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NUMERICAL MODELING OF THE SIMULTANEOUS HEAT
AND MOISTURE TRANSFER

JOSEF DAĹıK∗ AND JIŘ́ı SVOBODA†

Abstract. An original model for the simultaneous transfer of heat and moisture (water in the forms
of ice, liquid and vapour) in porous media has been presented in Daĺık, Svoboda [1]. In this paper, we
briefly describe the model and then present its numerical implementation as well as results of numerical
simulation of the process in a brick.
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1. Introduction. The modeling of the process of heat and moisture transfer in
porous materials is of essential importance in civil engineering. The most commonly
used materials have porous structure and understanding of this process is decisive for
the control of durability of building constructions. There exists a lot of reasons why
to search after mathematical models enabling simulations of this process under various
conditions which can appear in natural and technical systems. The theoretical basis
for this modeling has been developed intensively during the last years. Lots of technical
papers and in the last years also monographs are devoted to this problem. One of the first
and most comprehensive monographs dealing with these processes and their interaction
with other processes, especially with soil consolidation, is Lewis, Schrefler [5].

In Section 2, we briefly describe the model and its basic properties. In the following
Section 3 we describe the used numerical method and finally, in Section 4, we present
results of a numerical simulation.

2. The model. We work with two independent variables x ∈ Ω ⊂ Rn, n = 1, 2, 3,
t ∈ (0, tmax) and as state variables we use the effective stress

S(x, t) = h(x)g − σ(x, t)
%(x, t)

[m2s−2]

and absolute temperature T (x, t) [K] with

h [m] the height above a chosen fixed level ,
g [m s−2] the gravitational constant ,
σ [Nm−2] the hydrostatic pressure,

% [kg m−3] the density of condensed water .

The model consists of the following two differential equations

Ṁ −∇(a11∇S + a12∇T ) = 0, (2.1)
Ḣ − ∇(a21∇S + a22∇T ) = 0, (2.2)
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the initial conditions

S(x, 0) = S0(x), T (x, 0) = T0(x), x ∈ Ω (2.3)

and the boundary conditions

− ai1
∂S

∂~n
− ai2

∂T

∂~n
= gi(x, t, S, T ), x ∈ ∂Ω, t ∈ (0, tmax), (2.4)

which prescribe the intensity of flow of moisture for i = 1 and of heat for i = 2. The
dots over M, H mean complete time-derivatives, ~n is the outer unit normal vector to the
domain Ω,

M = u +
(

ε− u

%

)
ϕc0 [kg m−3]

is the moisture in 1 m3,

u [kg m−3] is the amount of condensed water in 1 m3

ε [−] is the porosity
ϕc0 [kg m−3] is the amount of vapour in 1 m3,

and

H = hm%m + hsu(1− χ) + hluχ + hv

(
ε− u

%

)
ϕc0 [J kg−3]

is the enthalpy in 1 m3 with

hm = cmτ, hs = csτ, hl = Lsl + clτ,

hv = Lsl + clτb + Llv + cv(τ − τb) [J kg−1].

The above–used symbols have the following meanings
%m [kgm−3] the mass of the porous material per unit volume,
cm [J kg−1K−1] the heat capacity of the porous material,
cs [J kg−1K−1] the heat capacity of the solid,
cl [J kg−1K−1] the heat capacity of the liquid,
cv [J kg−1K−1] the heat capacity of the vapour,
τb [0C] the temperature of boiling of water,
Lsl [J kg−1] the latent heat of melting at τ = 0 0C and
Llv [J kg−1] the latent heat of evaporation at τ = τb

0C
and hm, hs, hl, hv, respectively, means the amount of the enthalpy in 1 kg of porous

material, ice, liquid, vapour, respectively. Furthermore,

a11 = ξ + D a12 =
D Llv

T
a21 = hlξ + hvD a22 = λ + hva12

and ξ, D, λ mean the conductivity of condensed water, diffusivity of vapour, conduc-
tivity of heat, consecutively. We have found the following formulas for these material
characteristics for brick :

ξ = 1.23 · 10−2

(
u

%

)2

exp
(
−1883.1

T

)
[kg m−3s],

D = 5.05 · 10−5T−0.19

(
1− u

ε%

)
exp

(
− σ

461.9%T
− 5205

T

)
[kg m−3s],

λ = 0.45 + (0.185 + 0.0013T )
u

%
[Jm−1s−1K−1].
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D = 5.05 · 10−5T−0.19

(
1− u

ε%

)
exp

(
− σ

461.9%T
− 5205

T

)
[kg m−3s],

λ = 0.45 + (0.185 + 0.0013T )
u

%
[J m−1s−1K−1].

As it is apparent from the above descriptions, the properties of the model depend on
the function u = u(S, T ), called a sorption isotherme, essentially. The amount u of
condensed water in 1 m3 of a porous material is a result of an experiment organized
as follows. A completely dry specimen of the porous material is included into a space
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Figure 1 : Schematic experiment

with constant temperature and constant air humidity. See Fig. 1. The specimen
sucks moisture from the surrounding air and accumulates it in its pores. The end of
this process can be identified by the stop of increase of weight of the specimen. It is
interesting to note that, if the experiment starts with the specimen filled by water,
the final amount of condensed water in its porous structure will be greater than for
the dry specimen. This is a consequence of some special microscopic behaviour of
the porous structure, as explained in [1]. The sorption isotherme depends on the
temperature only weakly, but it is typical that, as a function of σ, it has a hysteresis.
A schematic plot of the function u for fixed temperature illustrating these properties
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Figure 2 : Typical drying and wetting isothermes for porous materials

Fig. 2.1. Schematic experiment.

As it is apparent from the above descriptions, the properties of the model depend on the
function u = u(S, T ), called a sorption isotherme, essentially. The amount u of condensed
water in 1 m3 of a porous material is a result of an experiment organized as follows. A
completely dry specimen of the porous material is included into a space with constant
temperature and constant air humidity. See Fig. 2.1. The specimen sucks moisture
from the surrounding air and accumulates it in its pores. The end of this process can
be identified by the stop of increase of weight of the specimen. It is interesting to note
that, if the experiment starts with the specimen filled by water, the final amount of
condensed water in its porous structure will be greater than for the dry specimen. This is
a consequence of some special microscopic behaviour of the porous structure, as explained
in [1]. The sorption isotherme depends on the temperature only weakly, but it is typical
that, as a function of σ, it has a hysteresis. A schematic plot of the function u for fixed
temperature illustrating these properties can be found in Fig. 2.2. The hysteresis is the
smaller, the more homogeneous the porous structure is. These properties of the sorption
isothermes are the main reason, why the process of heat and moisture transfer in porous
media is strongly non-linear and irreversible.
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3. Numerical simulation of the heat and moisture transfer. There exists
an extensive amount of various programming systems modeling the process of heat and
moisture transport. A systematic development of differential equations for this and similar
processes can be found in Lewis, Schrefler [5]. It is applicable to the extension of this model
by mechanical deformation of the porous skeleton and by any other related processes.
But there exists a theoretical analysis neither of basic properties of the models nor of
numerical methods for their approximate solutions. The problem is strongly non-linear
and non-potential, so that standard mathematical tools for the existence of exact solution
in any sense cannot be used. Certain abstract sufficient conditions for existence of a week
solution of problems of this kind have been formulated in Vala [4], but it is not known
whether the above problem does really satisfy these conditions. Other technique, used in
Daĺık, Daněček, Št’astńık [2], could possibly give us local existence of the classical solution
under rather strong non–realistic smoothness conditions.

In our treatment, we describe a combination of the implicit Euler method for the
discretization in time and of the standard finite difference method for the discretization
in space. If we put

X(x, t) =
(

S
T

)
, G(x, t,X) =

(
g1

g2

)
, O =

(
0
0

)
,

E(X) =

 ∂M
∂S

∂M
∂T

∂H
∂S

∂H
∂T

 and A(X) =
(

a11 a12

a21 a22

)

then we obtain the following forms of the system of equations (2.1), (2.2) and of the
boundary conditions (2.4)

E(X) Ẋ −∇ (A(X)∇X) = O,

−A(X)
∂X

∂~n
= G(x, t,X).

3.1. Discretization in time. Let us choose a natural number r and put k =
tmax/r, tj = j k for j = 0, 1, . . . , r. Instead of S(x, t), T (x, t), we find functions S0(x),
S1(x), . . . , Sr(x) and T 0(x), T 1(x), . . . , T r(x) such that the vector-function X0(x) =
(S0(x), T 0(x))> is equal to (S0(x), T0(x))> and for j = 1, . . . , r, the vector-functions
Xj(x) =

(
Sj(x), T j(x)

)> are approximations of the exact solutions X(x, tj) of the prob-
lem (2.1)–(2.4) satisfying the following non-linear boundary–value problem (3.1), (3.2).

E(Xj) Xj −∇
(
kA(Xj)∇Xj

)
= E(Xj) Xj−1 for x ∈ Ω, (3.1)

−A(Xj)
∂Xj

∂~n
= G(x, tj , X

j) for x ∈ ∂Ω. (3.2)

For a fixed j, we assume that Xj−1 is known and we solve the problem (3.1), (3.2) by
putting Y0 = Xj−1 and, consecutively for i = 1, 2, . . . , by computing Yi as a solution of
the linear boundary-value problem

E(Yi−1) Yi −∇ (kA(Yi−1)∇Yi) = E(Yi−1)Y0, (3.3)
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−A(Yi−1)
∂Yi

∂~n
= G(x, tj , Yi−1) (3.4)

and we put Xj = Yi whenever a certain norm ‖Yi − Yi−1‖ is less than a given small
positive number.

3.2. Discretization in space. We describe the discretization with respect to the
spatial variable x of the problem (3.3), (3.4) for a fixed index i by the standard finite
difference method in the case n = 1 only. In this case, we denote the interval Ω by
(a, b), put E(x) = E(Yi−1), A(x) = A(Yi−1), y(x) = Yi, v(x) = E(Yi−1) Y0 and g(x) =
G(x, tj , Yi−1), so that the problem (3.3), (3.4) attains the form

E(x)y − k (A(x)y′)′ = v(x), (3.5)

A(a)y′(a) = g(a), −A(b)y′(b) = g(b). (3.6)

For a natural number m, let a = x0 < x1 < · · · < xm = b be a uniform mesh with
discretization step h = b−a

m . By means of the standard finite-difference approximation of
the system of equations (3.5), we obtain the linear equations

− kA(xj−1)yj−1 +
(
2kA(xj) + E(xj)h2

)
yj − kA(xj+1)yj+1 = h2v(xj) (3.7)

for j = 1, . . . ,m − 1 and discretization of the boundary conditions (3.6) gives us the
remaining two equations

A(a)(y1 − y0) = hg(a), A(b)(ym−1 − ym) = hg(b) (3.8)

for the unknown approximations yj of the vectors y(xj) for j = 0, . . . ,m.
A possible analysis of discrete solutions of similar non–linear problems is briefly out-

lined in [5] and the tools presented in the monographs Kurpel [3], Rall [6] may appear to
be applicable successfully.

4. Numerical experiment. We are searching for the steady state of the heat and
moisture flow in the cross–section of a wall of thickness 0.1 m made from brick with
external temperatures τa(0) = 40 0C, τa(0.1) = 20 0C, with both surfaces isolated with
respect to the flow of moisture and with constant initial temperature τ(x) = 300C and
initial relative humidity ϕ(x) = 0.7 for x ∈ (0, 0.1). Hence we use the boundary conditions

−
(

a11
∂S

∂x
+ a12

∂T

∂x

)
~n = 0 and −

(
a21

∂S

∂x
+ a22

∂T

∂x

)
~n = α(T − Ta)

in the points x = 0, x = 0.1.
The resulting values of temperature τ and effective stress S in the nodes with even

indices appear in Table 4.1. Due to our boundary conditions, the sum of flows of liquid
and vapour must equal to zero. Our approximations of flows of liquid and vapour in
the first and last intervals appear in Table 4.2 and schematic illustrations of the graphs
of these flows can be found in Fig. 4. These results indicate that the steady state is a
dynamic one in the following sense: Vapour flows from places of higher temperature to
places of lower temperature (in the positive direction of the x-axis) and then condensates
to liquid. The same amount of liquid flows in the opposite direction and then evaporates
to vapour. In the following Table 4.3, we compare the intensities of heat flow through the
porous material skeleton by heat conduction, transported by vapour and by liquid through
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i 0 2 4 6 8 10
τ(xi) 36.506 33.904 31.301 28.699 26.096 23.494
S(xi) 50108.4 50108.3 50108.2 50108.2 50108.1 50108.0

Table 4.1

interval [x0, x1] [x9, x10]
flow of liquid −.7973 10−6 −.3282 10−6

flow of vapour .7908 10−6 .3255 10−6

Table 4.2

medium porous material vapour liquid
heat in [J m−2s−1] 75.75 1.35 −0.066

Table 4.3

6 J. DAĹıK AND J. SVOBODA

The resulting values of temperature τ and effective stress S in the nodes with
even indices appear in Table 1. Due to our boundary conditions, the sum of flows of

i 0 2 4 6 8 10
τ(xi) 36.506 33.904 31.301 28.699 26.096 23.494
S(xi) 50108.4 50108.3 50108.2 50108.2 50108.1 50108.0

Table 1

liquid and vapour must equal to zero. Our approximations of flows of liquid and
vapour in the first and last intervals appear in Table 2 and schematic illustrations of
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Figure 3 : Steady state of flow of vapour and liquid across the brick wall

steady state is a dynamic one in the following sense : Vapour flows from places of
higher temperature to places of lower temperature (in the positive direction of the x-
axis) and then condensates to liquid. The same amount of liquid flows in the opposite
direction and then evaporates to vapour. In the following Table 3, we compare the
intensities of heat flow through the porous material skeleton by heat conduction,
transported by vapour and by liquid through the middle point x5. We can see that
the heat transported by vapour represents 1.8% of the heat transported through the

medium porous material vapour liquid
heat in [J m−2s−1] 75.75 1.35 −0.066

Table 3

porous material skeleton. Of course, this amount may play important role in the
thermal bilance of walls made from better insulating porous materials.
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Fig. 4.1. Steady state of flow of vapour and liquid across the brick wall.

the middle point x5. We can see that the heat transported by vapour represents 1.8 % of
the heat transported through the porous material skeleton. Of course, this amount may
play important role in the thermal bilance of walls made from better insulating porous
materials.
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