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Abstract. At the example of a particular segregation problem from mineralogy, quantitative simu-
lations based on ab-initio methods are done. Using in particular the harmonic approximation, the free
energy of the physical process for a range of concentration vectors is calculated as well as diffusion and
elasticity coefficients. The obtained data are the foundations of high-precision finite element computa-
tions. For selected configurations, the computed free energies are validated with results from quantum
mechanics.
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1. Introduction. The present work is concerned with computer simulations of the
so-called chalcopyrite disease within sphalerite. This is a well-known and extensively-
discussed problem arising in geology. The quantitative description of this process helps
to get a precise understanding of the time scales involved in magma ascending from earth’s
core and might lead to better predictions for earth quakes and volcano eruptions. The
study of this problem is an example to illustrate how one can successfully bridge different
length scales and do simulations closer to experiment.

Characteristic for chalcopyrite disease is the presence of a melon-type structure close
to the boundary of a rock sample.
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1. Introduction. The present work is concerned with computer simulations
of the so-called chalcopyrite disease within sphalerite. This is a well-known and
extensively-discussed problem arising in geology. The quantitative description of this
process helps to get a precise understanding of the time scales involved in magma
ascending from earth’s core and might lead to better predictions for earth quakes and
volcano eruptions. The study of this problem is an example to illustrate how one can
successfully bridge different length scales and do simulations closer to experiment.

Characteristic for chalcopyrite disease is the presence of a melon-type structure
close to the boundary of a rock sample.

Fig. 1.1. Part of the boundary region of a rock sample with chalcopyrite disease (reflecting light
image), black matrix: sphalerite, white grains: chalcopyrite.

The common understanding is that these structures develop during a long time
period in the range of several hundred thousand years. Since no experimentalist would
be so patient, mineralogists studied chalcopyrite disease under altered conditions in
the laboratory, where they surround a ZnS single crystal by sulphur gas, spread cop-
per powder at its surface, and significantly increase temperature (kept isothermally
between T = 550◦C and T = 700◦C), see the reports of the experiments [2], [3]. By
the increase of T (and sufficiently high sulphur fugacity) the process is accelerated
and the characteristic pattern formation is observed after several weeks (T = 700◦)
or months (T = 550◦).
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Fig. 1.1. Part of the boundary region of a rock sample with chalcopyrite disease (reflecting light image),
black matrix: sphalerite, white grains: chalcopyrite.

The common understanding is that these structures develop during a long time period
in the range of several hundred thousand years. Since no experimentalist would be so
patient, mineralogists studied chalcopyrite disease under altered conditions in the labora-
tory, where they surround a ZnS single crystal by sulphur gas, spread copper powder at
its surface, and significantly increase temperature (kept isothermally between T = 550◦C
and T = 700◦C), see the reports of the experiments [2], [3]. By the increase of T (and
sufficiently high sulphur fugacity) the process is accelerated and the characteristic pattern
formation is observed after several weeks (T = 700◦) or months (T = 550◦).
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Chalcopyrite disease is caused by gradients of the chemical potential induced by
an increase of external sulphur fugacity. Hereby, the primary Fe2+ is oxidised to Fe3+

and reacts with copper diffusing into the Fe-containing sphalerite crystal to chalcopyrite
(= CuFeS2). During the process, gas S2− molecules attach to the crystal surface. Since
roughly speaking the formation of chalcopyrite phases can only take place after a sufficient
amount of Cu has diffused into the matrix, the generic mechanism has been called diffusion
induced segregation or shortly DIS.

The mathematical analysis of chalcopyrite disease presented in this work is based on
partial differential equations and a thermodynamical description and tries to understand
the physics underlying these examinations with the goal to make simulations close to the
ideal experimental conditions. The developed model represents chalcopyrite disease on a
medium spatial scale, the microstructure is not resolved. The main idea persued in this
article is to insert expressions of the free energy gained from ab initio calculations into
(standard) finite element computations.

2. Mathematical formulation. Let Ω be a (time-independent) domain in RD,
1 ≤ D ≤ 3 containing the crystal. By 0 < T0 < ∞ we denote a stop time and by
ΩT := Ω × (0, T0) a cylinder in space-time. ci = ci(x, t) denotes the relative number of
species i, i ∈ {1, 2, 3} per available lattice point at time t and space point x ∈ Ω, where
we set

c1 ≈ Fe, c2 ≈ Cu, c3 ≈ Zn, c4 ≈ vacancies.

c1 satisfies c1 = NFe
NMe

, where NFe is the number of Fe atoms and NMe the number of metal
ion sites. Similar relationships hold for c2 and c3. We will not model the attachment of
S molecules at the lattice surface and assume that the concentration of S is identically
cS := 0.5. Due to electric neutrality we postulate, see [2], [4],

c4 =
1
2
c1. (2.1)

By mass conservation the concentration vector c thus fulfills

c = (c1, c2, c3) ∈ Σ :=
{

(c̃1, c̃2, c̃3) ∈ R3
∣∣∣c̃i ≥ 0,

3
2
c̃1 + c̃2 + c̃3 ≡

1
2

}
.

The constitutive relation for the mass fluxes is assumed to be of the isotropic Onsager
form, [15],

Ji =
3∑

j=1

Lij∇µj , 1 ≤ i ≤ 3. (2.2)

L, the mobility, is symmetric due to Onsager’s reciprocity law and a positive semi-definite
3× 3 tensor. Furthermore,

µj =
∂f

∂cj

is the chemical potential. To simplify the existence theory we assume that L is positive
definite. The total Helmholtz free energy density f consists of f1 for chalcopyrite and f2

for sphalerite. Hence, the two different phases or lattice orders are characterised by two
different free energies, and f is the convex hull of f1 and f2.
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The characterisation of the phases is given within the framework of functions of
bounded variation BV (Ω). It is convenient to introduce the set

V := {χ̃ ∈ BV (Ω) | χ̃(1− χ̃) = 0 a.e. in Ω} (2.3)

and choose for the free energy with a constant γ > 0 the convex-combination

F (c, χ̃) :=
∫
Ω

γ|∇χ̃|+
∫
Ω

(χ̃f1(c) + (1− χ̃)f2(c)). (2.4)

The first integral
∫
Ω

γ|∇χ̃| defines the (constant) surface energy.
To conclude, we are concerned with the formulation
Find the vector c = (c1, c2, c3) and χ such that in Ω ⊂ RD for t > 0

∂tci = div
( 3∑

j=1

Lij∇µj

)
, i = 1, 2, 3, (2.5)

µi = χ
∂f1

∂ci
(c) + (1− χ)

∂f2

∂ci
(c), i = 1, 2, 3, (2.6)

F (c, χ) = min
χ̃∈V

F (c, χ̃) (2.7)

with the initial and boundary conditions

ci(x, 0) = c0i(x), i = 1, 2, 3; χ(x, 0) = χ0(x) in Ω, (2.8)
∂νχ = 0,

ci = gi, 1 ≤ i ≤ 3

µi = hi, 1 ≤ i ≤ 3

 at ∂Ω. (2.9)

We stress that (2.7) actually means that the free energy is in a global minimum with
respect to χ. For most physical systems, this assumption is not reasonable. But here, the
segregation dramatically changes the local lattice order such that there is a huge start
energy and at least approximately a global minimum is obtained. If we replace (2.7) by
an Allen-Cahn equation, the system may get stuck in a local minimum and flipping over
from sphalerite to chalcopyrite may become impossible at large times t, see the detailed
discussion in [6].

The following theorem is covered by the results in [5]. It is formulated for classical
Dirichlet boundary conditions gi = hi = 0 when (2.7) is replaced by a parabolic equation.

Theorem 2.1 (Global existence of solutions for System (2.5)–(2.9)).
There exists a weak solution (c, µ, χ) of (2.5)–(2.9) such that

(i) c ∈ C0, 1
4 ([0, T0]; L2(Ω; R3)),

(ii) ∂tc ∈ L2(0, T0; (H1
0 (Ω; R3))′),

(iii) µ ∈ L2(0, T0; H1
0 (Ω; R3)),

(iv) χ ∈ L2(0, T0; BV (Ω)) with χ(1− χ) = 0 almost everywhere in Ω.

In general the solution (c, µ, χ) is not unique since χ may not be unique.

3. General outline of the numerical solution ansatz. We solve the weak for-
mulation of (2.5)–(2.9) with linear finite elements. The arising discrete system is solved
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with a Newton-Krylov method. This is a Quasi-Newton scheme where the inner linear
loop is solved with the generalized minimal residual method, GMRES. This combines the
fast convergence of Newton’s method with the excellent damping properties of GMRES.

The various possibilities to speed up the finite element code like parallelisation by
multi-grid methods or domain decomposition are not exploited. In order to incorporate
approximations of the physical free energy, we will persue the following ansatz. Let c
be a given concentration vector. In a first independent computation step two approxima-
tions f1(c) and f2(c) are computed that simulate the actual free energy density
of the material in the bulk phases, hence represent two local minima of f . The main
computational tool is the harmonic approximation with GULP, [9], and the
values f1(c), f2(c) are obtained from modified chalcopyrite and sphalerite configura-
tions. Furthermore we apply molecular dynamics (MD) simulations with DLPOLY,
http://www.cse.clrc.ac.uk/msi/software/DL_POLY/. For quantum mechanical (QM)
computations we use ABINIT, [10], (http://www.abinit.org).

Generally, f1(c) and f2(c) are stored beforehand in huge data bases. Each entry in
these data bases references to a small range of concentration vectors c (approximation of
f l by piecewise constant functions).

It remains to find approximations for ∂fm

∂cj
. This is done by central differencing of the

tabular entries where possible and by one sided differences at the beginning and end of
the data base. To make this precise, let Mj ∈ N be the dimension of the data base w.r.t.
cj , that is fm(c1, . . . , cj , . . . , c3) is constant for cj ∈ [cl

j , c
l+1
j ), 1 ≤ l ≤ Mj − 1. Set for

cj ∈ (cl
j , c

l+1
j ) (suppressing frozen components cα for α 6= j)

∂fm

∂cj
(cj) :=



fm(cl+1
j )− fm(cl−1

j )

cl+1
j − cl−1

j

if 2 ≤ l ≤ Mj − 1,

fm(c1
j )− fm(c2

j )
c1
j − c2

j

if l = 1,

fm(cMj

j )− fm(cMj−1
j )

c
Mj

j − c
Mj−1
j

if l = Mj .

(3.1)

After numerical tests with analytic expressions for f , the parameters M1 = M3 = 30,
M2 = 40 were chosen. Larger values of Mj are desirable as they reduce the approximation
errors but the computations become too costly.

4. Free energy computation with GULP. The theory of the harmonic approx-
imation is explained in [1], [8]. For the computations within GULP we have to fit the
heuristic potentials that represent the short-range interatomic potentials. We begin with
ZnS. We use the Buckingham potential

φ(r) := −4ε
(σ

r

)6

+ B exp
(
−r

ρ

)
(4.1)

that gives in practise better results than Lennard-Jones potentials. In (4.1), r is the
interatomic distance, σ that particular interatomic distance where the energy vanishes
and ε is the potential energy at equilibrium separation. The term (σ

r )6 describes the
van-der Waals induced dipole moments whereas the exponential stands for the repulsive
forces.

We use a shell model where the rigid atom is split into an inner part comprising of
the nucleus with the tightly bound inner electrons and into an outer part with the loosely
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Exp1 Exp2 P1 P2 P3

a [Å] 5.41 5.41 5.403 5.403 5.402

V [Å3] 158.29 158.29 157.77 157.77 157.69

C11 [GPa] 9.42 9.76 8.6 9.37 9.18
C12 [GPa] 5.68 5.9 6.54 6.16 5.83

C44 [GPa] 4.36 4.51 3.8 4.03 4.41

εstat 7.9 – 8.565 7.21 7.33
εhf 5.8 – 4.815 4.56 3.64

Table 4.1
Comparison of experimental and calculated data for ZnS.

P1 P2 P3

Potential Parameters:

S-S

A [eV] 1200.0 1200.0 1200.0
ρ [Å] 0.149 0.149 0.149

B [eV Å6] 120.0 120.0 120.0

Zn-S
A [eV] 613.36 613.36 528.9

ρ [Å] 0.399 0.399 0.411

B [eV Å6] 0.0 0.0 0.0

Shell Model:

SKS [eVÅ−2] 12.7 12.7 16.86

Zn KS [eVÅ−2] 0.0 0.0 2.181

Three Body Terms:
S-Zn-S force constant [eV rad−2] 0.713 0.713

S-Zn-S bond angle [degrees ] 109.47 109.47

k2 [eV rad−2] 3.0 3.0
k3 [eV rad−3] 3.0 3.0

k4 [eV rad−4] 5.0 5.0

Table 4.2
Potential parameters for P1, P2 and P3 used for ZnS.

bound shell electrons. This allows to take dipole moments into account. Additionally,
a harmonic three-body potential is used to account for the directionality on the S-Zn-S
bond according to the Taylor expansion

W3b(θ) :=
1
2
k2(θ − θ0)2 +

1
6
k3(θ − θ0)3 +

1
12

k4(θ − θ0)4,

where θ0 is the angle of the unstressed three-body system and k2, k3 and k4 determine
the sensibility w.r.t. angular changes.

GULP sets up interactions of potentials between shells and other atoms/shells and
these potentials must be fitted to give reasonable results. For sphalerite and chalcopyrite
this is a tricky business, probably because the bondings in sulphides are not purely ionic
but may range from ionic to covalent through to metallic. A least squares fit to measured
parameters is carried out, Table 4.1.

Here, a is the lattice parameter of the cubic lattice, V is the volume of the unit cell,
Cil are the elastic constants. To find the potential parameters, one starts with a simple
model without shells where the charges of S and Zn are fixed to −2 and +2. By a least
squares optimisation run the parameters for the spring constant and in case of sphalerite
for the S−Zn− S interactions are fitted. The parameters thus obtained are then used in
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Exp2/QM P4 P5

a [Å] 5.2864 5.601 5.59

b [Å] 5.2864 5.601 5.59

c [Å] 10.4102 10.71 10.70
V [Å3] 145.46 168.08 167.73

C11 [GPa] 17.83 18.02 18.12

C12 [GPa] 5.81 5.67 5.64
C13 [GPa] 6.27 6.59 6.59

C33 [GPa] 13.15 14.23 14.25

C44 [GPa] 13.19 18.86 18.93
C66 [GPa] 4.93 8.68 8.70

Table 4.3
Experimental/quantum mechanical and calculated data for chalcopyrite.

P4 P5

Potential Parameters:

S-S
A [eV] 1200.0 1200.0

ρ [Å] 0.508 0.508

B [eV Å6] 120.0 120.0
Fe-S
A [eV] 5694.68 5694.68

ρ [Å] 0.2748 0.2748
B [eV Å6] 0.0 0.0

Cu-S
A [eV] 110.62 100.619
ρ [Å] 0.327 0.327

B [eV Å6] 0.0 0.0

Shell Model:
SKS [eVÅ−2] 12.70 12.70

Three Body Terms:
S-Cu-S force constant [eV rad−2 ] 0.01164

S-Cu-S bond angle [degrees] 109.47

k2, k3, k4 [eVrad−2] 2.5, 2.5, 4.0
S-Fe-S force constant [eV rad−2] 0.01169

S-Fe-S bond angle [degrees] 109.47

k2, k3, k4 [eVrad−2] 2.5, 2.5, 4.0

Table 4.4
Potential parameters for P4 and P5 used for chalcopyrite.

an extended model that includes shells and three-body terms.
For P1, a Buckingham potential is fitted and a shell is only used for the S ions. In

P2, a three-body potential for S-Zn-S is added. In particular this results in better values
for C44, εhf and εst. In P3 a shell to the Zn is included, see Table 4.2.

The data set EXP1 refers to the experimental results in [14], EXP2 to the recently
made measurements (where εstat and εhf were not measured).

The agreement documented in Table 4.1 is suitably well with an error in the size
of uncertainty of the measured parameters. P2 and P3 seem both be very well suited to
represent the structure of ZnS.

The fitting procedure to chalcopyrite is similar. For P4, Cu and Fe cores replace Zn.
The S shell is fitted to yield good values for the lattice constants and the volume of the
primitive cell. But there is one bottleneck: up to now it has not been possible to measure
the elastic parameters Cil for chalcopyrite in experiment. The slanted parameters in
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Table 4.3 are the result of the quantum mechanical computations in Section 5 and the
GULP potential is fitted to these parameters. To further improve the quality of the
results, three-body potentials for S-Cu-S and S-Fe-S are added. Table 4.3 provides the
results of the fitting, Table 4.4 the fitting parameters. We see that there is almost
no improvement by using the three-body potentials. The agreement to the quantum
mechanical parameters is good, except for C44 and C66.

5. Quantum mechanical computations. We perform quantum mechanical com-
putations using ABINIT, [10]. The Born-Oppenheimer approximation of the Schrödinger
equation is solved with the local-density approximation within the framework of density
function theory, [11], [12], [16]. For the representation of the electron-atom-interactions
Troullier-Martins pseudopotentials, [17], are used.

After simple convergence tests, the energy cutoff ecut was set to 20Ha≈544.23 eV (one
has ecut = 1

2 [2π(k + Gmax)]2, and Gmax is the largest reciprocal lattice vector included
in the Bloch-Expansion of the wave function) yielding a relative error of 0.4% in the
total energy. The macroscopic dielectric constant εdiel of ZnS is preset to 8.32, the
physical value found in literature. For the self-consistent energy minimisation cycle within
ABINIT, the conjugated gradient method is chosen. In order to obtain satisfying results,
the Brillouin zone is sampled with 182 k-points.

The minimal value −7.22 eV is obtained at a = 5.317Å (the binding energy computed
by GULP for a = 5.419 is −7.676 eV). A slight underestimate of the lattice constant
and an overestimate of the binding energy are typical of well-converged local-density
calculations.

The computations for chalcopyrite are similar to those of ZnS. After convergence
studies the energy cutoff ecut was set to 30Ha ≈ 816.35 eV resulting in a relative error of
0.3%. Unfortunately, εdiel is unknown for chalcopyrite, so that for the first computations
of the relaxed geometry the ZnS-value is taken for chalcopyrite, too. Numerical tests have
shown the results for chalcopyrite to change by less than 0.1% for different values of εdiel.
As in the case of sphalerite the Brillouin zone was sampled with 182 k-points. A not too
small value is essential for the quality of the results.

The minimal binding energy for chalcopyrite is −19.7 eV and obtained at a = b =
5.061Å, c = 9.969Å. The binding energy computed by GULP is −20.57 eV.

In the remainder of this section we compute Cij via the acoustical modes. The
obtained elastic constants are needed to gauge the interatomic potentials within GULP.
The elastic constants for sphalerite serve as comparison and validation of the method.

Travelling waves in crystals (as waves in general) can be represented by

u(r, t) = ũ exp(i(k · r − ωt)). (5.1)

Here, u is the atomic elongation, ũ = (ũ1, ũ2, ũ3) is the amplitude vector, k = (k1, k2, k3)
the wave vector, r = (r1, r2, r3) the position vector and ω the angular frequency. The
strain ε is given by

εij =
1
2

( ∂ui

∂xj
+

∂uj

∂xi

)
. (5.2)

With ABINIT we compute dispersion curves, i.e. curves that describe the relationship
k 7→ ω(k). More precisely we estimate with interpolation formulas the slopes ω′(0) of the
acoustic phonon dispersion curves at the origin (acoustic phonon modes in contrast to
optical phonon modes fulfill ω(k = 0) = 0). Using (5.1) in (5.2) yields

εlj(t) =
i

2

(
ul(t)kj + uj(t)kl

)
=

i

2

(
ũlkj + ũjkl

)
exp(i(k · r − ωt)).
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From Newton’s equation of motion ρ∂2
t un = −ρω2un we get

ρω2ũn =
∑
jlm

Cnjlmkjklũm or ρω2ũ = M(k) · ũ.

Exp1 Exp2 QM P2

a [Å] 5.41 5.41 5.32 5.403

V [Å3] 158.29 158.29 150.36 157.77
B0 [GPa] 76.6 – 82.8 71.55

C11 [GPa] 9.42 9.76 9.63 9.37

C12 [GPa] 5.68 5.9 5.89 6.16
C44 [GPa] 4.36 4.51 4.87 4.03

εstat 7.9 – – 7.21

εhf 5.8 – – 4.56

Table 5.1
Comparison of experimental and calculated data for ZnS.

Exp2 QM P5

a [Å] 5.2864 5.061 5.59
b [Å] 5.2864 5.061 5.59

c [AA] 10.4102 9.969 10.70

V [Å3] 145.46 127.67 167.73
C11 [GPa] – 17.83 18.12

C12 [GPa] – 5.81 5.64

C13 [GPa] – 6.27 6.59
C33 [GPa] – 13.15 14.25

C44 [GPa] – 13.19 18.93

C66 [GPa] – 4.93 8.70

Table 5.2
Comparison of experimental/calculated data for chalcopyrite.

The values on the left hand side are provided by ABINIT. Suitable k-points can be gained
by densifying the k-point mesh (with dsifkpt). It remains to compute the matrix M
which is straightforward using the Voigt notation. For ZnS we find

M(k)=

 C11k
2
1+C44(k2

2+k2
3) (C12+C44)k1k2 (C12+C44)k1k3

(C12+C44)k1k2 C11k
2
2+C44(k2

1+k2
3) (C12+C44)k2k3

(C12+C44)k1k3 (C12+C44)k2k3 C11k
2
3+C44(k2

1+k2
2)


and for tetragonal chalcopyrite it holds

M(k)=

C11k
2
1+C66k

2
2+C44k

2
3 (C12+C66)k1k2 (C13+C44)k1k3

(C12+C66)k1k2 C66k
2
1 + C11k

2
2+C44k

2
3 C44k2k3

(C13+C44)k1k3 C44k2k3 C44(k2
1+k2

2)+C33k
2
3

 .

Table 5.1 below shows the results of the computations for ZnS and extends the results of
Table 4.1. EXP1 and EXP2 are as before, PS2 refers to GULP results, QM to quantum
mechanical data. B0 denotes the bulk modulus.

Table 5.2 lists the results for chalcopyrite. The computed lattice constants are about
6% off the experimental values. Probably, the Troullier-Martins pseudopotentials are too
soft.
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6. Numerical results. Now we will focus on numerical solutions to System (2.5)–
–(2.9) in its dimensional form in 2D based on the tabulated free energy and linear fi-
nite elements. Fig. 6.1 shows the results of a finite element computation based on the
tabulated harmonic free energy.
Physical Parameters: Ω = [0, 0.2m]× [0, 0.1m], T = 500◦C, γ = 3 · 10−9m,
DCu = DCu(c) ≈ 2.6 · 10−4m2/s, dependence on c computed by Green-Kubo relations,
DFe ≡ 1.26 · 10−4m2/s, DZn ≡ 1.85 · 10−7m2/s.
Triangulation Data: 33153 points, 65536 triangles, h = 10−8.
General Parameters: εGMRES = 4t = 0.004, η = 10−8.
Initial Conditions: c10 ≡ 0.066, c20 ≡ 0.001 in Ω, χ0 minimum of χ 7→ F (c0, χ).
Boundary conditions: ∂νc1 = ∂νc3 = ∂νχ = 0 and c2 = 0.25 on ∂Ω.

t = 0d t = 90d t = 110d

Fig. 6.1. Diffusion of Cu. The density of the level sets indicates the steepness of the copper gradient.
At t = 0, the initial datum falls from 0.25 at ∂Ω to 0.001 in Ω.

t = 20d t = 55d

t = 90d t = 110d

Fig. 6.2. Time evolution of the chalcopyrite phase with small stochastic Fokker-Planck term in fl. At
t = 0d only sphalerite (blue) is present (not displayed). As Cu enters from the boundary, chalcopyrite

(red) forms. One can observe that the segregation starts with small islands that grow steadily.
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Due to the boundary conditions, the Cu concentration increases in Ω during the
computation. Once it exceeds a certain threshold, as a consequence of the free energy
minimisation (2.7), chalcopyrite (in red) is formed. The graph of Zn behaves opposite to
that of Cu. The concentration of Fe is not displayed, it is a perfect constant in time and
space.

As the experimental pictures of chalcopyrite disease within sphalerite suggest, there
is a competition between elastic energy and surface energy. Yet, there is a mechanism
missing that destroys the symmetry. Subsequently we assume that local changes arise in
the free energy densities. These changes may be due to inhomogeneities of the material,
and impurities in turn can be the seed for nucleation of chalcopyrite.

A stochastic source term in the context of spinodal decomposition has first been
introduced by Cook, [7]. Langer [13] has developed a statistical theory of spinodal de-
composition leading to a Fokker-Planck equation. The stochastic source ξ is a white noise
term and is added to the free energies fl by setting

f1(c) = f1(c) + ξ(x, t), f2(c) = f2(c)− ξ(x, t), (6.1)

where again f l(c) denote the tabulated energies of the harmonic approximation. Fig. 6.2
visualizes the result of the computations with the stochastically disturbed free energy.
We see that the solution looks very similar to the in-situ observations and also predicts
small chalcopyrite islands that proceed the main segregation front.
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