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ON A BLOW-UP ESTIMATE FOR A HIGHER ORDER
SEMILINEAR PARABOLIC EQUATION

MANUELA CHAVES∗

Abstract. We study the blow-up rate of the solutions of a higher order semilinear parabolic equation.
We first deal with several applications in the second order case. Then we show that although new crucial
ingredients are needed, some key ideas involved in the order-preserving case remain valid when analyzing
the higher-order case.
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1. Introduction. We consider the Cauchy problem for the 2m-th order semilinear
parabolic equation

ut = −(−∆)mu + f(u) in Q = RN × R+, (1.1)

where f(u) = u lnγ(1 + |u|) with γ > 1 and initial data u0 ∈ X = L1(RN ) ∩ L∞(RN ). We
note that for m = 1 this is a classical semilinear reaction-diffusion equation from Combus-
tion Theory. For higher-order generalizations m > 1, semilinear and quasilinear diffusion
operators of this type arise in several applications including thin film theory, flame and
wave propagation, phase transition at critical Lifschitz points and bi-stable systems (e.g.,
the Kuramoto-Sivashinskii equation and the extended Fisher-Kolmogorov equation).
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Let u(x, t) be a solution of (1.1) which blows up in finite time T = T (u0) < ∞. By blow-
up we mean that u is a bounded classical solution in Qτ = RN × (0, τ ] for any τ ∈ (0, T ) and
cannot be extended as a bounded one beyond t = T . By the classical parabolic regularity
theory [6], [9], this means that

sup
x
|u(x, t)| → ∞ as t → T−.

The limit is understood in the usual sense (one can see that if lim inft→T− were finite, then
the solution could be extended for all t − T > 0 small as a classical bounded solution).
General results on global nonexistence for higher-order parabolic equations are well known
from 70’s, see a survey paper [18] and references to [21, Chapt. 4].

We point out that the study of singularities in higher-order heat equations, quite well
understood for second order reaction-diffusion equations, remains an open problem of the
general theory of higher-order parabolic equations.

It is known, see [2], that solutions of (1.1) blow up at finite time. In [2], the blow-
up behaviour of the solutions of (1.1) was also analyzed for γ = 2m which corresponds
to regional blow-up phenomena and a classification of other types of blow-up in terms of
the exponent γ was given. The asymptotic results, in spite of the significant differences
between the higher-order and second-order cases, are similar: asymptotic simplification to a
Hamilton-Jacobi equation occurs in both cases, see [15] and [2].

In this work we deal with an a priori estimate from below of the blow-up rate of the
solutions of equation (1.1), see [2] for a general approach. We show that such estimate is
given, except a multiplicative constant D, by the blow-up rate of the homogeneous in space
blow-up solutions of the ordinary differential equation:

Vt = f(V ). (1.2)

The derivation of this estimate is well known in the second order case m = 1, where the
multiplicative constant becomes D = 1. Such result is obtained via a particular way of
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comparison, by using the Maximum Principle. We remark that an important clue in the
proof, as well as in in the general study of blow-up phenomena, relies on the standard
comparison and the intersection comparison between solutions having the same blow-up
time. However, these ideas strongly rely on the order-preserving property of the equation
when m = 1 which does not remain valid for the higher order equations (1.1). We show
that in this case, the construction of the majorizing equation associated to (1.1) introduced
in [14] plays an important role in obtaining this blow-up estimate and makes it possible to
follow a similar approach to that used in the second order one.

The plan of the paper is as follows. In Section 2 we briefly comment on how to obtain the
lower blow-up estimate under consideration in the second order case. In particular, we deal
with solutions of a class of quasilinear second-order parabolic equations. Then, we focus on
the higher-order case by introducing in Section 3 the main ideas involved in the construction
of the Majorizing equation. Finally, Section 4 is devoted to analyzing the rate of blow-up of
the solutions of (1.1).

2. A blow-up rate estimate for a quasilinear reaction-absorption diffusion
equation. Many results concerning the asymptotic theory of blow-up have been obtained
for semilinear and quasilinear second-order parabolic equations, m = 1, where the Maximum
Principle applies and became an essential tool in the asymptotic analysis. We refer to the
book [21] (quasilinear equations) and to papers [7], [16], [19], [23] (semilinear equations with
f(u) = up and f(u) = eu), see also references in [21].

As we mention above, the general blow-up analysis in the second-order case, is essentially
based on different types of comparison. In particular, the lower estimate under consideration
follows in many cases by a straightforward comparison with a flat solution U(t) independent
of x and satisfying the ODE

U ′ = f(U) for t ∈ (0, T ), U(T ) = ∞,

so that we compare solution u(x, t) and U(t) having the same blow-up time (then they must
intersect each other whence an estimate from below: supx u(x, t) > U(t) for any t ∈ (0, T ).
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We next show that similar ideas apply even when asymptotic simplification phenomena occur
which makes necessary a comparison between solutions of different equations.

We consider a class of second order quasilinear parabolic equations in which blow-up
phenomena occur. It corresponds to the well-known m-laplacian equation where reaction
and absorption terms appear:

ut = (|ux|mux)x + up − λuq m > 1, p > 1, q > 1, (2.1)

in the range of parameters 1 < q < p < m. We assume that the initial data u0(x) is con-
tinuous and bounded with compact support. It is known, see [3], that there exists a class of
initial data such that the corresponding solution blows-up at finite time for every x ∈ RN . It
was proved that in this case, asymptotic simplification occurs and the asymptotic behaviour
of the solutions close to blow-up is described by the pure reaction-diffusion equation, the ab-
sorption term being negligible. This makes necessary a kind of like-intersection comparison
between solutions of different equations. Let u(x, t) be a solution of (2.1) which blows-up at
finite time T . We have the following.

Proposition 2.1.If T is the blow-up time of the solution u(x, t) of the Cauchy problem
corresponding to equation (2.1) then

‖u(t)‖ ≥ UT (t) = [(p− 1)(T − t)]−1/(p−1), t ∈ [0, T ).

Proof. Assume for contradiction that the inequality fails at t = t0. Then, by the geometry of
U(t) this implies that u(x, t0) < U(t0) for every x ∈ R and by continuity there exists ε small
enough such that u(x, t0) < Uε(t0) where Uε(t) = [(p − 1)(T + ε − t)]−1/(p−1). Since Uε(t)
is a supersolution of (2.1), we have from the Maximum Principle that the same inequality
holds for every t ≥ t0. Hence the solution u(x, t) is bounded and does not blow-up at time
T , whence a contradiction follows.

We remark that the same estimate can be obtained without changes in the N -dimensional
case and for other ranges of the parameters where blow-up occurs at finite time.
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3. The Majorizing order-preserving equation. In this section we are going to use
the integral representation of the solution:

u(t) = M2m(u) ≡ b(t) ∗ u0 +
∫ t

0

b(t− s) ∗ f(u(s)) ds, u0 ∈ X, (3.1)

where b(t) ∗ u0 ≡ eAt u0 is the convolution representation of the continuous semigroup eAt

with the infinitesimal generator A, i.e., u(t) is a fixed point of operator M2m for any t > 0.
Then

b(x, t) = t−N/2mg(ξ), ξ = x/t1/2m, (3.2)

is the fundamental solution (the self-similar kernel) of the linear operator ∂/∂t − A. The
function g is the unique radial solution of the elliptic equation

Cg ≡ Ag +
1

2m
ξ · ∇g +

N

2m
g = 0 in RN ,

∫
RN

g(ξ) dξ = 1. (3.3)

On the interval (0, T ) of the classical solvability, both integral and differential equations give
the same solution u(x, t).

Now, as in [14], given the integral evolution equation (3.1), we construct the correspond-
ing order-preserving majorizing equation. The function g satisfies the following estimate, see
[6].

Proposition 3.1. Let m > 1. There exist constants D > 1 and d > 0 depending on m and
N such that

|g(η)| < D F (η) ≡ Dω1 e−d|η|α in RN , (3.4)

where

α =
2m

2m− 1
∈ (1, 2) and ω1 =

(∫
RN

e−d|η|α dη

)−1

.
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We next introduce the majorizing kernel

b̄(x, t) = t−N/2mF (η), η = x/t1/2m, (3.5)

which is strictly positive for t > 0. Therefore, the corresponding majorizing integral equation

v(t) = b̄(t) ∗ v0 +
∫ t

0

b̄(t− s) ∗ (Df(v(s))) ds, t > 0, (3.6)

describes an order-preserving evolution with the usual partial order: given two solutions v(t)
and ṽ(t) of (3.6),

v0 ≤ ṽ0 ⇒ v(t) ≤ ṽ(t) for t > 0.

The nonlinear term is a locally Lipschitz map and local existence and uniqueness are straight-
forward, see [22, Chapt. 15]. In particular, we have the positivity property:

v0 ≥ 0, v0 6≡ 0 =⇒ v(t) > 0 for t > 0. (3.7)

By comparing (3.1) and (3.6), we deduce the following result on the Comparison Principle
duality between the semilinear parabolic equation and the integral majorizing one, cf. [14].

Theorem 3.2. The integral equation (3.6) is majorizing for the 2m-th order parabolic
equation (1.2) in the following sense:

D|u0(x)| ≤ v0(x) in RN =⇒ |u(x, t)| ≤ v(x, t) for x ∈ RN , t > 0. (3.8)

Proof. We have that v(t) solves the integral inequality

v(t) ≥ b̄(t) ∗ (D|u0|) +
∫ t

0

b̄(t− s) ∗ (Df(v(s))) ds, t > 0, (3.9)
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On the other hand, it follows from (3.1) and Proposition 3.1 that

|u(t)| ≤ |b(t)| ∗ |u0|+
∫ t

0

|b(t− s)| ∗ |f(u(s))|ds

≤ |Db̄(t)| ∗ |u0|+
∫ t

0

|Db̄(t− s)| ∗ f(|u(s)|) ds.

(3.10)

Using (3.9), (3.10), we conclude that the difference w = v − |u| satisfies the linear integral
inequality

w(t) ≥
∫ t

0

Db̄(t− s) ∗ (f(v(s))− f(|u(s)|) ds ≡
∫ t

0

K(t)w(s) ds, t > 0, (3.11)

with the positive integral operator

K(t)w(s) = Db̄(t− s) ∗ [f ′(ξ(s))w(s)],

with strictly positive kernel. Here ξ(s) ∈ (|u(s)|, v(s)) denotes intermediate points obtained
via Lagrange’s formula of finite increments. Since D > 1, we have w(0) = v0 − |u0| ≥
v0 −D|u0| ≥ 0. If w(0) > ε > 0 in RN , then the integral inequality with positive operator
implies that w(t) ≥ 0 for all t > 0, see below. See [2] for more details.

4. A lower blow-up rate estimate via the majorizing order equation. For
m > 1, the majorizing integral equation (3.6) is not generated by a semigroup unlike the
second-order case m = 1, where b(t)∗u0 = e∆t u0 > 0 and the semigroup is order-preserving
since b(t) > 0 for t > 0. Therefore, solutions v(x, t) are not time-translational invariant.
Nevertheless, the spatially homogeneous solutions V = V (t) satisfying the integral equation
(we recall that

∫
b̄(t) ≡ 1)

V (t) = V (0) +
∫ t

0

Df(V (s)) ds, t > 0,
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and hence the ODE

V ′ = Df(V ), t > 0; V (0) > 0, (4.1)

admit translation in time, so that V (t + τ) is a solution of the majorizing equation for any
constant time-shift τ .

In view of the order-preserving majorizing evolution, we now compare u(x, t) with such
spatially homogeneous solutions V = V (t) and obtain the following simple estimate from
above of the solutions and hence a lower estimate of the blow-up time.

Corollary 4.1. Denote m0 = sup |u0(x)| > 0. Then

|u(x, t)| ≤ V (t) < ∞, 0 < t < t0 =
1
D

∫ ∞

m0D

dz

f(z)
, (4.2)

where V (t) > 0 is the solutions of the ODE (4.1) with initial data V (0) = Dm0.

Finally, we establish the lower estimate by means of an intersection-like property of the
solutions u(x, t) and VT (t), VT (T ) = ∞, having the same blow-up time T . As we mention
above, the same estimates based on such intersection properties play a fundamental role
for the blow-up analysis in the second-order case m = 1, see [21, Chapt. 4] and references
therein.

Theorem 4.2. Let u(x, t) and V = VT (t) solving (4.1) have the same finite blow-up time
T > 0. Then, for any t ∈ [0, T ), the function D|u(·, t)| intersects VT (t), so that

‖u(t)‖∞ > D−1VT (t), t ∈ [0, T ). (4.3)

Proof. Assume for contradiction that D|u(x, t0)| < VT (t0) in RN for some t0 ∈ [0, T ). By
continuity, there exists a small ε > 0 such that

D|u(x, t0)| < VT (t0 − ε) ≡ VT+ε(t0), x ∈ RN .

http://www.river-valley.com
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By the comparison Theorem 3.2 we have that |u(x, t)| < VT+ε(t) for all t ∈ [t0, T ). This
means that at t = T , the solution satisfies |u(x, T )| < VT+ε(T ) < ∞ and hence is uniformly
bounded at its blow-up time, whence a contradiction follows.

As a consequence of the result we obtain the following lower L∞-estimate on blow-up
solutions:

‖u(·, t)‖∞ > D−1VT (t) = D−1 exp{[(γ − 1)D(T − t)]−1/(γ−1)(1 + o(1))},

as t → T−.
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