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ON A GROUND STATE AND TWO SYMMETRIC GROUND
STATE SOLUTIONS IN A DOMAIN

HWAI-CHIUAN WANG∗

Abstract. Let Ω be a domain in RN , N ≥ 1, and 2∗ = ∞ if N = 1, 2, 2∗ = 2N
N−2

if N > 2,

2 < p < 2∗. Consider the semilinear elliptic equation

−∆u + u = |u|p−2u in Ω; (*)

u ∈ H1
0 (Ω).

The existence, the nonexistence, and the multiplicity of positive solutions of equation (*) are affected by
the geometry and the topology of the domain Ω. In the article, we first present various analyses and use
them to characterize which domain Ω is a ground state domain or a non-ground state domain. Secondly,
for a y-symmetric domain Ω, we study their index α(Ω) and y-symmetric index αs(Ω). We determine
whether α(Ω) = αs(Ω) or α(Ω) < αs(Ω). In case that α(Ω) < αs(Ω) and that both α(Ω) and αs(Ω)
admits ground state solutions, then we obtain that in Ω, the Equation (*) has three positive solutions,
of which one is y-symmetric and other two are not y-symmetric.

1. Introduction. Let Ω be a domain in RN , N ≥ 1, and 2∗ = ∞ if N = 1, 2,
2∗ = 2N

N−2 if N > 2, 2 < p < 2∗. Consider the semilinear elliptic equation

−∆u + u = |u|p−2u in Ω;

u ∈ H1
0 (Ω).

(1.1)

Let H1
0 (Ω) be the Sobolev space in Ω. Associated with Equation (1.1), we consider the

energy functionals a, b and J for u ∈ H1
0 (Ω)

a(u) =
∫

Ω

(|∇u|2 + u2); b(u) =
∫

Ω

|u|p; J(u) =
1
2
a(u)− 1

p
b(u).

It is well known that the solutions of Equation (1.1) and the critical points of the energy
functional J are the same.

The existence, the nonexistence, and the multiplicity of positive solutions of Equa-
tion (1.1) in a domain Ω have been the focus of a great deal of research in recent years.
They are affected by the geometry and the topology of the domain Ω. To characterize
in what kind of domains we have the existence, the nonexistence, and the multiplicity of
positive solutions of Equation (1.1) is an open question. In this article, we try to answer
partially the question.

The aim of our study is twofold: first, we characterize what kind of domains Ω are
ground state domains or non-ground state domains; secondly, we characterize in what
kind of y-symmetric domain Ω, the index α(Ω) is equal to or less than the y− symmetric
index αs(Ω), Suppose that Ω is a ground state domain for H1

0 (Ω) and for H1
s (Ω) such

that α(Ω) < αs(Ω), then Equation (1.1) on Ω has three positive solutions, of which one
is y-symmetric and other two are not y-symmetric.
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2. y-symmetric Domains. Let z = (x, y) ∈ RN−1 × R = RN , N ≥ 3. In the
followings, we denote the infinite strip Ar = {(x, y) ∈ RN : |x| < r}; a finite strip Ar

s,t =
{(x, y) ∈ Ar : s < y < t}; an upper semi-strip Ar

s = {(x, y) ∈ Ar : s < y};, the infinite
strip with a hole Ar\ω, a ball BN (z0; s), an interior flask domain Fr

s = Ar
0 ∪ BN (0; s);

the upper half space RN
+ , a horizontal infinite strip RN

−ρ,ρ = {(x, y) ∈ RN : −ρ < y < ρ};
a positive paraboloid P+ = {(x, y) ∈ RN : y > |x|2}; an infinite cone C = {(x, y) ∈ RN :
|x| < y}; and an epigraph Π = {(x, y) ∈ RN | f(x) < y}.

We have the following definitions of y-symmetric domains:

Definition 2.1.
(i) Suppose that (x, y) ∈ Ω if and only if (x,−y) ∈ Ω, then we call Ω a y-symmetric

domain;
(ii) Let Ω be a y-symmetric domain in RN . If a function u : Ω → R satisfies

u(x, y) = u(x,−y) for (x, y) ∈ Ω, then we call u a y-symmetric function.

Example 2.2. The whole space RN , a ball BN (0; s), the infinite strip Ar = {(x, y) ∈
RN : |x| < r}, a finite strip Ar

−s,s = {(x, y) ∈ Ar : −s < y < s}, and the infinite strip
with a hole Ar\BN (0; r/2) are y-symmetric domains in RN .

Let Ω be a y-symmetric domain in RN and denote the space H1
s (Ω) by the H1-closure

of the space {u ∈ C∞
0 (Ω) : u is y-symmetric}. Note that H1

s (Ω) is a closed linear subspace
of H1

0 (Ω). Let H−1
s (Ω) be the dual space of H1

s (Ω). Throughout this article, let X(Ω) be
either the whole space H1

0 (Ω) or the y-symmetric space H1
s (Ω). Let X−1(Ω) be the dual

space of X(Ω).

3. Palais-Smale Theory. We define the Palais-Smale (denoted by (PS)) sequences,
(PS)-values, and (PS)-conditions in X(Ω) for J as follows.

Definition 3.1.
(i) For β ∈ R, a sequence {un} is a (PS)β-sequence in X(Ω) for J if J(un) = β+o(1)

and J ′(un) = o(1) strongly in X−1(Ω) as n →∞;
(ii) β ∈ R is a (PS)-value in X(Ω) for J if there is a (PS)β-sequence in X(Ω) for J ;
(iii) J satisfies the (PS)β-condition in X(Ω) if every (PS)β-sequence in X(Ω) for J

contains a convergent subsequence;
(iv) J satisfies the (PS)-condition in X(Ω) if for every β ∈ R, J satisfies the (PS)β-cond-

ition in X(Ω).

For any β ∈ R, a (PS)β-sequence in X(Ω) for J is bounded and a (PS)-value β is
non-negative.

Lemma 3.2. Let β ∈ R and let {un} be a (PS)β-sequence in X(Ω) for J , then a positive
sequence {cn(β)} exists such that ‖un‖H1 ≤ cn(β) ≤ c for each n and cn(β) = o(1) as
n →∞ and β → 0. Furthermore,

a(un) = b(un) + o(1) =
2p

p− 2
β + o(1)

and β ≥ 0.

Consider the Nehari minimizing problem

αX(Ω) = inf
v∈MX(Ω)

J(v),

where MX(Ω) = {u ∈ X(Ω)\{0} : a(u) = b(u)}. Note that MX(Ω) contains every
nonzero solution of Equation (1.1) in X(Ω).
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We have the following three useful results:

Theorem 3.3. If {un} is a (PS)β-sequence in X(Ω) for J , then there is a sequence {sn}
in R+ such that {snun} is in MX(Ω) and is a (PS)β-sequence in X(Ω) for J .

Theorem 3.4. Every minimizing sequence {un} in MX(Ω) of αX(Ω) is a (PS)αX(Ω)-
-sequence in X(Ω) for J .

By Theorem 3.4, we have that αX(Ω) is a positive (PS)αX(Ω)−value in X(Ω) for J .

Theorem 3.5. Let u ∈ MX(Ω) be such that J(u) = minv∈MX(Ω) J(v). Then u is a
nonzero solution of Equation (1.1) such that J(u) = αX(Ω).

Definition 3.6. αX(Ω) is called the index of J in X(Ω). If u is a nonzero solution of
Equation (1.1), then u ∈ MX(Ω). Thus, J(u) ≥ αX(Ω). We say that a nonzero solution
u in X(Ω) of Equation (1.1) is a ground state solution for X(Ω) if J(u) = αX(Ω), and is
a higher energy solution if J(u) > αX(Ω).

Remark 3.7. We denote αX(Ω) by the (general) index α(Ω) of a domain Ω for
X(Ω) = H1

0 (Ω) and by the y− symmetric index αs(Ω) of a y-symmetric domain Ω for
X(Ω) = H1

s (Ω). Therefore, a y-symmetric domain Ω has two indexes: the index α(Ω)
and the y− symmetric index αs(Ω) such that α(Ω) ≤ αs(Ω). The two indexes α(Ω) and
αs(Ω) may be equality or inequality.

The Palais-Smale conditions are conditions for compactness. They are useful in as-
serting the existence, the nonexistence, and the multiplicity of solutions of Equation (1.1).

Theorem 3.8. If J satisfies the (PS)αX(Ω)-condition, then there is a ground state solution
for X(Ω) of Equation (1.1).

Let Ω1 $ Ω2 and αi
X = αX(Ωi) for i = 1, 2, then clearly α2

X ≤ α1
X . If α2

X = α1
X ,

then we have the following useful results.

Theorem 3.9. Let Ω1 $ Ω2 and J : X(Ω2) → R be the energy functional. Suppose that
α2

X = α1
X . Then

(i) α1
X does not admit any ground state solution;

(ii) J does not satisfy the (PS)α1
X
-condition;

(iii) J does not satisfy the (PS)α2
X
-condition.

4. Non-ground State Domains and Higher Energy Solutions. We give the
following definition.

Definition 4.1. Let Ω be a domain in RN .

(i) Ω is a compactness domain for X(Ω) if the embedding X(Ω) ↪→ Lp(Ω) is compact;
(ii) Ω is a ground state domain for X(Ω) if there is a ground state solution u in X(Ω)

of Equation (1.1). Otherwise, we say that Ω is a non-ground state domain for
X(Ω).

Remark 4.2. By a domain Ω for X(Ω), if X(Ω) = H1
s (Ω), then Ω should be a y-

symmetric domain in RN .

By Theorem 3.9, we have
Theorem 4.3. Let Ω1 $ Ω2 and α2

X = α1
X . Then Ω1 is a non-ground state domain for

X(Ω).

In this section, we prove that proper large domains, Esteban-Lions domains, and
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some interior flask domains Fr
s = Ar

0 ∪BN (0; s) are non-ground state .

Definition 4.4.

(i) For Ω ⊂ RN , we call Ω a large domain in RN if for any r > 0, z ∈ Ω exists such
that BN (z; r) ⊂ Ω;

(ii) For Ω ⊂ Ar, we call Ω a large domain in Ar if for any positive number m, a, b
exist such that b− a = m and Ar

a,b ⊂ Ω.

Example 4.5.

(i) The whole space RN , the upper half space RN
+ , a positive paraboloid P+, an

infinite cone C, and an epigraph Π are large domains in RN ;
(ii) The infinite strip Ar, an upper semi-strip Ar

s, the infinite strip with a hole Ar\ω,
and the interior flask domain Fr

s are large domains in Ar.

Definition 4.6. A proper smooth unbounded domain Ω in RN is an Esteban-Lions
domain if χ ∈ RN exists with ‖χ‖ = 1 such that n(z) · χ ≥ 0, and n(z) · χ 6≡ 0 on ∂Ω,
where n(z) is the unit outward normal vector to ∂Ω at the point z.

Example 4.7. An upper half strip Ar
s, an epigraph Π, an infinite cone C, the upper half

space RN
+ , and a positive paraboloid P+ are Esteban-Lions domains.

We have the following result.
Theorem 4.8.

(i) A proper large domain Ω in RN or in Ar is a non-ground state domain for X(Ω);
(ii) An Esteban-Lions domain Ω is a non-ground state domain for H1

0 (Ω);
(iii) s0 > 0 exists such that the interior flask domain Fr

s, for each s < s0, is a non-
ground state domain for H1

0 (Fr
s).

For h > r and B =BN ((0, h); r/2), let Ωh = (Ar
0 ∪ BN (0; r))\B be the upper half

strip with a hole. Ωh is a proper large domain in Ar. By Theorem 4.8 (i), there is no
any ground state solutions of Equation (1.1) in Ωh. However, we prove that a positive
higher energy solution of Equation (1.1) exists in Ωh for large h.

Theorem 4.9. Suppose that the positive solution of Equation (1.1) in the infinite strip
Ar is unique up to y-translations. h0 > 0 exists such that if h ≥ h0, then there is a
positive higher energy solution v of Equation (1.1) in the upper half strip with a hole Ωh

such that α(Ar) < J(v) < 2
p−2

p α(Ar).

5. Ground State Solutions and Ground State Domains. In this section, we
prove that comapctness domains for X(Ω), the union of a finite numbers of ground state
domains for X(Ω), periodic domains, and the interior flask domains F r

s for s > s0 are
ground state domains for X(Ω).

Remark 5.1. It is known that a ground state solution in X(Ω) is of constant sign. Note
that if u is a solution of Equation (1.1), then −u is also a solution of (1.1). By the
maximum principle, if u is a nonzero and nonnegative solution of (1.1), then u is positive.
By a ground state solution in X(Ω), we mean a positive solution of Equation (1.1). If Ω
is a C1,1 domain in RN , then by the regularity, by a ground state solution in X(Ω), we
mean a C2−positive solution of Equation (1.1). In this article, the example of domains
may not of C1,1, but after smoothing it out, then it is of C1,1.

Theorem 5.2. Let Ω be a domain in RN of finite measure. Then the embedding X(Ω) ↪→
Lp(Ω) is compact.
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Theorem 5.3. If the embedding X(Ω) ↪→ Lp(Ω) is compact, then J satisfies the (PS)αX(Ω)-
-condition. In particular, there is a ground state solution for X(Ω) of Equation (1.1).

Theorem 5.4. Let A1, A2, . . . , An be domains such that there is a ground state solution
for X(Ai) of Equation (1.1), for each i. Let A = A1 ∪ A2 ∪ . . . ∪ An. Then there is a
ground state solution for X(A) of Equation (1.1).

Definition 5.5. A domain Θ in RN is a periodic domain if a partition {Qm}∞m=0 of Θ
and points {zm}∞m=1 in RN exist, satisfying the following conditions:

(i) {zm}∞m=1 forms a subgroup of RN ;
(ii) Q0 is bounded;
(iii) Qm = zm + Q0 for each m.

Typical examples of periodic domains are the infinite strip Ar and the whole space
RN .

Theorem 5.6. Let Θ be a periodic domain. There is a ground state solution for H1
0 (Θ)

of Equation (1.1). In particular, there is a ground state solution for H1
0 (Ar) and for

H1
0 (RN ) of Equation (1.1).

We have the following results for the whole space RN .
Theorem 5.7.

(i) Every positive ground state solution for H1(RN ) of Equation (1.1) is spherically
symmetric about some point x0 in RN , ū′(r) < 0 for r = |x− x0|, and

lim
r→∞

r
N−1

2 erū(r) = γ > 0,

lim
r→∞

r
N−1

2 erū′(r) = −γ;

(ii) There is a ground state solution for H1(RN ) of Equation (1.1);
(iii) The positive solution of Equation (1.1) in RN is unique.

In the infinite strip Ar = BN−1(0; r) × R, let λ1 be the first eigenvalue of −∆ in
BN−1(0; r) with the Dirichlet problem, and φ1 the corresponding positive eigenfunction
to λ1. We have the following results for the infinite strip Ar.

Theorem 5.8.
(i) Let u(x, y) be a C2− solution of Equation (1.1) in Ar. Then u is radially sym-

metric in x and in y; that is to say, u(x, y) = u(|x|, |y|);
(ii) For each positive solution u of Equation (1.1) in Ar, and for every 0 < δ < 1+λ1

γ > 0 and β > 0 exist such that

γφ1(x)e−
√

1+λ1+δ |y| ≤ u(z) ≤ βφ1(x)e−
√

1+λ1−δ |y| for z = (x, y) ∈ Ar;

(iii) There is a a ground state solution for H1
0 (Ar) of Equation (1.1).

Next we present ground state domains from the perturbations Fr
s of a non-ground

state domain Ar
0.

Theorem 5.9. s0 > 0 exists such that Equation (1.1) has a ground state solution for
H1

0 (Fr
s) if s > s0, but does not have any ground state solution for H1

0 (Fr
s) if s < s0.

Remark 5.10. In Theorem 5.9 we have asserted that the interior flask domains F r
s

= Ar
0 ∪BN (0; s) are ground state domains if s > s0. In fact, if we replace Ar

0 ∪BN (0; s)
by Ar

0 ∪ Ω, where Ω is a bounded domain containing BN (0; s), the theorem still holds.
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We have the following theorem.
Theorem 5.11.

(i) A domain in RN of finite measure is a compactness domain for X(Ω);
(ii) A comapctness domain for X(Ω) is a ground state domain for X(Ω);
(iii) The union of a finite numbers of ground state domains for X(Ω) is a ground state

domain for X(Ω);
(iv) The whole space RN is a ground state domain for H1

0 (RN ) and for Hs(RN );
(v) The whole space Ar is a ground state domain for H1

0 (Ar) and for Hs(Ar), More-
over, Ar is a comapctness domain for Hs(Ar);

(vi) A periodic domain Θ is a ground state domain for H1
0 (Θ);

(vii) An interior flask domains Fr
s for s > s0 is a ground state domain for H1

0 (Fr
s).

6. A y-symmetric Domain with Two Same Indexes. In this section, we assert
that if Ω is one of a ball BN (0;R), the whole space RN , a finite strip Ar

−t,t, and the
infinite strip Ar, then α(Ω) = αs(Ω).

Theorem 6.1. Suppose that each positive solution u ∈ H1
0 (Ω) of Equation (1.1) is

in H1
s (Ω) and there is a ground state solution for H1

0 (Ω) of Equation (1.1). Then
α(Ω) = αs(Ω).

By Theorem 6.1, we have
Theorem 6.2.

(i) α(BN (0;R)) = αs(BN (0;R));
(ii) α(RN ) = αs(RN );
(iii) α(Ar

−t,t) = αs(Ar
−t,t);

(iv) α(Ar) = αs(Ar).

7. A y-symmetric Domain with Two Different Indexes. We have the following
multiplicity result.
Theorem 7.1. Suppose that Ω is a ground state domain for H1

0 (Ω) and for H1
s (Ω) such

that α(Ω) < αs(Ω), then Equation (1.1) on Ω has three positive solutions, of which one
is y-symmetric and other two are not y-symmetric.

In this section, we prove that if Ω is one of a y-symmetric large domain separated by
a y-symmetric bounded domain, the finite strip with a hole, and a two-bumps domain,
then α(Ω) < αs(Ω). Related results see Wang-Wu [13] and [14].

(Case A)
Definition 7.2. Let Ω be a y-symmetric domain and Θ a y-symmetric bounded domain
in RN . If two disjoint subdomains Ω1 and Ω2 of Ω exist such that Ω\Θ̄ = Ω1 ∪Ω2, where
(x, y) ∈ Ω2 if and only if (x,−y) ∈ Ω1. Then we say that the y-symmetric domain Ω is
separated by a bounded domain Θ;

Example 7.3. Let 0 < r1 < r, t > 0, x0 in BN−1(0; r + r1), and

Θt = Ar \
[
BN ((x0, t + r1); r1) ∪BN ((x0,−(t + r1)); r1)

]
.

Then the infinite strip with holes Θt is a y-symmetric large domain in Ar separated by
a bounded domain Ar

−t,t.

Let Ω be a y-symmetric large domain separated by a y-symmetric bounded domain,
then we have the following results:
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Theorem 7.4. Let E be either RN or Ar. Suppose that Ω is a proper y-symmetric large
domain in E separated by a y-symmetric bounded domain, then α(Ω) < αs(Ω). Moreover,
If αs (Ω) < 2α (Ω), then J satisfies the (PS)αs(Ω)−condition in Hs (Ω).

By Theorem 7.4, we have
Theorem 7.5. There exists t0 > 0 such that αs(Θt) < 2α(Θt) for all t ≥ t0. In
particular, there is a ground state solution for H1

s (Θt) of Equation (1.1) in Θt, for all
t ≥ t0.

(Case B)
Let 0 < r1 < r, t > 0, and x0 in BN−1(0; r + r1), consider the finite strip with a hole Ψt,
where

Ψt = Ar
−t,t\BN ((x, 0); r1).

Then we have the following assertion.

Theorem 7.6. There exists t0 > 0 such that for t ≥ t0, we have α(Ψt) < αs(Ψt).
Moreover, Equation (1.1) on Ψt has three positive solutions of Equation (1.1), in which
one is y-symmetric and the other two are not y-symmetric.

(Case C)
We consider the two-bumps domains.

Definition 7.7. Let Θ be a proper ground state domain for H1
s (Θ) in RN bounded in

the x−direction. For R > 0, let Ω1
R and Ω2

R be two bounded domains in RN such that
Ω1

R contains a ball of radius R, Ω1
R ⊂ RN \ RN

−ρ,ρ for some ρ > 0, and Ω2
R = {(x, y) :

(x,−y) ∈ Ω1
R}. The y-symmetric domain DR is called the two-bumps domain, where

DR = Ω1
R ∪Θ ∪ Ω2

R.

By Theorem 5.4, the two-bumps domain DR is a ground state domain for H1
s (DR).

Here are some examples of two-bumps domains.

Example 7.8.
(i) For t > R > r > 0. The bounded dumbbell domain Db

R is a two-bumps domain,
where

Db
R = BN ((0,−t), R) ∪Ar

−t,t ∪BN ((0, t), R);

(ii) For t > R > r > 0. The unbounded dumbbell domain Du
R is a two-bumps

domain, where

Du
R = BN ((0,−t), R) ∪Ar ∪BN ((0, t), R);

(iii) For t > R > r > 0. The curved dumbbell domain Dc
R = Ω1

R ∪ Θ ∪ Ω2
R is a two

bumps domain, where Ω1
R and Ω2

R be two bounded domains in RN such that
dist{0,Ω1

R} > 0, Ω1
R contains a ball of radius R, and Ω2

R = {(x, y) : (x,−y) ∈
Ω1

R}, and Θ is a curved bounded y-symmetric domain in RN .

Theorem 7.9. Let DR be a two bumps domain. There is an R0 > 0 such that for
R ≥ R0, we have α(DR) < αs(DR). Moreover, Equation (1.1) in DR has three positive
solutions, of which one is y-symmetric and other two are not y-symmetric.

Since finite dumbbell is a two bumps domain, the results of Byeon [1], Chen-Ni-Zhou
[2], and Dancer [6] are the consequences of our Theorem 7.9.
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