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ASYMPTOTIC EQUIVALENCE OF SYSTEMS OF
DIFFERENCE EQUATIONS

JAROMÍR KUBEN∗

Abstract. The relation between sets of solutions of the first order linear system of difference equations
and of its perturbation is studied. Asymptotic equivalence is proved using Tychonoff fixed point theorem.
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Consider the system of difference equations

∆xn = Axn + f(n, xn), (1)

where A is a k×k matrix, k ∈ N, xn ∈ Rk, n ∈ N0 and f : N0×Rk → Rk, f(n, x) is continuous
in x for any n ∈ N0 and ∆ denotes the forward difference operator, i.e., ∆xn = xn+1 − xn.
Along with (1) we also consider the corresponding linear system

∆yn = Ayn. (2)

Here N = {1, 2, 3, . . . } and N0 = N ∪ {0}.
In the sequel let us denote N(a) = {a, a + 1, . . . } for a ∈ N0 and x = {xn}, y = {yn},

z = {zn}. Further, let us denote |.| a norm on Rk or Rk×k such that |Dx| ≤ |D| · |x| for any
matrix D and any colon x.
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In this contribution asymptotic relationship between solutions of the systems (1) and
(2) will be investigated. The approach is inspired by the result for systems of ordinary
differential equations studied in [8]. A similar topic for difference systems can be found in
[4, 5, 7].

Definition 1. The systems (1) and (2) are said to be asymptotically equivalent if to each
solution x, n ∈ N(a), of (1) there exists a solution y, n ∈ N(b), of (2) such that

lim
n→∞

|xn − yn| = 0 (3)

and conversely to each solution y, n ∈ N(a), of (2) there exists a solution x, n ∈ N(b), of (1)
such that (3) holds.

If (3) holds only for some subsets of all solutions of (1) and (2), we will speak about
asymptotic equivalence between these sets.

First we will examine the special case of (1) – a non-homogeneous linear system

∆zn = Azn + bn, (4)

where bn ∈ Rk, n ∈ N0.
We will suppose that the matrix A + I = B is nonsingular, i.e., detB 6= 0. This

guarantees that each solution of (2) and (4) can be extended on N0. Denote Yn, n ∈ N0,
Y0 = I, the fundamental matrix of (2). Thus ∆Yn = AYn or equivalently Yn+1 = (A+ I)Yn,
from which we get Yn = (A + I)n = Bn, n ∈ N0.

As every solution zn of (4) can be expressed like zn = yn + ẑn, where ẑn is a fixed partial
solution of (4) and yn is an appropriate solution of (2), the proof of the next theorem is
evident.

Theorem 1. The systems (2) and (4) are asymptotically equivalent if and only if the sys-
tem (4) possesses a solution zn such that lim

n→∞
zn = 0.
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Let us remind the variation of constant formula for (4). We look for a solution of (4) in
the form zn = Yncn, where cn ∈ Rk is an appropriate sequence. After substituting it to (4)
we get

∆Yncn + Yn+1∆cn = AYncn + bn,

cn+1 = cn + Y −1
n+1bn,

and therefore

cn = c0 +
n∑

i=1

Y −1
i bi−1.

Choosing c0 = 0 we obtain that the system (4) has the solution

zn = Yncn = Yn

n∑
i=1

Y −1
i bi−1 =

n∑
i=1

Bn−ibi−1. (5)

If the series
∞∑

i=1

Y −1
i bi−1 converges, then it is possible to adjust zn:

zn = Yn

( ∞∑
i=1

Y −1
i bi−1 −

∞∑
i=n+1

Y −1
i bi−1

)
= Yn

∞∑
i=1

Y −1
i bi−1 − Yn

∞∑
i=n+1

Y −1
i bi−1.

As Yn

∞∑
i=1

Y −1
i bi−1 is a solution of (2), we obtain that (4) has also a solution

zn = −Yn

∞∑
i=n+1

Y −1
i bi−1 = −

∞∑
i=n+1

Bn−ibi−1.
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Assumption. Without loss of generality we can suppose that B has the Jordan canonical
form.

Denote

(0 <) µ1 < µ2 < · · · < µs = λ

different absolute values of eigenvalues λi(B), i = 1, . . . , t. Let mi be a maximal order of
blocks that correspond to the eigenvalues with the absolute value µi. Let m = ms. Further
let us put

p =

{
mj if µj = 1,

1 if no µj equals 1.

Assume B = diag(B1, B2), where

|λj(B1)| ≤ α = max
j
|λj(B1)| < 1, m? = mi if µi = α,

|λj(B2)| ≥ 1 for any j.

Then Yn = (A + I)n = Bn = diag{Bn
1 , 0}+ diag{0, Bn

2 }.
For r ∈ N consider a Jordan r-dimensional block

J =


µ 1 0 . . . 0
0 µ 1 . . . 0
...

...
...

...
...

0 0 0 . . . µ

 .

http://www.river-valley.com
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For a sufficiently smooth function g defined at µ it can be defined (see [1])

g(J) =


g(µ) g′(µ) g′′(µ)

2! . . . g(r−1)(µ)
(r−1)!

0 g(µ) g′(µ) . . . g(r−2)(µ)
(r−2)!

...
...

...
...

...
0 0 0 . . . g(µ)

 .

Assume now that µ 6= 0. Then especially for g(µ) = µn, n ∈ Z we have

Jn =


µn nµn−1 . . . n(n− 1) · · · (n− r + 2) µn−r+1

(r−1)!

0 µn . . . n(n− 1) · · · (n− r + 1) µn−r+2

(r−2)!

...
...

...
...

0 0 . . . µn

 . (6)

From this it follows the existence of constants K > 0 and L > 0 such that

|Bn
1 | ≤ K · nm?−1αn for n ≥ 1, (7)

|B−n
2 | ≤ L · (n + p− 2)p−1 for n ≥ 1. (8)

Lemma 1. Let 0 < q < 1 and gn ≥ 0 for n ∈ N. If
∞∑

i=1

gi < ∞,

then

lim
n→∞

qn
n∑

i=1

q−igi = 0.
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Proof. Assume
∞∑

i=1

gi < ∞. Denote bxc an integer part of x, x ∈ R. For any ε > 0 we can

find n0 ∈ N such that for n ≥ n0 there is

qn−bn/2c
bn/2c∑
i=1

gi <
ε

2
and

∞∑
bn/2c+1

gi <
ε

2
.

Then

qn
n∑

i=1

q−igi = qn

bn/2c∑
i=1

q−igi + qn
n∑

bn/2c+1

q−igi ≤ qn−bn/2c
bn/2c∑
i=1

gi +
n∑

bn/2c+1

gi < ε.

Theorem 2. Let

∞∑
i=1

(i + p− 2)p−1|bi−1| < ∞. (9)

Then the equation (4) has a solution zn such that lim
n→∞

zn = 0.

Proof. Denote B̂1 = diag{B1, O2}, B̂2 = diag{O1, B2}, B̂−1
1 = diag{B−1

1 , O2} and B̂−1
2 =

diag{O1, B
−1
2 }, where Oi is a zero matrix of the same dimension as Bi, i = 1, 2. Further

Yn = B̂n
1 + B̂n

2 holds.
From (5) we see that any solution zn of (4) can be written in the form

zn = Ynz0 +
n∑

i=1

Bn−ibi−1.
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Therefore

zn = Ynz0 + B̂n
1

n∑
i=1

B̂−i
1 bi−1 + B̂n

2

n∑
i=1

B̂−i
2 bi−1.

The inequalities (8) and (9) imply that the series
∞∑

i=1

B̂−i
2 bi−1 absolutely converges, so we

can express zn as follows:

zn = B̂n
1 z0 + B̂n

2

[
z0 +

∞∑
i=1

B̂−i
2 bi−1

]
+ B̂n

1

n∑
i=1

B̂−i
1 bi−1 − B̂n

2

∞∑
i=n+1̂

B−i
2 bi−1.

Choose z0 +
∞∑

i=1

B̂−i
2 bi−1 = 0. Then

zn = B̂n
1 z0 + B̂n

1

n∑
i=1

B̂−i
1 bi−1 − B̂n

2

∞∑
i=n+1̂

B−i
2 bi−1 = I1 + I2 + I3. (10)

We will show that lim
n→∞

Ii = 0, i = 1, 2, 3.

From (7) evidently lim
n→∞

I1 = 0.
Further we estimate I2. We have

|I2| ≤
∣∣∣n−1∑
i=1

B̂n−i
1 bi−1

∣∣∣ + |B̂0
1bn−1| = |I2a|+ |I2b|.

If 1 ≤ i ≤ n− 1, then n− i ≥ 1 and from (7) we have

|B̂n−i
1 bi−1| ≤ K(n− i)m?−1αn−i|bi−1|.

http://www.river-valley.com
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As lim
k→∞

km?−1(
√

α)k = 0, because
√

α < 1, a constant M > 0 exists such that

0 ≤ (n− i)m?−1(
√

α)n−i ≤ M

for n ≥ i. Therefore

|I2a| ≤
n−1∑
i=1

K(n− i)m?−1αn−i|bi−1| ≤ KM
n−1∑
i=1

(
√

α)n−i|bi−1|

= KM(
√

α)n
n∑

i=1

(
√

α)−i|bi−1| → 0

for n →∞ by Lemma 1.
Due to (9) we have bn−1 →∞ for n →∞ and

|I2b| ≤ |B̂0
1 | · |bn−1| → ∞

for n →∞. Thus lim
n→∞

I2 = 0.

Now we estimate I3. From (8) we obtain

|I3| ≤
∞∑

i=n+1

|B̂−(i−n)
2 | · |bi−1| ≤

∞∑
i=n+1

L(i− n + p− 2)p−1|bi−1|

≤ L
∞∑

i=n+1

(i + p− 2)p−1|bi−1| → 0

for n →∞ by (9). Thus lim
n→∞

I3 = 0.

Consider a linear space `(n1) of real sequences x = {xn}, xn ∈ Rk, n ≥ n1, n1 ∈ N0,
endowed with the topology τ induced by the set of seminorms Pm(x) = |xm|, m ≥ n1. Then
(`(n1), τ) is a Fréchet space – see [6, p. 37]. If xr = {xr

n} ∈ `(n1), r ∈ N0, then xr → x0 in
(`(n1), τ) if and only if lim

r→∞
xr

n = x0
n for each n ≥ n1.

http://www.river-valley.com
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Lemma 2. A subset B ⊂ `(n1) is relatively compact in (`(n1), τ) if and only if sup
x∈B

{|xn|} < ∞

for each n ≥ n1.

Proof. Sufficiency : Consider a sequence {xr} ⊂ B. It is possible to choose its subsequence
{yr} such that {yr

1} is Cauchy. Then it is possible to choose a subsequence {zr} of {yr}
such that {zr

2} is Cauchy etc. The diagonal sequence {y1,z2, . . . } is chosen from {xr} and
is Cauchy in (`(n1), τ).

Necessity : If sup
x∈B

{|xn|} = ∞ for some n ≥ n1, it is possible to find a sequence {xr} ⊂ B

such that lim
r→∞

|xr
n| = ∞. Evidently, for no subsequence {yr} of {xr} the sequence {|yr

n|} is
Cauchy.

Theorem 3. Assume
|f(n, x)| ≤ F (n, |x|), (11)

where F : N0×R+
0 → R+

0 and F (n, u) is nondecreasing and continuous in u for any n ∈ N0.
Let

∞∑
i=1

(i + p− 2)p−1F (i− 1, c) < ∞ (12)

for any c ∈ R+
0 .

Then the sets of bounded solutions of (1) and (2) are asymptotically equivalent.

Proof. Let xn, n ∈ N(n0), be a bounded solution of (1). Then there exists c ≥ 0 such that
|xn| ≤ c for n ∈ N(n0). If yn is an arbitrary solution of (2), then zn = xn − yn is a solution
of an equation

∆zn = Azn + f(n, xn). (13)

Conversely, if zn is an arbitrary solution of (13), then yn = xn − zn is a solution of (2).

http://www.river-valley.com
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According to (11) and (12) we have

∞∑
i=1

(i + p− 2)p−1|f(i− 1, xi−1)| ≤
∞∑

i=1

(i + p− 2)p−1F (i− 1, |xi−1|)

≤
∞∑

i=1

(i + p− 2)p−1F (i− 1, c) < ∞.

Then due to Theorem 2 the equation (13) has a solution zn such that lim
n→∞

zn = 0. Thus

yn = xn − zn is a solution of (2) for which lim
n→∞

|xn − yn| = lim
n→∞

|zn| = 0.

Assume now that yn is a bounded solution of (2), n ∈ N0. Consider an equation

xn = yn + B̂n
1

n∑
i=n0+1̂

B−i
1 f(i− 1, xi−1)− B̂n

2

∞∑
i=n+1̂

B−i
2 f(i− 1, xi−1), (14)

n0 ∈ N0, n ≥ n0. It is easy to verify that any solution of (14) is a solution of (1), too. In
fact, if we denote I = Î1 + Î2 = diag{I1, O2}+ diag{O1, I2}, where Ii is a unit matrix of the

http://www.river-valley.com
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same dimension as Bi, i = 1, 2, we obtain

∆xn = ∆yn + ∆B̂n
1

n∑
i=n0+1̂

B−i
1 f(i− 1, xi−1) + B̂n+1

1 B̂
−(n+1)
1 f(n, xn)

−∆B̂n
2

∞∑
i=n+1̂

B−i
2 f(i− 1, xi−1) + B̂n+1

2 B̂
−(n+1)
2 f(n, xn)

= Ayn + AB̂n
1

n∑
i=n0+1̂

B−i
1 f(i− 1, xi−1) + Î1f(n, xn)

−AB̂n
2

∞∑
i=n+1̂

B−i
2 f(i− 1, xi−1) + Î2f(n, xn)

= Axn + f(n, xn).

For ρ > 0, let us denote Bρ = {x ∈ `(n0) : |xn| ≤ ρ, n ∈ N(n0)}. Evidently Bρ is a
convex closed subset of `(n0), which is compact by Lemma 2. We will show that (14) has a
solution in Bρ, where ρ and n0 will be chosen later.

Define a mapping T : Bρ → `(n0) as follows:

T (x)n = yn + B̂n
1

n∑
i=n0+1̂

B−i
1 f(i− 1, xi−1)− B̂n

2

∞∑
i=n+1̂

B−i
2 f(i− 1, xi−1)

for x ∈ Bρ. By (8) and (11) we have

|B̂−i
2 f(i− 1, xi−1)| ≤ L(i + p− 2)p−1F (i− 1, |xi−1|) ≤ L(i + p− 2)p−1F (i− 1, ρ),

which shows (using (12)) that
∞∑

i=n+1̂

B−i
2 f(i− 1, xi−1) converges and T is correctly defined.

http://www.river-valley.com
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Let |yn| ≤ c1, n ∈ N0, and choose ρ ≥ 2c1. Then

|T (x)n| ≤ |yn|+
n∑

i=n0+1

|B̂n−i
1 |F (i− 1, ρ) +

∞∑
i=n+1

|B̂−(i−n)
2 |F (i− 1, ρ).

With respect to (7) there exists a constant M > 0 such that |B̂n−i
1 | ≤ M for n0 +1 ≤ i ≤ n.

Using (12) we get that
∞∑

i=1

F (i− 1, ρ) < ∞, which implies that

|T (x)n| ≤ c1 + M
n∑

i=n0+1

F (i− 1, ρ) + L
∞∑

i=n+1

(i− n + p− 2)p−1F (i− 1, ρ)

≤ c1 + M
∞∑

i=n0+1

F (i− 1, ρ) + L
∞∑

i=n+1

(i + p− 2)p−1F (i− 1, ρ).

Therefore, it is possible to find n0 large enough such that

M
∞∑

i=n0+1

F (i− 1, ρ) + L
∞∑

i=n+1

(i + p− 2)p−1F (i− 1, ρ) < c1.

Then |T (x)n| ≤ 2c1 ≤ ρ. i.e. T : Bρ → Bρ.
Further we will verify that T is a continuous operator. Let xk → x for k →∞ in `(n0),

which means that lim
k→∞

xk
n = xn, n ∈ N(n0). Choose a fixed n ≥ n0 and n1 > n. Then

|T (xk)n − T (x)n| =
∣∣∣B̂n

1

n∑
i=n0+1̂

B−i
1 [f(i− 1, xk

i−1)− f(i− 1, xi−1)]

− B̂n
2

∞∑
i=n+1̂

B−i
2 [f(i− 1, xk

i−1)− f(i− 1, xi−1)]
∣∣∣

http://www.river-valley.com
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≤
n∑

i=n0+1

|B̂n−i
1 | · |f(i− 1, xk

i−1)− f(i− 1, xi−1)|

+
n1∑

i=n+1

|B̂−(i−n)
2 | · |f(i− 1, xk

i−1)− f(i− 1, xi−1)|

+ 2
∞∑

i=n1+1

|B̂−(i−n)
2 |F (i− 1, ρ)

≤ M

n1∑
i=n0+1

|f(i− 1, xk
i−1)− f(i− 1, xi−1)|

+ L

n1∑
i=n+1

(i− n + p− 2)p−1|f(i− 1, xk
i−1)− f(i− 1, xi−1)|

+ 2
∞∑

i=n1+1

(i− n + p− 2)p−1F (i− 1, ρ)

≤ M

n1∑
i=n0+1

|f(i− 1, xk
i−1)− f(i− 1, xi−1)|

+ L(n1 + p− 2)p−1
n1∑

i=n0+1

|f(i− 1, xk
i−1)− f(i− 1, xi−1)|

+ 2
∞∑

i=n1+1

(i + p− 2)p−1F (i− 1, ρ).

http://www.river-valley.com
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Let ε > 0 be an arbitrary number. From (12) there exists n1 such that

∞∑
i=n1+1

(i + p− 2)p−1F (i− 1, ρ) <
ε

4
.

Further, as xk → x in `(n0) and f is continuous at its second argument we can find k0 ∈ N
such that for k ≥ k0 and n0 ≤ i ≤ n1 − 1 the inequality

|f(i, xk
i )− f(i, xi)| <

ε

2(n1 − n0)
(
M + L(n1 + p− 2)p−1

)
holds. Thus |T (xk)n − T (x)n| < ε for k ≥ k0, i.e. lim

k→∞
T (xk)n = T (x)n. But this means

that T (xk) → T (x) as k →∞ in `(n0).
From Tychonoff fixed point theorem – see [2, p. 405] or [3, p. 45] – we conclude that T

has a fixed point in Bρ. Thus (14) and also (1) has a bounded solution.
We will show that lim

n→∞
|xn − yn| = 0. Analogously as in the proof of Theorem 2 for

I2 and I3 (see (10)) it can be proved that

n∑
i=n0+1̂

Bn−i
1 f(i− 1, xi−1)−

∞∑
i=n+1̂

B
−(i−n)
2 f(i− 1, xi−1) → 0

as n →∞ (bi−1 is to be replaced by F (i− 1, ρ)). This proves the theorem.
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