Title Page

Contents

Page 1 of 12

Go Back

Full Screen

Close

Quit

BLOW UP VERSUS GLOBAL BOUNDEDNESS OF SOLUTIONS OF REACTION DIFFUSION EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS*

JOSE M. ARRIETA[†] AND ANIBAL RODRIGUEZ-BERNAL[‡]

Abstract. In this paper we analyze the behavior of solutions of reaction-diffusion equations with nonlinear boundary conditions of the type (1.1). We show that if $f(x, u) = -\beta_0 u^p$ and $g(x, u) = u^q$ in a neighborhood of a point $x_0 \in \Gamma_N$, then

- i) for the case q > 1, if p + 1 < 2q or if p + 1 = 2q and $\beta_0 < q$, then blow up in finite time at x_0 occurs.
- ii) for the case p > 1 if p + 1 > 2q or if p + 1 = 2q and $\beta_0 > q$ then any solution is globally bounded around the point x_0 .

Key words. reaction-diffusion, nonlinear boundary conditions, blow-up, boundedness

1. Introduction. We consider the following reaction diffusion equation with nonlinear boundary conditions in a smooth C^2 domain $\Omega \subset \mathbb{R}^N$,

$$\begin{cases} u_t - \Delta u = f(x, u) & \text{in } \Omega \\ u = 0 & \text{on } \Gamma_D \\ \frac{\partial u}{\partial \vec{n}} = g(x, u) & \text{on } \Gamma_N \\ u(0, x) = u_0(x) \ge 0 & \text{in } \Omega \end{cases}$$

$$(1.1)$$

^{*}Partially supported by Project BFM2003-03810

[†]Depto. de Matemática Aplicada, Universidad Complutense de Madrid, 28040 Madrid, Spain (arrieta@mat.ucm.es)

[‡]Depto. de Matemática Aplicada, Universidad Complutense de Madrid, 28040 Madrid, Spain (arober@mat.ucm.es)

Title Page

Contents

Page 2 of 12

Go Back

Full Screen

Close

Quit

where $\Gamma = \partial \Omega = \Gamma_D \cup \Gamma_N$ is a regular disjoint partition of the boundary of Ω and f and g are suitably smooth functions of (x, u). The subindices D and N on Γ indicate the part of the boundary with Dirichlet and Neumann type condition, respectively. We are interested in nonnegative solutions of (1.1) so we will assume

$$f(x,0) \ge 0$$
, for all $x \in \Omega$, $g(x,0) \ge 0$ for all $x \in \Gamma_N$

We want to obtain local conditions on the nonlinearities f and g, which will be imposed in a neighborhood of a point $x_0 \in \Gamma_N$, that guarantee that either i) there exists initial conditions with support in a neighborhood of x_0 such that the "proper solution" starting at this initial condition blows up at x_0 or that ii) for all initial data $u_0 \in L^{\infty}(\Omega)$ the "proper solution" starting at u_0 is bounded in a neighborhood of x_0 for all times $t \geq 0$. We refer to [4, 8, 9] for the concept of proper solution.

Notice that if f(x,u) behaves like u^p locally around certain point $z \in \Omega$ and p > 1, then, by comparison with the Dirichlet problem in a neighborhood of z and using that the superlinear nonlinearity u^p is explosive we get that, regardless of the behavior of g, we have initial conditions that blow-up in finite time. On the other hand, if f(x,u) behaves like $-u^p$ and g(x,u) behaves like $-u^q$ throughout the whole domain, then both nonlinearities are dissipative and we have global exitence and boundedness of solutions. The most interesting case is when f(x,u) is a dissipative nonlinearity of the form $-\beta_0 u^p$ and g(x,u) is an explosive nonlinearity of the form u^q . This two mechanisms are in competition and it seems clear that the relative size of p, q and p0 will determine the relative strength of both mechanisms.

Actually, in the pioneer work of [6] they treated the one dimensional case, say $\Omega=(0,1)$, with $f(x,u)=-\beta_0 u^p$, $g(x,u)=u^q$ and $\Gamma_D=\emptyset$ and they already obtained that the critical relations are p+1 vs. 2q and if p+1=2q then β_0 vs. q, in the sense that if p+1<2q or p+1=2q and $\beta_0< q$ then blow-up is produced and if p+1>2q or p+1=2q and $\beta_0>q$ then the solutions are globally bounded. They also treated the very delicate case where p+1=2q and $\beta_0=q$. They actually showed that the solutions were defined for all timet t>0 but the phenomenon of infinite time blow-up was present.

Later on, in [13, 14], they treated the case of arbitrary dimension and obtained that if

Title Page

Contents

Page 3 of 12

Go Back

Full Screen

Close

Quit

 $\Gamma_D = \emptyset$ and the nonlinearities f and g that behave for u large as $f \sim -\beta_0 u^p$ and $g \sim u^q$, then blow-up is produced if p+1 < 2q or if p+1 = 2q and $\beta_0 < q$. Also, they showed that if p+1 > 2q or if p+1 = 2q and β_0 is large enough, then the solutions are globally bounded. Also, in [1] they studied the porous medium equation in any dimension and as a particular case they considered the equation (1.1) with $\Gamma_D = \emptyset$, $f(x,u) = -\beta_0 u^p$ and $g(x,u) = u^q$. They showed that if p+1 < 2q or p+1 = 2q and $\beta_0 < q$ then blow-up is produced and if p+1 > 2q of p+1 = 2q and $\beta_0 > q$ then the solutions are globally bounded.

With all these works it is clear that the critical relations that mark the line between blow-up and boundedness are given by p+1 vs. 2q and in case p+1=2q, β_0 vs. q. These works have a common characteristic and it is that the nonlinear boundary condition is imposed in the whole domain, $\Gamma_D=\emptyset$ and the construction of sub or super solutions is done for the whole domain. Hence, the balances between f and g need to hold throughout the domain to obtain the result and both, the blow-up and the boundedness result are global in space. In particular, none of them can treat the case as in the equation (4.1) where p+1=2q but in some part of the boundary the relation is $\beta_0>q$ and in other part the relation is $\beta_0< q$ or even when $\Gamma_D\neq\emptyset$.

In this paper we will prove that both mechanisms (dissipativeness vs. blow-up) compete at a local level. Actually, we will show that if $f(x,u) = -\beta_0 u^p$ and $g(x,u) = u^q$ in a neighborhood of a point $x_0 \in \Gamma_N$, then

- i) for the case q > 1, if p + 1 < 2q or if p + 1 = 2q and $\beta_0 < q$, then blow up in finite time at x_0 occurs, see Section 2.
- ii) for the case p > 1 if p + 1 > 2q or if p + 1 = 2q and $\beta_0 > q$ then any solution is globally bounded around the point x_0 , see Section 3.

In Section 2 we analyze the first case and we refer to [3] for details. In Section 3 we consider the case ii) and we announce the results of [2]. In Section 4 we consider several important remarks and comments.

2. Localization of blow-up. In terms of characterizing the sizes of p, q and β_0 that will produce blow-up we have:

Title Page

Contents

Page 4 of 12

Go Back

Full Screen

Close

Quit

PROPOSITION 2.1. Let $x_0 \in \Gamma_N$, $p \ge 1$, q > 1 and let $R_0 > 0$, $M_0 > 0$ such that

$$f(x,u) \ge -\beta_0 u^p, \qquad x \in B(x_0, R_0) \cap \Omega, \qquad u \ge M_0,$$

$$g(x,u) \ge u^q, \qquad x \in B(x_0, R_0) \cap \partial\Omega, \qquad u \ge M_0.$$
(2.1)

If one of the two following conditions holds

- i) p+1 < 2q or
- *ii)* $p + 1 = 2q \text{ and } \beta_0 < q$,

then, there exists an initial condition $0 \le u_0 \in L^{\infty}(\Omega)$ with support in a neighborhood of x_0 such that the proper minimal solution of (1.1) starting at u_0 blows up in finite time at the point x_0 .

Proof. Let us provide a proof of ii). Actually this case is more critical than i).

In order to simplify, consider that $x_0=0\in\Gamma_N$ and that the outward normal vector at $x_0=0$ is given by $\vec{n}(0)=(0,\ldots,0,-1)$. Let $R,\ \delta>0$ be small numbers and $y_R=x_0+R\vec{n}(x_0)=(0,\ldots,0,-R)$ with the property that $B(y_R,R)\cap\bar{\Omega}=\emptyset$ and that $B(y_R,R+\delta)\subset B(0,R_0/2)$. The fact that the domain has a C^2 boundary, guarantees that this construction can be done. See Fig. 2.1.

We will construct a function z(t,x) which will be radially symmetric around y_R , increasing in time and that it will be a subsolution of (1.1) locally around the point x_0 . For this, define for $a \ge 1$, the function $\psi_a(t)$ as the solution of the problem

$$\begin{cases}
\psi' = \psi^q, \\
\psi(0) = a.
\end{cases}$$
(2.2)

Solving this equation, we get that $\psi_a(t) = \frac{E}{(T_a - t)^{\frac{1}{q-1}}}$ for $-\infty < t < T_a$ with E =

$$\frac{1}{(q-1)^{\frac{1}{q-1}}}$$
 and $T_a = \frac{1}{(q-1)a^{q-1}}$. Observe that, since $a \ge 1$ and $q > 1$, $T_a \le 1/(q-1)$ and

that $T_a \to 0$ as $a \to +\infty$. Notice also that $\psi_a(t) \leq E/(-t)^{1/(q-1)}$ for any t < 0 and any $a \geq 1$.

Title Page

Contents

Page 5 of 12

Go Back

Full Screen

Close

Quit

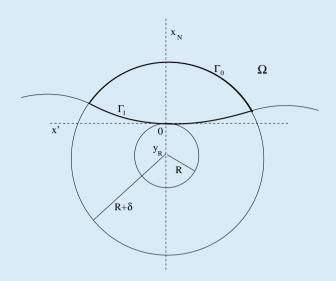


Fig. 2.1. The domain Ω near x_0 .

We define $z_a(t,x) = \psi_a(t+R-|x-y_R|)$ for $x \in \mathbb{R}^N \setminus B(y_R,R)$, $0 \le t < T_a$, see Fig. 2.3.

Direct computations show that $\frac{\partial z_a}{\partial n} \leq z_a^q$ for $x \in \Gamma_1$ and $0 < t < T_a$ and $\frac{\partial z_a}{\partial t} - \Delta z_a \leq (1 + \frac{N-1}{R} - qz_a^{q-1})z_a^q$ for $x \in \Omega \cap B(y_R, R+\delta)$ and $t \in (0, T_a)$. Notice that z_a is increasing in time and that $z_a(t,x) \geq z_a(0,x) = \psi_a(R-|x-y_R|) = \psi_a(-\delta) = \frac{E}{(T_a+\delta)^{\frac{1}{q-1}}} \to +\infty$ as $a \to +\infty$ and $\delta \to 0$, for $x \in \Omega \cap B(y_R, R+\delta)$. Hence, choosing a_0 large enough and δ_0 small enough, we can guarantee, since $\beta_0 < q$, that for $a \geq a_0$ and $0 < \delta < \delta_0$, that $1 + \frac{N-1}{R} - qz_a^{q-1} \leq -\beta_0 z_a^{2q-1} = -\beta_0 z_a^p$ as long as $x \in \Omega \cap B(y_R, R+\delta)$ and $0 \leq t < T_a$.

Title Page

Contents

Page 6 of 12

Go Back

Full Screen

Close

Quit

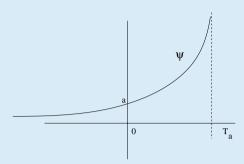


Fig. 2.2. The solution of Equation (2.2).

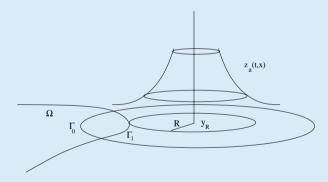


Fig. 2.3. The function z_a .

In particular, we get

$$\begin{cases}
\frac{\partial z_a}{\partial t} - \Delta z_a \leq -\beta_0 z_a^p, & x \in \Omega \cap B(y_R, R + \delta), \ t \in (0, T_a), \\
\frac{\partial z_a}{\partial n} \leq z_a^q, & x \in \Gamma_1 = \partial \Omega \cap B(y_R, R + \delta), \ t \in (0, T_a).
\end{cases} (2.3)$$

Title Page

Contents

Page 7 of 12

Go Back

Full Screen

Close

Quit

Consider now a smooth initial condition $v_0 \in C^{\infty}(\Omega)$ such that $v_0 \equiv 0$ in $\Omega \backslash B(0, R_0)$ and $u_0 \geq \frac{2E}{\delta^{\frac{1}{q-1}}}$ in $\Omega \cap B(y_R, R+\delta)$. The solution of (1.1) starting at u_0 will satisfy that for a small time T we will have that $u(x, t, v_0) \geq \frac{E}{\delta^{\frac{1}{q-1}}}$ for $x \in \Gamma_0 \equiv \Omega \cap \partial B(y_R, R+\delta)$, $0 \leq t < T$. By monotonicity, for any $u_0 \geq v_0$ in Ω , we will also have that the proper solution starting at u_0 will satisfy, $u(x, t, u_0) \geq \frac{E}{\delta^{\frac{1}{q-1}}}$ for $x \in \Gamma_0 \equiv \Omega \cap \partial B(y_R, R+\delta)$, $0 \leq t < T$.

In particular, let us choose $a>a_0$ with the property that $0< T_a< T$ and let us choose u_0 such that $u_0(x)\geq v_0(x)$ and $u_0(x)\geq \psi_a(-R)\geq z_a(0,x)$ for $x\in\Omega\cap B(y_R,R+\delta)$. Hence, for $0\leq t< T_a$ we have $z_a(t,x)\leq \frac{E}{\delta^{\frac{1}{q-1}}}\leq u(x,t,u_0)$ for $x\in\Gamma_0$ and $z_a(0,x)\leq u_0(x)$ for $x\in\Omega\cap B(y_R,R+\delta)$. That is, z_a satisfies,

$$\begin{cases}
\frac{\partial z_a}{\partial t} - \Delta z_a \leq -\beta_0 z_a^p, & x \in \Omega \cap B(y_R, R + \delta), \ t \in (0, T_a), \\
\frac{\partial z_a}{\partial n} \leq z_a^q, & x \in \Gamma_1 = \partial \Omega \cap B(y_R, R + \delta), \ t \in (0, T_a), \\
z_a(t, x) \leq u(x, t, u_0), & x \in \Gamma_0, \ t \in (0, T_a), \\
z_a(0, x) \leq u_0, & x \in \Omega \cap B(y_R, R + \delta),
\end{cases}$$
(2.4)

which implies that $z_a(t,x) \leq u(t,x,u_0)$ for all $x \in \Omega \cap B(y_R,R+\delta)$ and $t \in (0,T_a)$. The fact that $z_a(T_a,x)$ blows up at x=0 proves the result.

REMARKS. i) The time T_a does not need to be the classical blow-up time, that is, the time T_{∞} for which the solution is classical for $0 < t < T_{\infty}$ and such that $\|u(t,\cdot,u_0)\|_{L^{\infty}(\Omega)} \to +\infty$ as $t \nearrow T_{\infty}$. We just can assure that $T_{\infty} \le T_a$.

ii) Observe that if for $\alpha \in (0, T - T_a)$ we define the function $w_{\alpha}(t, x) = z_a(t - \alpha, x)$

Title Page

Contents

Page 8 of 12

Go Back

Full Screen

Close

Quit

defined for $x \in \Omega \cap B(y_R, R + \delta)$ and $t \in (\alpha, T_a + \alpha)$, then, we easily obtain that w_α satisfies

$$\begin{cases}
\frac{\partial w_{\alpha}}{\partial t} - \Delta w_{\alpha} \leq -\beta_{0} w_{\alpha}^{p}, & x \in \Omega \cap B(y_{R}, R + \delta), \ t \in (\alpha, T_{a} + \alpha), \\
\frac{\partial w_{\alpha}}{\partial n} \leq w_{\alpha}^{q}, & x \in \Gamma_{1} = \partial \Omega \cap B(y_{R}, R + \delta), \ t \in (\alpha, \alpha + T_{a}), \\
w_{\alpha}(t, x) \leq u(x, t, u_{0}), & x \in \Gamma_{0}, \ t \in (\alpha, \alpha + T_{a}), \\
w_{\alpha}(\alpha, x) \leq u_{0}, & x \in \Omega \cap B(y_{R}, R + \delta).
\end{cases} (2.5)$$

The third inequality is obtained since for $x \in \Gamma_0$ we have $w_{\alpha}(t,x) \leq \frac{E}{\delta^{\frac{1}{\alpha-1}}} \leq u(x,t,u_0)$

From (2.5) we obtain that $w_{\alpha}(t,x) = z_a(t-\alpha,x) \le u(t,x,u_0)$ for all $\alpha \in (0,T-T_a)$. This implies that for $t \in (T_a,T)$ we have $z_a(T_a,x) \le u(t,x,u_0)$ which means that the solution u is "pinned" to the value ∞ during the time $T_a \le t \le T$.

- iii) With some extra effort, see [3] for details, it is possible to show that the construction of Proposition 2.1 can be performed in a neighborhood of $x_0 \in \partial\Omega$. As a matter of fact the parameters, R, δ , a_0 , δ_0 , and the initial condition u_0 can be chosen the same for a small neighborhood $\partial\Omega \cap B(x_0, \eta)$ for $\eta > 0$ small. This means that the proper solution $u(t, x, u_0)$ will blow up, not only at x_0 but at $B(x_0, \eta') \cap \partial\Omega$ for some small $\eta' > 0$, and it will remain "pinned" to the value ∞ for a period of time $T_a \leq t \leq T$.
- 3. Localization of global boundedness. In this section we present the results of [2] that, roughly speaking, say that if the complementary conditions of Proposition 2.1 hold, also near a point $x_0 \in \partial \Omega$, then the proper solution is bounded globally in time around this point x_0 . As a matter of fact, we have

PROPOSITION 3.1. Let
$$x_0 \in \Gamma_N$$
, $p > 1$, $q \ge 1$ and let $R_0 > 0$, $M_0 > 0$ such that

$$f(x,u) \le -\beta_0 u^p, \quad x \in B(x_0, R_0) \cap \Omega, \quad u \ge M_0,$$

$$g(x,u) \le u^q, \quad x \in B(x_0, R_0) \cap \partial\Omega, \quad u \ge M_0.$$
(3.1)

Title Page

Contents

Page 9 of 12

Go Back

Full Screen

Close

Quit

If one of the two following conditions holds

- i) $p + 1 > 2q \text{ and } \beta_0 > 0 \text{ or }$
- ii) $p + 1 = 2q \text{ and } \beta_0 > q$,

then, for any initial condition $0 \le u_0 \in L^{\infty}(\Omega)$ the proper solution of (1.1) starting at u_0 is bounded in a neighborhood of x_0 in $\overline{\Omega}$, for all t > 0. That is, there exist $\delta, M > 0$ such that

$$\sup_{0 \le t < \infty, x \in B(x_0, \delta) \cap \bar{\Omega}} u(t, x, u_0) \le M. \tag{3.2}$$

To prove the result, we construct appropriate super solutions locally around the point $x_0 \in \Gamma_N$. As a matter of fact we extensively use the singular solutions of the following elliptic problem

$$\begin{cases}
-\Delta z + \beta z^p = 0 & \text{in } B(0, R), \\
z(R) = +\infty,
\end{cases}$$
(3.3)

and the fact that the asymptotics of this radial solution as $r \to R$ is well understood, see [5, 12].

We refer to [2] for details on the proof of this result.

- 4. Concluding Remarks. We present in this section several important comments and remarks.
 - i) Both results are local in nature: if the conditions of Proposition 2.1 (resp. Proposition 3.1) hold in a neighborhood of certain point $x_0 \in \partial \Omega$, then, independently of the behavior of the nonlinearities outside this neighborhood, we will have that blow-up (resp. global boundedness of solutions) occurs in the neighborhood of x_0 . In particular, from the control theory point of view it turns out that it is impossible to prevent blow-up (resp. to produce blow-up) in a neighborhood of a point of the boundary of the domain by modifying the equation somehow away from this point.
 - ii) With an appropriate rescaling it is not difficult to see that if the local conditions of the nonlinearities f and g in Proposition 2.1 and Proposition 3.1 are of the

Title Page

Contents

Page 10 of 12

Go Back

Full Screen

Close

Quit

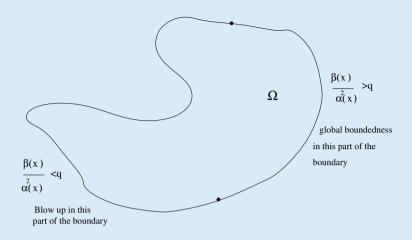


Fig. 4.1. The domain of the example.

type $f(x,u) \sim -\beta_0 u^p$, $g(x,u) \sim \alpha_0 u^q$, for $x \in B(x_0,R_0) \cap \partial\Omega, u \geq M_0$, then, the condition $\beta_0 < q$ (resp. $\beta_0 > q$) should be changed to $\beta_0 > q\alpha_0^2$, (resp. $\beta_0 < q\alpha_0^2$).

- iii) It is important to mention that the balances obtained for p, q and β_0 are independent of the dimension of the space and even of the geometry of the domain.
 - iv) As an example, consider for instance the problem

$$u_t - \Delta u = -\beta(x)u^p$$
 in Ω ,
 $\frac{\partial u}{\partial \vec{n}} = \alpha(x)u^q$ on $\partial\Omega$,
 $u(0,x) = u_0(x) \ge 0$ in Ω , (4.1)

with β and α continuous functions, $\beta(x) > 0$ in $\bar{\Omega}$ and $\alpha(x) > 0$ in $\partial\Omega$, see Fig. 4.1.

Title Page

Contents

Page 11 of 12

Go Back

Full Screen

Close

Quit

Then if p+1=2q>2 and $x_0\in\partial\Omega$ with $\frac{\beta(x_0)}{\alpha(x_0)^2}< q$ then from [3], there are initial conditions where blow up is produced near x_0 , while if $\frac{\beta(x_0)}{\alpha(x_0)^2}>q$, then from THEOREM 2.1 above, for any initial condition $u_0\in L^\infty(\Omega)$ the proper minimal solution is bounded near x_0 . Hence, we have the situation as in Fig. 4.1

REFERENCES

- [1] F. Andreu, J. M. Mazon, J. Toledo, J. D. Rossi, *Porous medium equation with absorption and a nonlinear boundary condition*, Nonlinear Analysis TMA **49** (2002), 541–563.
- [2] J. M. Arrieta, On boundedness of solutions of reaction-diffusion equations with nonlinear boundary conditions, Proceedings of the American Mathematical Society. (To appear)
- [3] J. M. Arrieta, A. Rodríguez-Bernal, Localization on the boundary of blow-up of reaction-diffusion equations with nonlinear boundary condition, Comm. in PDE's 29 (7 & 8) (2004), 1127–1148.
- [4] P. Baras and L. Cohen, Complete blow-up after T_{max} for the solution of a semilinear heat equation,.
 J. Funct. Anal. 71(1) (1987), 142–174.
- [5] C. Bandle and M. Marcus, On second order effects in the boundary behaviour of large solutions of semilinear elliptic problems, Differential and Integral Equations 11 (1998), 23–34.
- [6] M. Chipot, M. Fila and P. Quittner, Stationary Solution, Blow-up and Convergence to Stationary Solution for Semilinear Parabolic Equations with Nonlinear Boundary Conditions, Acta Math. U. Comenian. 60 (1991), 35–103.
- [7] M. Fila, J. Filo and G. M. Lieberman, Blow up on the boundary for the heat equation, Calc. Var. Partial Differential Equations 10(1) (2000), 85–99.
- [8] V. Galaktionov and J. L. Vazquez, Continuation of blow up solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math **50** (1997), 1–67.
- [9] V. Galaktionov and J. L. Vazquez, The problem of blow-up in nonlinear parabolic equations, Discrete Contin. Dyn. Syst. 8(2) (2002), 399–433.
- [10] J. García-Melián, R. Letelier-Albornoz and J. Sabina de Lis, Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up, Proc. Amer. Math. Soc. 129(12) (2001), 3593–3602.
- [11] J. García-Melián, R. Gómez-Reñasco, J. López-Gómez, and J. Sabina de Lis, Pointwise growth and uniqueness of positive solutions for a class of sublinear elliptic problems where bifurcation from infinity occurs. Arch. Ration. Mech. Anal. 145(3) (1998), 261–289.
- [12] M. del Pino and R. Letelier, The influence of domain geometry in boundary blow-up elliptic problems, Nonlinear Analysis 48 (2002), 897–904.

Home Page Title Page Contents Page 12 of 12 Go Back Full Screen Close Quit

- [13] A. Rodríguez-Bernal and A. Tajdine, Nonlinear Balance for Reaction-Diffusion Equations Under Nonlinear Boundary Conditions: Dissipativity and Blow-up, Journal of Differential Equations 169 (2001), 332-372.
- [14] A. Tajdine, Ecuaciones de evolución con condiciones de contorno no homogéneas, Ph. D. Thesis. Departamento de Matemática Aplicada, Universidad Complutense de Madrid 2005.