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HYPERBOLIC EQUATIONS AND SYSTEMS WITH DISCONTINUOUS
COEFFICIENTS OR SOURCE TERMS

T. GALLOUËT∗

Abstract. This paper is devoted to the study of some nonlinear hyperbolic equations or systems
with discontinuous coefficients or with source terms. The common feature of the considered problems
is the fact that the jacobian matrix of an associated autonomous system is not diagonalizable in R for
many values of the unknown (leading to linear ill posed problems). However, the nonlinear problems
appear to be well posed (at least numerically, in the case of systems) in usual functional spaces, even for
discontinuous solutions.
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1. Introduction. In this paper, we present different problems whose common fea-
ture is that they correspond to hyperbolic resonant systems, which one defines below.

Let p ∈ N? and A be a real p×p matrix. One considers the following Cauchy problem,
where the unknown is the function W from R× R+ to Rp:

Wt(x, t) +AWx(x, t) = 0, (x, t) ∈ R× R+,

W (x, 0) = W0(x), x ∈ R.
(1.1)

The notation (·)t stands for the derivative with respect to t and (·)x stands for the
derivative with respect to x.

If A is diagonalizable in R, the first equation of Problem (1.1) is a linear hyperbolic
system and Problem (1.1) has a unique weak solution, whatever is W0 in L∞(R,Rp) (the
Lebesgue space of essentially bounded functions on R ,with values in Rp).

If the matrix A has only real eigenvalues but is not diagonalizable, the first equa-
tion of Problem (1.1) is said to be a “linear hyperbolic resonant system”. In this case,
Problem (1.2) is ill posed in the sense that if W0 ∈ L∞(R,Rp) it has, in general, no weak
solution W ∈ L∞(R×R+,Rp) (however, Problem (1.1) is well posed in C∞ since it has a
unique solution in C∞(R×R+,Rp) if the initial datum W0 belongs to C∞(R,Rp)). This
ill posedness is due to the fact that there is a lack of regularity between W (·, t) (for t > 0)
and W0. For instance, the Riemann problem, that is Problem (1.1) with W0(x) = Wl for
x < 0 and W0(x) = Wr for x > 0 (and Wl, Wr ∈ Rp), does not have a weak solution
in L∞(R× R+,Rp) (except for very particular choices of W0), but it has a solution in a
greater space. In the case p = 2, it has a (unique) solution in a space allowing W (·, t) to
be, for t > 0, a measure on the bounded sets of R, see Section 2 below (in the case p ≥ 3,
the solution W (·, t) may even be less regular).

One considers now that the matrix A in (1.1) is depending on W , leading to the
following nonlinear system:

Wt(x, t) +A(W (x, t))Wx(x, t) = 0, (x, t) ∈ R× R+,

W (x, 0) = W0(x), x ∈ R.
(1.2)
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The unknown W is supposed to take values in an admissible set D ⊂ Rp.
If the matrix A(w) is diagonalizable in R for all w ∈ D, the first equation of Problem

(1.2) is a nonlinear hyperbolic system and Problem (1.2) is expected to be well posed,
in a convenient sense (including, for instance, entropy conditions). This well posedness
could be suggested by the fact that the linear problem (1.1) with A = A(w) is well posed
for any w ∈ D.

Assume now that there exists R ⊂ D, R 6= ∅, such that the matrix A(w) is diago-
nalizable in R for all w ∈ D \ R and has only real eigenvalues but is not diagonalizable
if w ∈ R. Then, the first equation of Problem (1.2) is said to be a “nonlinear hyperbolic
resonant system”. The linear problem (1.1) is ill posed (in L∞) if A = A(w), for any
w ∈ R (since it corresponds to a linear hyperbolic resonant system). One presents below
two examples where Problem (1.2) has a unique solution in L∞ (in a convenient sense)
for a large class of initial data in L∞, including cases where, for instance, W0(x) ∈ R
for all x ∈ R. Indeed, in the first example (two phase flow in an heterogeneous porous
medium) one has existence and uniqueness of solution in a convenient sense (weak entropy
solution). For the second example (Saint Venant Equations with topography), one only
shows the good behavior of some numerical schemes (even if these numerical schemes use,
for the computation of numerical fluxes, the resolution of the Riemann problem for some
linear hyperbolic resonant systems).

One considers in this paper that the space variable x belongs to R, but extensions to
x ∈ Rd, d = 2 or 3, are possibles.

In Section 2, the solution of the Riemann problem of a linear resonant system is
given (for p = 2), along with a first example of an academic nonlinear resonant system.
In Sections 3–5, examples of nonlinear resonant systems (coming from some models in
fluid mechanic) are given. Then, in Section 6 are presented some numerical schemes and,
in Section 7, some numerical results.

2. Linear resonant systems. Let p = 2 and A be a real 2 × 2 matrix which has
only real eigenvalues but is not diagonalizable. Then, using a change of unknown, the
Riemann problem for the linear problem (1.1) can be put under the following form, with
some λ ∈ R (which is the unique eigenvalue of A):

[
u
v

]
t

+
[
λ 1
0 λ

] [
u
v

]
x

= 0,

[
u(x, 0)
v(x, 0)

]
=

[
ul

vl

]
, if x < 0, and

[
ur

vr

]
, if x > 0,

with ul, ur, vl, vr ∈ R. The second equation of the system and the second initial condition
are decoupled from the first ones. Then, the unique weak solution for v (uniqueness holds
even in the larger possible space of distributions) is v(·, t) = v(· − λt, 0) for all t > 0. It
is now possible to give the solution for u (which is also unique in in the larger possible
space of distributions), it is, for all t > 0:

u(·, t) = ul1{x∈R, x<λt} + ur1{x∈R, x>λt} + t(vl − vr)δλt,

where 1B is the characteristic function of B, for B ⊂ R, and δa is the Dirac mass at point
a, for a ∈ R. In this example, the problem has no solution in L∞(R×R+,R2) but it has
a unique weak solution in a space allowing u(·, t) to be a measure on the bounded sets
of R.
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If p > 2, the (unique) solution of the Riemann problem for a linear hyperbolic resonant
system may be even less regular. Indeed, the regularity of the solution depends on the
difference between the algebraic and the geometric multiplicity of the eigenvalues.

The Riemann problem for a nonlinear hyperbolic resonant system is also often ill
posed, as in the following academic simple example:

ut + (au)x = 0,
at = 0,

[
u(x, 0)
a(x, 0)

]
=

[
ul

al

]
, if x < 0, and

[
ur

ar

]
, if x > 0, (2.1)

Problem (2.1) has no weak solution in L∞(R×R+,R2) if al > 0, ar < 0 and alul 6= arur

and has infinitely many solution if al < 0 and ar > 0. See [4] for the study of such
problems.

Problem (2.1) correspond to a nonlinear hyperbolic resonant system since the system
is equivalent (for regular solution) to:[

u
a

]
t

+
[
a u
0 0

] [
u
a

]
x

= 0.

Then, Resonance occurs, for this system, when a = 0 and u 6= 0 and, as it is said before,
the Riemann problem for this nonlinear system is ill posed in L∞(R× R+,R2) provided
that 0 is between ar and al (except for some particular data).

3. Hyperbolic equation with a discontinuous coefficient. The first example
of a nonlinear resonant system which leads to a well posed problem in L∞, described in
this section, is given by a two phase flow in an heterogeneous porous medium, considering
only gravity effect (without capillarity and with a total flux equal to zero). The unknown
is the saturation, which is a function u : R×R+ → [0, 1] ⊂ R. The equation is (forgetting
the variable (x, t)):

ut + (kg(u))x = 0, in R× R+, (3.1)

where k(x) = kl, for x < 0, and k(x) = kr, for x > 0, kl, kr > 0, kl 6= kr, the function
g : [0, 1] → R is Lipschitz continuous, nonnegative and such that g(0) = g(1) = 0. A
typical example, studied in [11], is g(u) = u(1− u).

This hyperbolic equation with a discontinuous coefficient can be viewed has a con-
servative 2× 2 system, adding k has an unknown and the equation kt = 0:

ut + (kg(u))x = 0,
kt = 0.

Then, with W =
[
u
k

]
and F (W ) =

[
kg(u)
0

]
, this system is:

Wt + (F (W ))x = 0,

or equivalently (for regular solutions), with A(W ) = DF (W ):

Wt +A(W )Wx = 0.
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This leads to problem (1.2) with p = 2, W =
[
u
k

]
, A(W ) =

[
kg′(u) g(u)

0 0

]
.

The admissibility domain is D = {(u, k)t, u ∈ [0, 1], k > 0}. Assuming that g ∈ C1,
let R = {(u, k)t ∈ D, g′(u) = 0, g(u) 6= 0}. The matrix A(w) is diagonalizable in R for
w = (u, k)t ∈ D \ R and has only 0 as eigenvalue but is not diagonalizable if w ∈ R. In
the case g(u) = u(1−u), R = {1/2}×R?

+. But the domain R corresponding to resonance
may be larger. In the case corresponding to Figure 7, R contains (1/4, 3/4)× R?

+.
Despite this resonance phenomenon, it is possible to prove existence and uniqueness of

an “entropy weak solution” of (3.1) with an initial condition u0, provided that u0 ∈ L∞(R)
takes its values in [0, 1]. Actually, it is proven in [3] (previous partial results were, for
instance, in [11], [8] and [1]) that there exists a unique solution of the following weak
entropic formulation of (3.1) with the initial condition u0:

u ∈ L∞(R+ × R), 0 ≤ u ≤ 1 a.e.,∫
R+

∫
R

[|u(x, t)− κ|ϕt(x, t) + k(x)φ(u(x, t), κ)ϕx(x, t)] dxdt

+
∫

R
|u0(x)− κ|ϕ(x, 0) dx+ |kr − kl|

∫
R+

g(κ)ϕ(0, t) dt ≥ 0,

∀κ ∈ [0, 1], ∀ϕ ∈ C∞c (R× R+,R+),

where φ(s, κ) = sign(s − k)(g(s) − g(κ)) for s ∈ [0, 1]. This definition of entropy weak
solution was previously given in [13]. A crucial property, in the proof, is that the constant
functions 0 and 1 are solutions of (3.1). Using this same property, a similar result of
existence and uniqueness was proven recently in [2] when k(x)g(u) is replaced by g(x, u)
provided that g(·, 0) and g(·, 1) are some constants functions.

4. Hyperbolic system with a source term. The second example of a nonlinear
hyperbolic resonant system come from the modelization of shallow water. Considering
a non-flat bottom, a classical model is obtained with the nonlinear hyperbolic system
of Saint Venant Equations with a source term coming form the topography, which is
given by a known function z, Lipschitz continuous, from R to R (actually, this model is
probably not correct for a discontinuous topography, that is a discontinuous function z).
The unknowns, for this model, are: h, u : R × R+ → R (with h > 0) and the model
reads:

ht + (hu)x = 0,

(hu)t + (hu2 +
1
2
gh2)x = −ghzx,

(4.1)

where g is the gravity constant.
This 2 × 2 conservative hyperbolic system with a source term can be viewed has a

nonconservative 3 × 3 hyperbolic resonant system, adding z has an unknown and the
equation zt = 0, namely:

Wt + (F (W ))x +B(W )Wx = 0, (4.2)

where W =

 h
hu
z

, F (W ) =

 hu
(hu)2

h + 1
2gh

2

0

 and B(W ) =

 0 0 0
0 0 gh
0 0 0

.

Setting A(W ) = DF (W ) + B(W ) =

 0 1 0
−u2 + gh 2u gh

0 0 0

, this system is equivalent
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(for regular solutions) to:

Wt +A(W )Wx = 0, (4.3)

which is a hyperbolic resonant system since the eigenvalues of A(W ) are u±c and 0, with
c =

√
gh, and A(W ) is not diagonalizable if u− c = 0 or u+ c = 0 (and h > 0). Then, for

this example, the admissible domain is D = {(h, q, z)t, h > 0} and the resonant domain
is R = {(h, q, z)t, u+ c = 0 or u− c = 0}, with u = q/h.

Following [5], the Riemann problem associated to System (4.2) (or (4.3)) has, in
general, a unique solution composed of constant states and waves, satisfying a classical
entropy condition and assuming continuity of (the Riemann invariants) hu and ψ at
the contact discontinuity (at x = 0) with ψ = 1

2u
2 + g(h + z) (which is the natural

condition at the contact discontinuity). Indeed, the Riemann problem has for some very
particular choice of the initial condition, three solutions. We probably need some more
entropy criterion in order to choose between these 3 solutions. Note however that these
3 solutions are in L∞, there is not the lack of regularity described for linear resonant
systems. For a study of nonlinear hyperbolic resonant systems, one refers to [7].

Concerning the computation of the solution of the Cauchy problem associated to
(4.2) (equivalent to (4.1)) with a Lipschitz continuous topography (which is the case of
interest), using the resolution of the Riemann problem associated to (4.2), it is then
possible to design a numerical scheme (which is the Godunov scheme for the conservative
part of this system). It is also possible to design schemes using a linearized version of
the Riemann problem (see Section 6). In both cases, the numerical solution seems to
converge, as the discretization steps go to 0, toward a unique solution of the Cauchy
problem, whatever is the initial condition for h and u, with h > 0. (In particular, this
solution does not seem to depend of the choice of the solution of the Riemann problem
for the exceptional cases where this solution is not unique.)

5. Euler Equations with a particular EOS. One quotes here an ongoing work
of E. Godlewki and N. Seguin. It concerns the isentropic Euler equations with an EOS
taking into account a simple model of “phase transition”, that is:

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0

and the EOS is given by:

p = a1ρ, if 0 < ρ < ρ1,

p = a1ρ1, if ρ1 ≤ ρ ≤ ρ2,

p = a2ρ, if ρ2 < ρ,

where ρ1, ρ2, a1, a2 are given constants, 0 < ρ1 < ρ2, 0 < a1, a1ρ1 = a2ρ2.
For ρ1 ≤ ρ ≤ ρ2 and any u, the jacobian matrix of this system has u as unique

eigenvalue and is not diagonalizable (and the 2 genuinely nonlinear fields lead to a linearly
degenerate field). Then, D = {(ρ, q)t, ρ > 0} and the resonant domain is R = {(ρ, q)t,
ρ1 ≤ ρ ≤ ρ2}. For this system, the Riemann problem has a unique solution composed of
constant states and waves, assuming convenient entropy conditions, see [10].

6. Discretization by Finite Volume Schemes. In this section, one considers the
discretization of the Cauchy problems described in Sections 3–4, the general form of which
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is:

Wt + (F (W ))x +B(W )Wx = 0,

W (·, 0) = W0.
(6.1)

The time and space steps are denoted by δt and δx. For simplicity, they are assumed
to be constant. Let tn = nδt and xi+1/2 = (i + 1/2)h for n ∈ N and i ∈ Z. The
approximate solution is defined by the family {Wn

i , i ∈ Z, n ∈ N} ⊂ R, where W i
n is the

value of the approximate solution at time for t ∈ (tn, tn+1) and in the control volume
Mi = (xi−1/2, xi+1/2).

The initial condition is used to compute {W 0
i , i ∈ Z}:

W 0
i =

1
δx

∫ x
i+ 1

2

x
i− 1

2

W0(x) dx, for i ∈ Z. (6.2)

One describes now two possibilities for the computation of {Wn+1
i , i ∈ Z} using {Wn

i ,
i ∈ Z}. The first one uses the resolution of the Riemann problem associated to (6.1), it
is a generalization of the Godunov scheme for a nonconservative system, the second one
uses a linearized Riemann problem.

6.1. Godunov scheme for a nonconservative system. Let Wl, Wr ∈ Rp. The
solution of the Riemann problem for Wl and Wr (that is the solution of (6.1) with
W (x, 0) = Wl if x < 0 and W (x, 0) = Wr if x > 0) is a self similar function. It is
denoted by W (x, t) = R(x/t,Wl,Wr) and one sets W ?,±(Wl,Wr) = R(0±,Wl,Wr). The
values W ?,±(Wl,Wr) are always well defined, even if {x = 0} is a line of discontinuity
for W . Note that in the examples given in Sections 3-4, it is possible to compute this
solution (actually, in the case of Section 4, as we said before, this solution is sometimes
not unique).

Then, the Godunov scheme for a nonconservative system is defined by:

Wn+1
i −Wn

i

k
+ Fn,−

i+ 1
2
− Fn,+

i− 1
2

+B(Wn
i )(Wn,−

i+ 1
2
−Wn,+

i− 1
2
) = 0, i ∈ Z, n ∈ N,

with Fn,±
i+ 1

2
= F (Wn,±

i+ 1
2
) and Wn,±

i+ 1
2

= W ?,±(Wn
i ,W

n
i+1).

This scheme is very efficient. It uses, as usual for an explicit scheme, a CFL condition
which reads δt ≤ Cδx where C is computed with the eigenvalues of A(W ) = DF (W ) +
B(W ). It is sometimes too expansive and it is the reason of the introduction, in the
following section, of a modified scheme, using a linearized Riemann problem.

In the case of a conservative system, namely B(W ) = 0 for all W , the scheme is the
classical Godunov scheme and one has Fn,+

i+1/2 = Fn,−
i+1/2, even if Wn,+

i+1/2 6= Wn,−
i+1/2, thanks

to the Rankine-Hugoniot condition for the solution of the Riemann problem.
In the case of Saint Venant Equations with topography, described in Section 4, one

has zn,−
i+1/2 = zn,+

i−1/2 = zn
i and then B(Wn

i )(Wn,−
i+1/2−W

n,+
i−1/2) = 0. The nonconservativity

of the system (that is the source term in (4.1)) appears only in the fact that, generally,
Fn,+

i+1/2 6= Fn,−
i+1/2.

6.2. VFRoe-ncv scheme. The objective is still the discretization of Problem (6.1).
Recall that the unknown W is a function from R×R+ to D ⊂ Rp, where D is the so-called
admissible domain (The domain D is, for instance, R?

+ × R × R for the system studied
in Section 4). One sets A(w) = DF (w) +B(w) for w ∈ D, where DF (w) is the jacobian
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matrix of F at point w ∈ D. The scheme presented in this section uses the resolution of
linear Riemann problems.

Let φ be a regular function of D ⊂ Rp to Rp . It is not necessary to assume that
φ is one-to-one from D to Ra(φ) = {φ(w), w ∈ D}. It is sufficient to assume the two
following properties for φ, where Mp(R) is the set of p × p matrix with real values and
Dφ(w) is the jacobian matrix of φ at point w ∈ D:

1. There exists C ∈ C(D,Mp(R)) such that Dφ(w)A(w) = C(w)Dφ(w), for all
w ∈ D.

2. There exist F̃ ∈ C(Ra(φ),Rp) and B̃ ∈ C(D,Mp(R)) such that F (w) = F̃ (φ(w))
and B(w)=B̃(w)Dφ(w) for all w ∈ D.

Indeed, the first property on φ (existence of the matrix C(w)) seems necessary. It allows
the definition of the linear Riemann problem (6.4). The second property is perhaps
not necessary, but without this hypothesis the numerical flux of the scheme may be not
uniquely defined and this may lead to some troubles.

Let W : R×R+ → D be a regular solution of Wt +A(W )Wx = 0. Then, Y = φ(W )
satisfy Yt +Dφ(W )A(W )Wx = 0 and, thanks to the first hypothesis on φ, the function
Y satisfies:

Yt + C(W )Yx = 0. (6.3)

It is now possible to describes the VFRoe-ncv scheme associated to φ. For wl, wr ∈ Rp,
one sets wl,r = (wr + wl)/2 (it is possible to take another mean value between wl and
wr) and considers the following linear Riemann problem:

Yt + C(wl,r)Yx = 0,

Y (x, 0) =

{
yl = φ(wl) if x < 0,

yr = φ(wr) if x > 0.

(6.4)

If C(wl,r) is diagonalizable in R, Problem (6.4) has a unique solution. It is a self
similar function: Y (x, t) = LR(x

t , yl, yr). Then one sets:

y?,±(wl, wr) = LR(0±, yl, yr).

If C(wl,r) has only real eigenvalues but is not diagonalizable in R, the first equation of
(6.4) is a linear hyperbolic resonant system. In this case, Problem (6.4) has also a unique
solution but it is not, in general, a function (see Section 2). However, LR(0±, yl, yr) is
always well defined and it is also possible to set y?,±(wl, wr) = LR(0±, yl, yr).

The VFRoe-ncv scheme associated to φ is (6.2) and:

Wn+1
i −Wn

i

k
+ Fn,−

i+ 1
2
− Fn,+

i− 1
2

+ B̃(Wn
i )Dφ(Wn

i )(Y n,−
i+ 1

2
− Y n,+

i− 1
2
) = 0, i ∈ Z, n ∈ N,

with Fn,±
i+ 1

2
= F̃ (Y n,±

i+ 1
2
) (assuming that Y n,±

i+ 1
2
∈ Ra(φ)), Y n,±

i+ 1
2

= y?,±(Wn
i ,W

n
i+1).

In the case of a conservative system, namely B(W ) = 0 for all W , one expects to
have a conservative scheme, that is Fn,+

i+1/2 = Fn,−
i+1/2. Unfortunately, this is not necessarily

the case when Y n,+
i+1/2 6= Y n,−

i+1/2 (which is, in general, the case when 0 is an eigenvalue of

C(w) for w = (Wn
i + Wn

i+1)/2) since in this case it is possible to have F̃ (Y n,+
i+1/2) 6=

F̃ (Y n,−
i+1/2). Then, the scheme has to be slightly modified . A possible modification is to

take Fn,±
i+1/2 = (F̃ (Y n,+

i+1/2)+ F̃ (Y n,−
i+1/2))/2). Therefore, a possible drawback of the method
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seems to be the fact that the numerical flux of the scheme is not a continuous function of its
arguments when an eigenvalue change sign (namely, Fn,±

i+1/2 does not depends continuously
of Wn

i and Wn
i+1). In practice, this drawback does not seem to be so important. In the

case of a nonconservative system, a similar modification is sometimes necessary for some
components of the numerical flux, namely those corresponding to a conservation law
(without source term). This is case, for instance, for the first component of the system
of Section 4 when using φ(h, q, z) = (2

√
gh, q/h, z) described below.

As for the preceding scheme, the scheme uses a CFL condition which reads δt ≤ Cδx
where C is computed with the eigenvalues of A(W ).

One describes now some possible choices of the function φ in the cases presented in
Sections 3–4.

In the case studied in Section 3 (two phase flow in a porous medium), for w = (u, k)t ∈
D = [0, 1]× R?

+, one has F (w) = (kg(u), 0)t and B(w) = 0 (the system is a conservative
one). A simple choice of φ is φ(w) = (kg(u), k)t for w = (u, k)t. With this choice of φ,
the matrix C(w) of the linearized system (6.3) is, for w = (u, k)t:

C(w) =
[
kg′(u) 0

0 0

]
.

Then, for any w ∈ D, System (6.3) is not a resonant system, it is a linear hyperbolic system
since the eigenvalues are λ1 = kg′(u) and λ2 = 0 and two independent eigenvectors are
e1 = (1, 0)t and e2 = (0, 1)t.

In the case studied in Section 4 (Saint Venant with topography), the unknown takes
values in D = {w = (h, q, z)t ∈ R3, h > 0} and the system is a nonconservative one.
Two possible choices of φ are of particular interest, the first one is, for w = (h, q, z)t,
setting u = q/h and ψ = u2/2 + g(h+ z), φ(w) = (q, ψ, z)t. The second choice is, setting
c =

√
gh, φ(w) = (2c, u, z)t.

With the first choice, φ(w) = (q, ψ, z)t, φ is not one-to-one. The matrix C(w) of the
linearized system (6.3) is, for w = (h, q, z)t (and the same definitions of u, ψ, c):

C(w) =

 u h 0
g u 0
0 0 0

 .
Then, here also, for any w ∈ D, System (6.3) is not a resonant system, it is a linear
hyperbolic system since the eigenvalues are λ1 = 0, λ2 = u+ c and λ3 = u− c and a basis
of R3 is obtained with the three following eigenvectors:

e1 = (0, 0, 1)t, e2 = (h, c, 0)t and e3 = (−h, c, 0)t.
With the second choice, φ(w) = (2c, u, z)t, φ is one-to-one. The matrix C(w) of the

linearized system (6.3) is, for w = (h, q, z)t (and the same definitions of u, ψ, c):

C(w) =

 u c 0
c u g
0 0 0

 .
In this case, System (6.3) is a linear hyperbolic system for w ∈ D except if u+ c = 0 or
u − c = 0. When u + c = 0 or u − c = 0, System (6.3) is a linear hyperbolic resonant
system. Indeed, for any w ∈ D, the eigenvalues are λ1 = 0, λ2 = u + c and λ3 = u − c.
For the eigenvectors, three cases are possible:

• If u± c 6= 0, a basis of R3 is obtained with the 3 eigenvectors:
e1 = (cg,−ug, u2 − c2)t, e2 = (1, 1, 0)t and e3 = (1,−1, 0)t.
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• If u = c. One obtains only 2 independent eigenvectors e1 = (1,−1, 0)t and
e2 = (1, 1, 0)t.

• If u = −c, One obtains also only 2 independent eigenvectors e1 = (1, 1, 0)t and
e3 = (1,−1, 0)t.

7. Numerical results. Numerical results are very good with the schemes given in
Section 6, for the problems described in Sections 3–4.

For the problem of Saint Venant Equations with topography (Section 4), numerical
results with the so-called “Godunov scheme for nonconservative system” described in
Section 6 are presented in [5]. Numerical results with the VFRoe-ncv scheme with φ(w) =
(2c, u, z)t, described in Section 6, are presented in [6]. In [6] are also presented the way
to take into account boundary conditions and the way to perform a high order scheme.
Other efficient schemes are given in [12] and [9].

An interesting question is the preservation, by the numerical scheme, of the steady
state solutions of Problem (4.1). Actually, an admissible steady state solution of Prob-
lem (4.1) is given by two functions h, u from R×R+ to R with h > 0 and such that q = hu
and ψ = u2/2 + g(h+ z) are constant (in space and time). For the Godunov scheme (for
nonconservative system) and for the VFRoe-ncv scheme with φ(w) = (q, ψ, z)t, one has
preservation of all the admissible steady state solutions (and not only those with u = 0
which are called ”lake at rest”), provided that the discretization of the initial condition is
performed in order to have q0i and ψ0

i independent of i ∈ Z. For the VFRoe-ncv scheme
with φ(w) = (2c, u, z)t (and for other choices of φ) one has only preservation of the steady
state solutions with u = 0. However, the choice of φ(w) = (2c, u, z)t is the better choice
for the case of “dry bed areas” (corresponding to a vanishing h), see [6].
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Ex. Sol

For the problem of two phase flow in porous media (Section 3), numerical results are
presented, for instance, in [11] and [2]. An example is given below for the following case:

kl = 1, 5, kk = 1,

g(s) = 4s, if s ∈ [0, 1
4 ],

g(s) = 1, if s ∈ ( 1
4 ,

3
4 ),

g(s) = 4− 4s, if s ∈ [ 34 , 1],
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For this choice of g, Resonance occurs for all (k, u)t ∈ D = {(k, u)t, k > 0} with u ∈ ( 1
4 ,

3
4 ).

The initial condition is u0(x) = 3/8 for x < 0 and u0(x) = 5/8 for x > 0, so that u0(x) ∈ R
for a.e. x.
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