Proceedings of Equadiff-11 2005, pp. 197–200

Home Page

Contents

Page 1 of 6

Go Back

Full Screen

Close

Quit

SOME EXISTENCE RESULT TO ELLIPTIC EQUATIONS WITH SEMILINEAR COEFFICIENTS*

TSANG-HAI KUO[†]

Abstract. For the quasilinear elliptic equation

$$-\sum_{i,j=1}^{N} a_{ij}(x,u) \frac{\partial^2 u}{\partial x_i \partial x_j} + c(x,u)u = f(x,u,\nabla u)$$

on a bounded smooth domain Ω in \mathbb{R}^N with $c(x,r) \ge \alpha_0$ and $|f(x,r,\xi)| \le C_0 + h(|r|)|\xi|^{\theta}, 0 \le \theta < 2$, we note that every solution $u \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega), p \ge \frac{2N}{N+2}$, is L^{∞} -bounded by $\frac{C_0}{\alpha_0}$. Consequently, the existence of such solution is irrelevant to $a_{ij}(x,r)$ on $|r| \ge \frac{C_0}{\alpha_0}$. It is then shown that if the oscillation $a_{ij}(x,r)$ with respect to r are sufficiently small for $|r| \le \frac{C_0}{\alpha_0}$, then there exists a solution $u \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega), 1 \le p < \infty$.

Key words. Quasilinear elliptic problem, strong solution, $W^{2,p}$ estimate

*Partially supported by the National Science Council of R.O.C. under Project NSC 93-2115-M182-002.

[†] Center for General Education, Chang Gung University, Taoyuan, Taiwan, (thkuo@mail.cgu.edu.tw)

Home Page Title Page Page 2 of 6 Go Back Full Screen Close Quit

1. Introduction. For a bounded domain Ω in \mathbb{R}^N , $N \ge 3$, which is $C^{1,1}$ diffeomorphic to a ball in \mathbb{R}^N , let L_v, L, D_v , and D are elliptic operators defined by

$$\begin{split} L_{v}u &= -\sum_{i,j=1}^{N} a_{ij}(x,v) \frac{\partial^{2}u}{\partial x_{i}\partial x_{j}} + c(x,v)u,\\ Lu &= L_{u}u,\\ D_{v}u &= -\sum_{i,j=1}^{N} \frac{\partial}{\partial x_{i}} a_{ij}(x,v) \frac{\partial u}{\partial x_{j}} + c(x,v)u,\\ Du &= D_{u}u, \end{split}$$

where the coefficients a_{ij}, c , and $\frac{\partial a_{ij}}{\partial x_i}$, $\frac{\partial a_{ij}}{\partial r}$ are bounded Carathéodory functions, $c \ge \alpha_0 > 0$ and $\sum_{i,j=1}^N a_{ij}\xi_i\xi_j \ge \lambda |\xi|^2$ for some constants α_0 and λ .

Let $f(x, r, \xi)$ be a Carathéodory function satisfying $|f(x, r, \xi)| \leq C_0 + h(|r|)|\xi|^2$, where h(|r|) is a locally bounded function. It is shown in [1] that there exists a solution $u \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ to the equation

$$Du = f(x, u, \nabla u) \qquad \text{in } \Omega. \tag{1.1}$$

Moreover, every solution $u \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ to (1.1) is L^{∞} -bounded by $r_0 = \frac{C_0}{\alpha_0}$. In pursuit of strong solutions, we note that (1.1) can be reformulated as

$$Lu = f(x, u, \nabla u) + \sum_{i,j=1}^{N} \frac{\partial a_{ij}}{\partial x_i} \frac{\partial u}{\partial x_j} + \sum_{i,j=1}^{N} \frac{\partial a_{ij}}{\partial r} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j}.$$
 (1.2)

It then suffices to examine the existence of solutions to (1.2) with $a_{ij}(x,r)$ replaced by

$$b_{ij}(x,r) = \begin{cases} a_{ij}(x,r), & \text{if } |r| < r_0 \\ a_{ij}(x,r_0), & \text{if } |r| \ge r_0 \end{cases}$$
(1.3)

For the main purpose of this paper, we shall study the existence of solutions $u \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$ to the equation

$$Lu = f(x, u, \nabla u) \qquad \text{in } \Omega, \tag{1.4}$$

where

$$|f(x,r,\xi)| \leq C_0 + h(|r|)|\xi|^{\theta}, \qquad 0 \leq \theta < 2.$$

$$(1.5)$$

Recall that in the linear case when $a_{ij} = a_{ij}(x)$ and $f = f(x) \in L^p(\Omega)$, one has the $W^{2,p}$ estimate from [2] that

$$||u||_{W^{2,p}(\Omega)} \leq C(||u||_{L^{p}(\Omega)} + ||f||_{L^{p}(\Omega)})$$

for every solution $u \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$ to (1.4). This estimate remains valid if the oscillation $a_{ij}(x,r)$ with respect to r are sufficiently small [3]. A $W^{2,p}$ estimate was then performed to deduce the existence of solutions to (1.4). In Section 2, we observe that every solution $u \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$ to (1.4), $p \ge \frac{2N}{N+2}$, is L^{∞} -bounded by $r_0 = \frac{C_0}{\alpha_0}$. Thus, the existence of solution is irrelevent to $a_{ij}(x,r)$ on $|r| \ge r_0$. Our main result in THEOREM 2.4 shows that if the oscillation of $a_{ij}(x,r)$ with respect to r for $|r| \le r_0$ are sufficiently small, then there exists a solution $u \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega) \cap W_0^{1,p}(\Omega)$ for $1 \le p < \infty$.

2. Existence of Strong Solutions. Our main result in this section aims to show the existence of solutions $u \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$ to (1.4). In the light of [1, p. 45], every solution $u \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ to (1.1) is L^{∞} -bounded by r_0 , one gets readily that

LEMMA 2.1. Every solution $u \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$, $p \ge \frac{2N}{N+2}$, is L^{∞} -bounded by r_0 . Proof. Let

$$\tilde{f}(x,r,\xi) = f(x,r,\xi) - \sum_{i,j=1}^{N} \frac{\partial a_{ij}}{\partial x_i} \frac{\partial u}{\partial x_j} - \sum_{i,j=1}^{N} \frac{\partial a_{ij}}{\partial r} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j}.$$
(2.1)

(1.4) can be rewritten as

$$Du = \tilde{f}(x, u, \nabla u).$$

For every $\varepsilon > 0$, one deduces from (1.5) that $|\tilde{f}(x,r,\xi)| \leq C_0 + \varepsilon + h_1(|r|)|\xi|^2$, where $h_1(|r|)$ is a locally bounded function. Notice that a solution $u \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ to (1.1) is L^{∞} -bounded by $r_0 + \frac{\varepsilon}{\alpha_0}$. Therefore, every solution $u \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega), \ p \geq \frac{2N}{N+2}$, is L^{∞} -bounded by r_0 .

For a fixed x in \mathbb{R}^N , let $a_{ij}(x,r;s)$ denote the oscillation of $a_{ij}(x,r)$ with respect to r for $|r| \leq s$, i.e.,

$$\operatorname{osc} a_{ij}(x,r;s) = \sup\{|a_{ij}(x,r_1) - a_{ij}(x,r_2)| : |r_1|, |r_2| \leq s\}.$$

Let $\operatorname{osc} a(x,r;s) = \max_{1 \leq i,j \leq N} \operatorname{osc} a_{ij}(x,r;s)$ and $\operatorname{osc} a(x,r) = \operatorname{osc} a(x,r;+\infty)$. For operators L_v , we quote the following result from [3, p. 191]

LEMMA 2.2. Let Ω be a bounded domain in \mathbb{R}^N which is $C^{1,1}$ diffeomorphic to a ball in \mathbb{R}^N , and the coefficients $a_{ij} \in C^{0,1}(\bar{\Omega} \times \mathbb{R})$, $|a_{ij}|$, $|c| \leq \Lambda$, where Λ is a positive constant, $i, j = 1, \ldots, N$. Assume that $\operatorname{osc} a_{ij}(x, r)$ is sufficiently small with respect to r and uniformly for $x \in \Omega$. Then if $u \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$ and $L_v u \in L^p(\Omega)$, 1 . One has the estimate

$$||u||_{W^{2,p}(\Omega)} \leqslant C(||L_v u||_{L^p(\Omega)} + ||u||_{L^p(\Omega)}),$$

where C is a constant (independent of v) dependent on N, p, λ , Λ , $\partial\Omega$, and Ω , the diffeomorphism and the moduli of continuity of $a_{ij}(x,r)$ with respect to x in $\overline{\Omega}$.

Denote $\tilde{L}v$ and \tilde{L} the elliptic operators with $a_{ij}(x,r)$ replaced by $b_{ij}(x,r)$, i.e.,

$$\tilde{L}_{v}u = -\sum_{i,j=1}^{N} b_{ij}(x,v) \frac{\partial^{2}u}{\partial x_{i}\partial x_{j}} + c(x,v)u,$$

Home Page Title Page Contents Page 4 of 6 Go Back

Close

Full Screen

Quit

and

$$\tilde{L}u = \tilde{L}_u u.$$

Consider now the equation

$$\tilde{L}u = f(x, u, \nabla u) \tag{2.2}$$

Let f_n be the truncature of f by $\pm n$. For $v \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$, the Dirichlet problem $\tilde{L}_v u = f_n(x, v, \nabla v)$ has a unique solution $u_n \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$ and by LEMMA 2.2

$$|u_n||_{W^{2,p}(\Omega)} \leq C(||u_n||_{L_p(\Omega)} + ||f_n(x, v, \nabla v)||_{L_p(\Omega)}).$$

An application of the weak maximum principle of A. D. Aleksandrov [2, p. 220] together with the Schauder Fixed Point Theorem implies that there exists a solution $u_n \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$ to (2.2). Moreover, by the constraint (1.5) on f, one has the following estimate from [3].

LEMMA 2.3. The approximating solutions (u_n) are $W^{2,p}$ -bounded.

The existence of solutions can now be deduced from above lemmas.

THEOREM 2.4. Let Ω be a bounded $C^{1,1}$ -smooth domain in \mathbb{R}^N , $N \ge 3$, $a_{ij} \in C^{0,1}(\bar{\Omega} \times \mathbb{R})$, $\frac{\partial a_{ij}}{\partial x_i}$, $\frac{\partial a_{ij}}{\partial r}$, c be bounded Carathodory functions, $c(x,r) \ge \alpha_0 > 0$. Assume that $f(x,r,\xi)$ satisfies (1.5) and $osca(x,r;r_0)$ is sufficiently small uniformly for $x \in \bar{\Omega}$. Then there exists a solution $u \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$ to Equation (1.4).

Proof. By LEMMA2.3 we get the approximating solutions (u_n) which are $W^{2,p}$ -bounded. It follows from the compact imbedding $W^{2,p}(\Omega) \to W^{1,p}(\Omega)$ that there exists a convergent subsequence in $W_0^{1,p}(\Omega)$, which is still denoted by (u_n) , such that $u_n \to u$ a.e., $\nabla u_n \to$ ∇u a.e. and $u_n \to u$ in $W^{1,p}(\Omega)$. Moreover, since $||u_n||_{W^{2,p}(\Omega)} \leq M$ and the set $\{v \in$

 $W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega) |||v||_{W^{2,p}(\Omega)} \leq M$ is closed in $W^{1,p}(\Omega)$, the limit u of (u_n) belongs to $W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega)$.

Passing to the limit and using Vitali Convergence Theorem, one can show that $Lu_n \to Lu$ in $\mathfrak{D}(\mathbf{\Omega})$ and $f_n(x, u, \nabla u_n) \to f(x, u, \nabla u)$ in $L^1(\mathbf{\Omega})$, which proves that u is a solution to (2.2).

Notice that $||u||_{L^{\infty}} \leq r_0$ by LEMMA 2.1, hence $b_{ij}(x, u(x)) = a_{ij}(x, u(x))$ a.e. Therefore one concludes that u is in fact a solution to (1.4).

REFERENCES

- L. Boccardo, F. Murat and J. P. Puel, Existence de solutions faibles pour des équations elliptiques quasilinéaires a croissance quadratique, in: Nonlinear Partial Differential Equations and Their Applications, J. L. Lions and H. Brezis eds., Collge de France Seminar, Vol. IV, Research Notes in Math. 84, Pitman, London, 1983, 19-73.
- [2] D. Gilbarg and N. S. Trudinger, *Elliptic Partial Differential Equations of Second Order*, Springer-Verlag, New York, 1983.
- [3] T. H. Kuo and Y. J. Chen, Existence of strong solutions to some quasilinear elliptic problems on bounded smooth domains, Taiwanese J. Math. 6(2) (2002), 187–204.