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A CLASS OF GENERALIZED STATIONARY STOKES PROBLEMS∗
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Abstract. We investigate existence and Schauder type estimates of weak solutions to a class of
generalized Stokes problem. The generalization we consider here consists in two points: Laplace operator
is replaced by a general second order linear elliptic operator in divergence form and “pressure” gradient
∇p is replaced by a linear operator of first order.
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1. Introduction. Let Ω ⊂ Rd (d ≥ 2) be a bounded domain with boundary ∂Ω. We
study a generalization of linear Stokes problem : For given f = (f1, · · · , fd) : Ω −→ Rd

and g : Ω −→ R, A =
(
Aαβ

ij

)d

i,j,α,β=1
: Ω −→ Rd2×d2

and B = (Bij)
d
i,j=1 a d× d constant

matrix we look for u = (u1, · · · , ud) : Ω −→ Rd and p : Ω −→ R solving

−div (A∇u) + B∇p = f in Ω,

div u = g in Ω,

u = 0 on ∂Ω.

(1.1)

The generalization of classical Stokes problem consists in two points: instead of Laplace
operator we consider a general second order elliptic operator in divergence form and
instead of gradient of p we consider a class of general first order linear operators. The
new feature of system (1.1) compared with classical Stokes system lies in the fact that
operators div u and B∇p (for B different from the identity matrix E) do not act as
adjoint operators in suitable Banach spaces. While existence of weak solutions and their
properties with −4u instead of −div (A∇u) and B = E has been studied for a long
time (see for instance [6], [16]) both existence and smoothness properties of solutions to
system (1.1) – as far as we know – have not been studied yet in full extent.

Our motivation to investigate system (1.1) began with study of smoothness of flows
of incompressible fluids with viscosities that depend on shear and pressure (see [17], [5],
[11], [13]).

The arrangement of the paper is as follows. In Section 2 we introduce notations and
definitions and recall some results used later. In the next section we present the existence
and Hilbert regularity results obtained in [18]. In Section 4 we show the interior Schauder
estimates of solutions based on a suitable form of Caccioppoli’s inequality.
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2. Preliminaries. Let Ω be a domain with Lipschitz boundary in Rd(d ≥ 2).
For 1 ≤ q ≤ ∞, k ∈ N ; Lq(Ω), W k,q(Ω) and W k,q

0 (Ω) denote the usual Lebesgue
and Sobolev spaces and Sobolev spaces with zero trace on the boundary. The norm of
u ∈ Lq(Ω) is denoted by

‖u‖q = ‖u‖q,Ω :=
(∫

Ω

| u |q dx

)1/q

dx.

The norm of u ∈ W k,q(Ω) is defined as

‖u‖k,q = ‖u‖k,q;Ω :=

∫
Ω

∑
|α|≤k

| Dαu |q
1/q

dx.

Further, W 1,2
0,div(Ω) =

{
u ∈ W 1,2

0 (Ω)d; div u = 0
}

where the equation div u = 0 is satisfied

in distribution sense. We denote by W−1,q′(Ω) the dual space to W 1,q
0 (Ω) for 1

q′ + 1
q = 1.

If f ∈ W−1,q′(Ω), v ∈ W 1,q
0 (Ω) we use the notation [f, v] for the value of the functional

f at v. Norms in spaces of scalar functions and of vector valued functions are denoted by
the same symbols. For µ > 0, 0 < α ≤ 1; L2,µ(Ω), L2,µ(Ω) and C0,α(Ω) denote Morrey,
Campanato and Hölder spaces with norms ‖u‖L2,µ(Ω), ‖u‖L2,µ(Ω) := ‖u‖2 + [u]2,µ;Ω and
‖u‖C0,α(Ω) , respectively.

For f : Rd → Rd we will use notations

Djf :=
∂f

∂xj
, D2

j f :=
∂2f

∂x2
j

, ∇f := (Djf)d
j=1, ∇2f := (DjDlf)d

j,l=1.

Next, we review some well-known facts needed later. We start with the following
lemma showing the property of the orthogonal projection of W 1,2

0 (BR(x0))d on
W 1,2

0,div(BR(x0)).

Lemma 2.1. Denote by

PBR(x0) : W 1,2
0 (BR(x0))d −→ W 1,2

0,div(BR(x0))

the orthogonal projection of W 1,2
0 (BR(x0))d onto W 1,2

0,div(BR(x0)). Then there is a con-
stant C > 0 such that for all Φ ∈ W 1,2

0 (BR(x0))d, we have

‖∇(PBR(x0)Φ)‖2,BR(x0) ≤ C‖div Φ‖2,BR(x0).

The constant C does not depend on x0 and R.

See in [10, Corollary 0.4].

Lemma 2.2. Let f ∈ L2(BR(x0))d with
∫

BR(x0)
f dx = 0. Then there exists a unique

solution u ∈ W 1,2
0 (BR(x0))d ∩ (W 1,2

0,div(BR(x0))d)⊥ to the equation div u=f, moreover

‖∇u‖2,BR(x0) ≤ C‖f‖2,BR(x0)

with the positive constant C which does not depend on x0 and R.

See [10, Theorem 0.3 and Corollary 0.4].
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Finally, we recall a well-know facts verified easily by iterations.
Lemma 2.3. Let f(t) be a nonnegative bounded function defined in [τ0, τ1] where τ0 ≤ 0.
Suppose that for τ0 ≤ t < s ≤ τ1 we have

f(t) ≤ [A(s− t)−α + B] + θf(s),

where A,B, α, θ are nonnegative constants with 0 ≤ θ < 1. Then for all τ0 ≤ t < s ≤ τ1

we have

f(t) ≤ C[A(s− t)−α + B],

where C is a constant depending on α and θ.

See [8, Lemma 3.1, page 161].

Lemma 2.4. Let Φ(ρ) be a nonnegative and nondecreasing function on (0, R0]. Suppose
that there are nonnegative constants A,B, α, β with α > β so that

Φ(ρ) ≤ A
[( ρ

R

)α

+ ε
]
Φ(R) + BRβ for all 0 < ρ < R ≤ R0. (2.1)

Then there exists positive ε0 = ε0(α, β, A) such that the following holds:
If (2.1) is true for some ε < ε0 then

Φ(ρ) ≤ C(α, β, A)
[( ρ

R

)α

Φ(R) + Bρβ
]
.

See [9, Section III. 2, page 51].

3. Existence and Hilbert regularity of solutions to (1.1). Let Ω ⊂ Rd (d ≥ 2)
be a bounded Lipschitz domain with boundary ∂Ω. The existence and uniqueness of
solutions for the generalized linear Stokes system which we quote further was proved
in [18].

We consider system

−div (A∇u) + B∇p = f in Ω
div u = g in Ω

u = 0 on ∂Ω.

(3.1)

Let f ∈ W−1,2(Ω)d. Recall that by a weak solution to system (3.1) we understand a
pair (u, p) ∈ W 1,2

0 (Ω)d × L2(Ω) if div u = g a.e. on Ω and

− div (A∇u) + B∇p = f (3.2)

holds in the sense of distributions, i.e.

d∑
α,β,i,j=1

∫
Ω

Aαβ
ij DβujDαvi dx−

d∑
i,j=1

∫
Ω

pDj(Bijvi) dx = [f, v] (3.3)

holds for all v ∈ W 1,2
0 (Ω)d.

For the existence of solutions, we assume that A,B satisfy the following conditions
(3a) B is a constant regular matrix,
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(3b) Aαβ
ij belong to L∞(Ω) and there is a positive ΛA such that

‖Aαβ
ij ‖∞ ≤ ΛA for all i, j, α, β = 1, · · · , d.

(3c) B−1A generates elliptic (generally nonsymetric) bilinear form on W 1,2
0 (Ω)d2

, i.e.
there exists a λ > 0 such that

a(u, v) =
∫

Ω

(B−1A∇u) : ∇v dx =
∫

Ω

d∑
α,β,i,j=1

d∑
k=1

(B−1)ikAαβ
kj Dαvi Dβvj dx

≥ λ||∇v||22 for all v ∈ W 1,2
0 (Ω)d2

.

Theorem 3.1. Let the assumptions (3a), (3b), (3c) be in force and Ω be a bounded
Lipschitz domain, let Ω0 be a nonempty subdomain of Ω and f ∈ W−1,2(Ω)d. Then
there exists unique pair (u, p) ∈ W 1,2

0 (Ω)d × L2(Ω) satisfying
∫
Ω0

p dx = 0 and solving
system (3.1).

Moreover, the inequality

‖u‖1,2 + ‖p‖2 ≤ C‖f‖−1,2 (3.4)

holds with a constant C = C(A,B,Ω,Ω0) > 0.

Examples. To illustrate the type of systems we have in mind we show some examples
that satisfy conditions (3a), (3b), (3c).

Proposition 3.2 (A elliptic, B near to identity). Suppose that
• Aαβ

ij belong to L∞(Ω) and there is a positive ΛA such that

‖Aαβ
ij ‖∞ ≤ ΛA for all i, j, α, β = 1, · · · , d,

• A generates an elliptic bilinear form a on W 1,2
0 (Ω)d) i.e. there is a positive

constant λA such that

a(v, v) =
∫

Ω

d∑
α,β,i,j=1

Aαβ
ij Dαvi Dβvj dx ≥ λA‖∇v‖22 for all v ∈ W 1,2

0 (Ω)d,

• B is a constant d× d matrix such that

ν = |B − E| < λA

λA + d4ΛA
< 1, (3.5)

where E is the identity d× d matrix.
Then conditions (3a), (3b), (3c) hold.

Proposition 3.3 (A Laplace operator on the diagonal, B positive definite). Suppose
that div (A∇v) is Laplace operator on vj in j-th equation, j = 1, · · · , d i.e.

Aαβ
ij = δαβδij for all i, j, α, β = 1, · · · , d

and B is constant, self adjoint and positive definite matrix.
Then conditions (3a), (3b), (3c) are satisfied.

Next, we show the regularity of solutions to (3.1) in W k,2(Ω). For Hilbert regularity
we assume that A,B satisfy the following conditions
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(3d) B is regular,
(3e) B−1A satisfies uniformly strong ellipticity condition, i.e. there exists a positive

λ such that
d∑

α,β,i,j=1

d∑
k=1

(B−1)ikAαβ
kj ξα

i ξβ
j ≥ λ|ξ|2 for all ξ ∈ Rd×d.

In [18] we proved that under natural conditions on f, g, A, B, Ω any solution pair
u ∈ W 1,2(Ω), p ∈ L2(Ω) satisfies u ∈ W k+2(Ω) and p ∈ W k+1(Ω), (k ∈ N).

Theorem 3.4. Let assumptions (3d), (3e) be in force and k ∈ N, Ω be a bounded
Ck+2-domain in Rd, (d ≥ 2). Suppose that f ∈ W k,2(Ω)d, g ∈ W k+1,2(Ω)

∫
Ω

g dx = 0
A ∈ Ck+1(Ω)d4

, B ∈ Ck+1(Ω)d2
, (u, p) ∈ W 1,2

0 (Ω)d ×L2(Ω) be a weak solution of system
(3.1). Then we have

u ∈ W k+2,2(Ω)d, p ∈ W k+1,2(Ω), (3.6)

and inequality

‖u‖k+2,2 + ‖p‖k+1,2 ≤ C (‖f‖k,2 + ‖g‖k+1,2 + ‖u‖1,2) (3.7)

holds with a constant C = C(A,B,Ω) > 0.

As a consequence we get the following result on the interior regularity

Corollary 3.5. Let assumptions (3d), (3e) be in force. Suppose that f ∈ C∞(Ω)d,
g ∈ C∞(Ω); A ∈ C∞(Ω)d4

, B ∈ C∞(Ω)d2
. If (u, p) ∈ W 1,2

loc (Ω)d × L2
loc(Ω) is a local weak

solution of system (3.1), then u ∈ C∞(Ω)d, p ∈ C∞(Ω).

4. Schauder estimates in Hölder spaces. In this section, we study Schauder
type estimates for systems

−div (A∇u) + B∇p = div F in Ω,

div u = g in Ω,

u = 0 on ∂Ω.

(4.1)

where A and B are matrices of sufficiently smooth functions, F : Ω −→ Rd2
and

g : Ω −→ Rd. We assume throughout this section that A, B satisfy the following
conditions

(4a) Aα,β
ij ∈ L∞(Ω) for all i, j, α, β = 1, · · · , d, B is regular, Bij ∈ C0,1(Ω) for all

i, j = 1, · · · , d,

(4b) B−1A satisfies strong Legendre-Hadamard ellipticity condition i.e. there exists a
positive λ so that

d∑
α,β,i,j=1

d∑
k=1

(B−1)ikAαβ
kj ξαξβηiηj ≥ λ|ξ|2|η|2 in Ω for all ξ, η ∈ Rd.

Under the assumption (4a), system (4.1) can be transformed to

−div (Ā∇u) + H∇u +∇p = B−1div F in Ω,

div u = g in Ω,

u = 0 on ∂Ω
(4.2)
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where Ā := B−1A, H =
(
Hβ

ij

)d

β,i,j=1
:=

(∑d
α,k=1 Dα(B−1)ikAαβ

kj )
)d

β,i,j=1
,

H∇u =
(∑d

β,j=1 Hβ
ijDβuj

)d

i=1
.

First we show a local energy estimate – Caccioppoli’s inequality.

Theorem 4.1 (Caccioppoli’s inequality). Suppose (4a), (3c) are satisfied. Let (u, p) ∈
W 1,2

loc (Ω)d ×L2
loc(Ω) be a weak solution of system (4.1). Then there is a positive constant

C such that for all x0 ∈ Ω and all ρ,R with 0 < ρ < R < dist(x0, ∂Ω), we have

‖∇u‖22,Bρ(x0)
≤ C

[
1

(R− ρ)2
‖(u− ν)‖22,BR(x0)

+ ‖F‖22,BR(x0)
+ ‖g‖22,BR(x0)

]
(4.3)

‖(p− px0,R)‖22,BR(x0)
≤ C

[
‖∇u‖22,BR(x0)

+ ‖F‖22,BR(x0)

]
(4.4)

where ν ∈ Rd is an arbitrary constant vector.

Proof. Let u, p be a weak solution of system (4.1) and ν ∈ Rd. Choose a test function
ϕ1 = η2(u− ν), where η ∈ C∞

0 (Rd) is a cut-off function :

suppη ⊂ BR(x0), 0 ≤ η ≤ 1 on BR(x0),

η ≡ 1 on Bρ(x0); η, |∇η| ≤ C
R− ρ

.

Then we have∫
Ω

η2Ā∇u : ∇u dx = −
∫

Ω

{
2Āαβ

ij Dβuj(ui − νi)ηDαη + η2(H∇u) · (u− ν)

− (p− px0,R)2η∇η · (u− ν)− (p− px0,R)η2g

−F · ∇(η2B−1(u− ν))
}

dx.

Therefore

λ‖η∇u‖22,BR(x0)
≤ 2‖Ā‖∞‖η∇u‖2,BR(x0)‖∇η(u− ν)‖2,BR(x0)

+ ‖H‖∞‖η∇u‖2,BR(x0)‖η(u− ν)‖2,BR(x0)

+ 2‖η(p− px0,R)‖2,BR(x0)‖∇η(u− ν)‖2,BR(x0)

+ ‖η(p− px0,R)‖2,BR(x0)‖g‖2,BR(x0)

+ C(‖η∇u‖22,BR(x0)
+ ‖∇η(u− ν)‖2,BR(x0))‖F‖2,BR(x0)

and then by Young’s inequality we have estimate

‖η∇u‖22,BR(x0)
≤ ε‖η(p− px0,R)‖22,BR(x0)

+ C(ε)
[

1
(R− ρ)2

‖u− ν‖22,BR(x0)
+ ‖F‖22,BR(x0)

+ ‖g‖22,BR(x0)

]
.
(4.5)

Next, because of Lemma 2.2, we choose a test function ϕ2 ∈ W 1,2
0 (BR(x0))d∩(W 1,2

0,div(BR(x0)))⊥

which is a unique solution of equation

div ϕ2 = η2(p− px0,R)− (η2(p− px0,R))x0,R in BR(x0),
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Recall that ‖∇ϕ2‖L2 ≤ C‖η(p− px0,R)‖L2 . We have∫
Ω

η2Ā∇u : ∇ϕ2 + (H∇u) · ϕ2 + η2(p− px0,R)2 dx =
∫

Ω

F · ∇(B−1 · ϕ2) dx.

Applying Lemma 2.2, we have

‖η(p− px0,R)‖22,BR(x0)
≤ C

[
‖∇u‖2,BR(x0)‖η(p− px0,R)‖2,BR(x0)

+ R2‖∇u‖2,BR(x0)‖η(p− px0,R)‖2,BR(x0)

]
+ ‖F‖2,BR(x0)‖η(p− px0,R)‖2,BR(x0)]

≤ 1
2
‖η(p− px0,R)‖22,BR(x0)

+ C
[
‖∇u‖22,BR(x0)

+ ‖F‖22,BR(x0)

]
.

Thus

‖η(p− px0,R)‖22,BR(x0)
≤ C(‖∇u‖22,BR(x0)

+ ‖F‖22,BR(x0)
) (4.6)

It is easy to check that as the inequality (4.6) holds for all η ∈ C∞
0 (BR(x0)) with

0 ≤ η ≤ 1, it implies the inequality (4.4).
Substituting (4.6) into (4.5), we conclude that

‖∇u‖22,Bρ(x0)
≤ ε‖∇u‖22,BR(x0)

+ C

[
1

(R− ρ)2
‖u− ν‖22,BR(x0)

+ ‖F‖22,BR(x0)
+ ‖g‖22,BR(x0)

] (4.7)

By application of Lemma 2.3, we obtain the inequality (4.3) and Theorem 4.1 is proved.

Now, we consider systems with constant coefficients

− div (A0∇u) +∇p = 0 in Ω,

div u = 0 in Ω, (4.8)

where A0 is a d2 × d2 constant matrix.
In a standard way (see for instance first [9, Theorem in III.2]), we have first estimates for
the Hölder continuity by a following proposition

Proposition 4.2 (Campanato’s inequality). Suppose that A0 is a constant matrix sat-
isfying strong Legendre-Hadamard condition (see (4b)). Then there is a positive constant
C such that for any weak solution (u, p) ∈ W 1,2

loc (Ω)d × L2
loc(Ω) of system (4.1), for all

x0 ∈ Ω and all ρ,R with 0 < ρ ≤ R < dist(x0, ∂Ω), the following two estimates are valid:

‖u‖22,Bρ(x0)
≤ C

( ρ

R

)d

‖u‖22,BR(x0)
(4.9)

‖u− ux0,ρ‖22,Bρ(x0)
≤ C

( ρ

R

)d+2

‖u− ux0,ρ‖22,BR(x0)
. (4.10)

The constant C depends on the dimension d and on A0.
Next, we state first regularity theorem in Morrey spaces.

Theorem 4.3. Suppose assumptions (4a), (4b) be satisfied, A ∈ C0(Ω)d4
, F ∈ L2,µ(Ω)d2

,
g ∈ L2,µ(Ω) with 0 < µ < d and (u, p) ∈ W 1,2

0 (Ω)d × L2(Ω) be a weak solution of system
(4.1). Then Du ∈ L2,µ

loc (Ω)d2
, p ∈ L2,µ

loc (Ω), and for all Ω̃ ⊂⊂ Ω we have the estimates

‖∇u‖L2,µ(Ω̃)d2 + ‖p‖L2,µ(Ω̃) ≤ C
(
‖∇u‖2 + ‖F‖L2,µ(Ω)d2 + ‖g‖L2,µ(Ω)

)
(4.11)

with a constant C = C(A,B,dist(Ω̃,Ω)) > 0.
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Proof. Fix x0 ∈ Ω and R < dist(x0, ∂Ω). Let v be the weak solution to system∫
BR(x0)

Ā(x0)∇v : ∇ϕ dx = 0 for all ϕ ∈ W 1,2
0,div(BR(x0))

div v = 0, u− v ∈ W 1,2
0 (BR(x0))

d

The existence of such a solution is guaranteed by Lax-Milgram theorem. By Proposi-
tion 4.2 we get that if 0 < ρ < R

‖∇v‖22,Bρ(x0)
≤ C

( ρ

R

)d

‖∇v‖22,BR(x0)

Set w = u− v, then

‖∇u‖22,Bρ(x0)
≤ C

(( ρ

R

)d

‖∇u‖22,BR(x0)
+ ‖∇w‖22,BR(x0)

)
(4.12)

For each ϕ ∈ W 1,2
0 (BR(x0)

d we test (4.1) by ϕ − PBR(x0)ϕ with PBR(x0)ϕ given in
Lemma 2.2 and use definition of w. It is easily seen that w ∈ W 1,2

0 (BR(x0)
d satisfies∫

BR(x0)

Ā(x0)∇w : ∇[ϕ− PBR(x0)ϕ] dx =
∫

BR(x0)

[Ā(x0)− Ā(x)]∇u : ∇[ϕ− PBR(x0)ϕ]

− (H∇u) · [ϕ− PBR(x0)ϕ]

+ F · ∇(B−1[ϕ− PBR(x0)ϕ]) dx,

div w = g.

By choosing ϕ = w, using the assumptions of Theorem 4.3, Lemma 2.1 and Poincaré’s
inequality, we deduce

‖∇w‖22,BR(x0)
≤C

{[
ω(R)‖∇u‖2,BR(x0) + ‖F‖2,BR(x0) + RHc‖∇u‖2,BR(x0)

][
‖∇w‖2,BR(x0) + ‖g‖2,BR(x0)

]}
,

where

ω(R) = maxi,j,α,β [ sup
BR(x0)

|Āαβ
ij (x)− Āαβ

ij (x0)|], Hc = maxi,j,β [ sup
BR(x0)

|Hβ
ij(x)|].

Thus using smallness of ω and Young inequality

‖∇w‖22,BR(x0)
≤ C

[
(ω2(R) + R2H2

c )‖∇u‖22,BR(x0)
+ ‖F‖22,BR(x0)

+ ‖g‖22,BR(x0)

]
(4.13)

Substituting (4.13) into (4.12), we get

‖∇u‖22,Bρ(x0)
≤ C

{[( ρ

R

)d

+ ω2(R) + R2H2
c

]
‖∇u‖22,BR(x0)

+ ‖F‖22,BR(x0)
+ ‖g‖22,BR(x0)

}
.

Since Ā,H ∈ C0(Ω) there exists R0 < dist(x0, ∂Ω) such that for 0 < ρ ≤ R ≤ R0, we
have

‖∇u‖22,Bρ(x0)
≤ C

[( ρ

R

)d

+ ε

]
‖∇u‖22,BR(x0)

+ C(‖F‖2L2,µ + ‖g‖2L2,µ).
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Thus applying the Lemma 2.4 with ε < ε0 we have that for 0 < ρ ≤ R ≤ R0

‖∇u‖22,Bρ(x0)
≤ C(R−µ‖∇u‖22,BR(x0)

+ ‖F‖2L2,µ + ‖g‖2L2,µ)ρµ. (4.14)

It follows that ∇u ∈ L2,µ
loc (Ω)d2

, and for all Ω̃ ⊂⊂ Ω we have the estimates

‖∇u‖L2,µ(Ω̃)d2 ≤ C (‖∇u‖2 + ‖F‖L2,µ(Ω)d2 + ‖g‖L2,µ)

with a constant C = C(A,B,dist (Ω̃,Ω)) > 0.
Thanks to the inequalities (4.4), (4.14), it follows that p ∈ L2,µ

loc (Ω) and we also obtain
the inequality (4.11). The proof is complete.

Theorem 4.4. Suppose that the assumptions (4a), (4b) are satisfied and, moreover,
A ∈ C0,δ(Ω)d4

, A ∈ L∞(Ω)d4
, F ∈ C0,δ(Ω)d2

, g ∈ C0,δ(Ω) with of system (4.1). Then
∇u ∈ C0,δ

loc (Ω)d2
, p ∈ C0,δ

loc (Ω), and for all Ω̃ ⊂⊂ Ω we have the estimates

‖∇u‖C0,δ(Ω̃)d2 + ‖p‖C0,δ(Ω̃) ≤ C
[
‖∇u‖2,Ω′ + ‖F‖C0,δ(Ω′)d2 + ‖g‖C0,δ(Ω′)

]
(4.15)

holds with a constant C = C(A,B, dist(Ω̃,Ω), diam Ω) > 0. Here

Ω′ =
{

x ∈ Ω; dist(x, ∂Ω) >
1
2

dist(Ω̃, ∂Ω)
}

.

Proof. Fix x0 ∈ Ω, R > 0 sufficiently small. Let v be the weak solution to∫
BR(x0)

Ā(x0)∇v : ∇ϕ dx = 0 for all ϕ ∈ W 1,2

0,div(BR(x0))

div v = gx0,R, u− v ∈ W 1,2
0 (BR(x0))d

The existence of such a solution is guaranteed by Lax-Milgram Theorem. Clearly, as v
solves a system with constant coefficients and zero right hand side, also ∇v is a solution
of the same problem. Thus (4.10) is valid for ∇v i.e. if 0 < ρ ≤ R < 1

2dist(Ω̃, ∂Ω) then

‖∇v − (∇v)x0,ρ‖22,Bρ(x0)
≤ C

( ρ

R

)d+2

‖∇v − (∇v)x0,R‖22,BR(x0)

Set w = u− v, then

‖∇u− (∇u)x0,ρ‖22,Bρ(x0)
≤ C

[( ρ

R

)d

‖∇v − (∇v)x0,R‖22,BR(x0)
+ ‖∇w‖22,BR(x0)

]
(4.16)

Moreover, w ∈ W 1,2
0 (BR(x0))d solves the system∫

BR(x0)

Ā(x0)∇w : ∇[ϕ− PBR(x0)ϕ] dx =
∫

BR(x0)

[Ā(x0)− Ā(x)]∇u : ∇[ϕ− PBR(x0)ϕ]

−(H∇u).[ϕ− PBR(x0)ϕ] + F.∇(B−1 · [ϕ− PBR(x0)ϕ]) dx,

∀ϕ ∈ W 1,2
0 (BR(x0)

d; div w = g − gx0,R.

As in the proof of Theorem 4.3, we choose ϕ = w and get

‖∇w‖22,Bρ(x0)
≤ C

[
(ω2(R) + R2H2

c )‖∇u‖22,BR(x0)

+ ‖F − Fx0,R‖22,BR(x0)
+ ‖g − gx0,R‖22,BR(x0)

]
.
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Since A ∈ C0,δ(Ω) we have ω(R) ≤ [A]0,δ,Ω′Rδ. Thanks to the assumptions on F, g it
implies that

‖∇u− (∇u)x0,ρ‖22,Bρ(x0)
≤ C

[( ρ

R

)d+2

‖∇u− (∇u)x0,R‖22,BR(x0)

+ R2δ‖∇u‖22,BR(x0)

+ ([F ]22,d+2δ;Ω′ + [g]22,d+2δ;Ω′)Rd+2δ
]
.

(4.17)

For any ε > 0, we have F, g ∈ C0,δ(Ω) ' L2,d+2δ(Ω) ⊂ L2,d−ε(Ω) ⊂ L2,d−ε(Ω). Therefore,
f ∈ L2,d−ε(Ω)d2

. According to Theorem 4.3, we have ∇u ∈ L2,d−ε(Ω̃)d2
and inequality

‖∇u‖22,BR(x0)
≤ C[‖∇u‖22,Ω′ + ‖F‖2

L2,d−ε(Ω′)d2 + ‖g‖2L2,d−ε(Ω′)]R
d−ε. (4.18)

It implies

‖∇u− (∇u)x0,ρ‖22,Bρ(x0)
≤ C

[( ρ

R

)d+2

‖∇u− (∇u)x0,R‖22,BR(x0)

+ (‖∇u‖22,Ω′ + ‖F‖2
L2,d−ε(Ω′)d2

+ ‖g‖2L2,d−ε(Ω′))R
d+2δ−ε + ([F ]22,d+2δ;Ω′ + [g]22,d+2δ;Ω′)Rd+2δ

]
.

Applying Lemma 2.4, we obtain

‖∇u− (∇u)x0,ρ‖22,Bρ(x0)
≤ C

[
‖∇u‖22,Ω′ + ‖F‖2

L2,d−ε(Ω′)d2 + ‖g‖2L2,d−ε(Ω′)

]
ρd+2δ−ε

which implies that ∇u ∈ C
0,δ−ε/2
loc (Ω)d2

for all ε > 0, and the inequality

‖∇u‖2
C0,δ−ε/2(Ω̃)d2 ≤ C

[
‖∇u‖22,Ω′ + ‖F‖2L2,d+2δ(Ω′)d2 + ‖g‖2L2,d+2δ(Ω′)

]
.

In particular, ∇u is locally bounded and thus

‖∇u‖22,BR(x0)
≤ C

[
‖∇u‖22,Ω′ + ‖F‖2

C0,δ(Ω′)d2 + ‖g‖2
C0,δ(Ω′)

]
Rd. (4.19)

Substituting this inequality into (4.17), we get

‖∇u− (∇u)x0,ρ‖22,Bρ(x0)
≤ C

( ρ

R

)d+2

‖∇u− (∇u)x0,R‖22,BR(x0)

+ C
[
‖∇u‖22,Ω′ + ‖F‖2

C0,δ(Ω′)d2 + ‖g‖2
C0,δ(Ω′)

]
Rd+2δ.

Applying again the Lemma 2.4, we conclude that ∇u ∈ C0,δ
loc (Ω)d2

, and the estimate

‖∇u‖2
C0,δ(Ω̃)d2 ≤ C

[
‖∇u‖22,Ω′ + ‖F‖2

C0,δ(Ω′)d2 + ‖g‖2
C0,δ(Ω′)

]
(4.20)

holds with a constant C = C(A,B,Ω) > 0.
In a similar way, we conclude that p ∈ C0,δ

loc (Ω) and it satisfies the required estimate.
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[12] P. Kaplický, J. Málek and J. Stará, C1,α-solution to a class of nonlinear fluids in two dimensions-
stationary Dirichlet problem. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)
259 (1999), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 30, 89–121, 297; translation in
J. Math. Sci. (New York) 109(5) (2002), 1867–1893
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