We evaluate the experimental orders of convergence defined as follows

Errorh

Errorh̃

=
(

h + ξ

h̃ + ξ̃

)EOCh

,
ErrorDoF

Error
D̃oF

=
(

DoF

D̃oF

)EOCDoF

.

We set F (u) = β(u − 1), β > 0 with a suitable cut-off, rcrit is the diameter of the initial
crystallization seed. In the computations, the parameter ∆t means the period of the data
output, NT number of such outputs, Nτ total number of time steps performed by the adaptive
time solver, tol tolerance for the adaptive Mersn time stepping (see also [18]) and DoF total
number of degrees of freedom, DoF = Nτ × (N1 − 1)× (N2 − 1).

Example 1. It shows the growing dendrite with imposed weak (convex) anisotropy. We
compare the solution on four grids with the solution on a very fine mesh by measuring their

http://www.river-valley.com
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difference. The problem setting and the finest-grid parameters are indicated in Table 4.1.
The shape of the solution is presented in Figure 4.1, the level-set dynamics in Figure 4.2.
The measured differences are summarized in Table 4.2 and the EOC’s in Tables 4.3 and 4.4.
The CPU time is given by the system used in this case (LINUX RedHat 8.0 on the Pentium
IV, 2.66 GHz, 1GB RAM, the code compiled by the Intel Fortran Compiler 8.0).

L β m A ξ Ω rcrit Θ0

1.0 200.0 4 0.06300 0.00400 (0.3)× (0.3) 0.05 1.0000

∆t NT Nτ tol mesh DoF CPU

0.015 10 33226 0.001 0.00375 242423023252 708520.60

Table 4.1. Table of the finest experiment parameters for Example 1.

Mesh L∞ − L2 L∞ − L∞ L∞ −H CPU

h ξ NT DoF error of u error of u error of Γh

0.0075000 0.0080 8819 2807987238 0.1562571 0.3834383 0.0956174 45461.60
0.0060000 0.0070 13287 6616952574 0.1185770 0.3230643 0.0715796 106320.00
0.0050000 0.0060 18734 13443555868 0.0789952 0.2471442 0.0470672 220544.09
0.0042857 0.0050 25320 24742754640 0.0393572 0.1460856 0.0231805 407235.59

Table 4.2. Table of numerical parameters and convergence errors for Example 1.

http://www.river-valley.com
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Mesh EOCh for EOCh for EOCh for
h ξ NT DoF L∞ − L2 of u L∞ − L∞ of u level sets

0.0075000 0.0080 10 2807987238 0.0000000 0.0000000 0.0000000
0.0060000 0.0070 10 6616952574 1.5688162 0.9740567 1.6461653
0.0050000 0.0060 10 13443555868 2.4313986 1.6035485 2.5095652
0.0042857 0.0050 10 24742754640 4.1123587 3.1034392 4.1805747

Table 4.3. Table of EOCh coefficients (Error versus h + ξ) for Example 1.

Mesh EOCDoF for EOCDoF for EOCDoF for
h ξ NT DoF L∞ − L2 of u L∞ − L∞ of u level sets

0.0075000 0.0080 10 2807987238 0.0000000 0.0000000 0.0000000
0.0060000 0.0070 10 6616952574 0.3219211 0.1998764 0.3377931
0.0050000 0.0060 10 13443555868 0.5729937 0.3778990 0.5914148
0.0042857 0.0050 10 24742754640 1.1420833 0.8618864 1.1610282

Table 4.4. Table of EOCDoF coefficients (Error versus DoF ) for Example 1.

http://www.river-valley.com
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Temperature field Phase field

Figure 4.1. Shape of the solution for Example 1.
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Figure 4.2. Evolution of the level set 1
2

for Example 1.
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Example 2. It shows the growing dendrite with imposed stronger (non-convex) aniso-
tropy. We compare the solution on four grids with the solution on a very fine mesh by
measuring their difference. The problem setting and the finest-grid parameters are indicated
in Table 4.5. The shape of the solution is presented in Figure 4.3, the level-set dynamics in
Figure 4.4. The measured differences are summarized in Table 4.6 and the EOC’s in Tables
4.7 and 4.8. The CPU time is given by the system used in this case (HP-UX 11.0 on the
PARISC system B2000, 700 MHz, 256 MB RAM, the code compiled by the HP Fortran
Compiler.)

L β m A ξ Ω rcrit Θ0

1.0 200.0 4 0.09000 0.00400 (0.3)× (0.3) 0.05 −1.0000

∆t NT Nτ tol mesh DoF CPU

0.015 10 36230 0.001 0.00375 46258536460 1474862.00

Table 4.5. Table of the finest experiment parameters for Example 2.

Mesh L∞ − L2 L∞ − L∞ L∞ −H CPU

h ξ NT DoF error of u error of u error of Γh

0.0075000 0.0080 10 3008580498 0.1591132 0.4058937 0.0949960 65341.21
0.0060000 0.0070 10 7129396632 0.1227783 0.3541477 0.0727318 163706.90
0.0050000 0.0060 10 14587413456 0.0832208 0.2759567 0.0484809 349094.09
0.0042857 0.0050 10 26962957584 0.0421468 0.1717665 0.0244523 689769.00

Table 4.6. Table of numerical parameters and convergence errors for Example 2.

http://www.river-valley.com
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Mesh EOCh for EOCh for EOCh for
h ξ NT DoF L∞ − L2 of u L∞ − L∞ of u level sets

0.0075000 0.0080 10 3008580498 0.0000000 0.0000000 0.0000000
0.0060000 0.0070 10 7129396632 1.4738454 0.7753530 1.5183069
0.0050000 0.0060 10 14587413456 2.3278870 1.4933487 2.4280040
0.0042857 0.0050 10 26962957584 4.0157305 2.7984488 4.0399686

Table 4.7. Table of EOCh coefficients (Error versus h + ξ) for Example 2.

Mesh EOCDoF for EOCDoF for EOCDoF for
h ξ NT DoF L∞ − L2 of u L∞ − L∞ of u level sets

0.0075000 0.0080 10 3008580498 0.0000000 0.0000000 0.0000000
0.0060000 0.0070 10 7129396632 0.3004731 0.1580713 0.3095375
0.0050000 0.0060 10 14587413456 0.5431841 0.3484547 0.5665451
0.0042857 0.0050 10 26962957584 1.1074919 0.7717797 1.1141765

Table 4.8. Table of EOCDoF coefficients (Error versus DoF ) for Example 2.

http://www.river-valley.com
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Temperature field Phase field

Figure 4.3. Shape of the solution for Example 2.
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Figure 4.4. Evolution of the level set 1
2

for Example 2.
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10. Beneš M., Hilhorst D., and Weidenfeld R., Interface dynamics of an anisotropic Allen-Cahn equation.

In Nonlocal elliptic and parabolic problems, Institute of Mathematics, Polish Academy of Sciences, 66,

pp. 39–45 eds. P. Biler, G. Karch and T. Nadzieja, ISSN 0137-6934, Warsaw, 2004.
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