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NUMERICAL APPROXIMATION OF SINGULAR BOUNDARY VALUE
PROBLEMS FOR A NONLINEAR DIFFERENTIAL EQUATION

PEDRO LIMA∗ AND LUISA MORGADO †

Abstract. In this work we are concerned about singular boundary value problems for certain nonlinear
second order ordinary differential equations on finite and infinite domains. An asymptotic expansion is
obtained for the family of solutions satisfying the boundary condition at the origin. In the case of infinite
domains, the asymptotic behavior of the solutions is also analysed for large values of the independent variable.
Based on the asymptotic expansions, computational methods are introduced to approximate the solution of
the problem.

Key words. nonlinear singular boundary value problem, bubble-type solution, asymptotic approxima-
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1. Introduction. In this work, we are concerned about the nonlinear second order
differential equation

y′′ (x) + N−1
x y′ (x) = c(x)f(y), (1.1)

where c(x) is a continuous function in [0,+∞[, there exist real numbers Cmax and Cmin such
that 0 < Cmin ≤ c(x) ≤ Cmax, ∀x ∈ [0,+∞[ and L = limx→+∞ c(x) 6= 0, f is a polynomial,
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such that f(0) = 0. We search for solutions of this equation which satisfy the boundary
conditions:

y′ (0) = 0, y(M) = 0, M ∈ R+, (1.2)

or

y′ (0) = 0, lim
x→+∞

y(x) = 0. (1.3)

These two boundary value problems have been studied in [3]. They arise when looking
for radial solutions of the elliptic equation 4y = c(|x|)f(y) in a ball B(0,M) ⊂ RN or in
all RN , respectively (N > 1). The case when c(x) ≡ 1 has also been studied in [2] and [1].
A more general class of problems has been analysed in [7], where the linear operator on the
left-hand side of Eq. (1.1) has been replaced by

(|y′|m−2y′)′ +
N − 1

x
|y′|m−2y′,

which represents the radial part of the so-called degenerate laplacian (it coincides with the
usual laplacian in the case m = 2). An equation with an even more general operator was
analysed in [6]. In all these papers, sufficient conditions where imposed on f that guarantee
the existence of at least one positive solution to the considered problems. A theorem about
uniqueness of solution was also presented in [6].

A related problem arises in hydrodynamics when modeling the formation of microscop-
ical bubbles in a non-homogeneous fluid. In this case the density of the fluid ρ satisfies the
so-called density profile equation (see [4]). This equation was studied in [10] and [11], where
it was written in the form:

ρ′′(r) +
N − 1

r
ρ′(r) = 4λ2(ρ + 1)ρ(ρ− ξ), 0 < r < ∞, (1.4)

http://www.river-valley.com


Home Page

Title Page

Contents

JJ II

J I

Page 3 of 17

Go Back

Full Screen

Close

Quit

where λ > 0, N > 1. The authors investigated strictly increasing solutions of Eq. (1.4)
which satisfy the boundary conditions

lim
r→0+

ρ′(r) = 0, (1.5)

lim
r→∞

ρ(r) = ξ. (1.6)

As we shall see, this problem can be reduced to a particular case of (1.1). The theoretical
results of [7] can then be used to show that problem (1.4), (1.5), (1.6), with 0 < ξ < 1, has
at least one strictly monotone solution. With this purpose, let us set in (1.4)

ρ(r) = ξ − y(r).

Then the boundary conditions (1.5), (1.6) reduce to (1.3) and equation (1.4) reduces to (1.1),
where

f(y) = 4λ2y(y − ξ)(y − ξ − 1) (1.7)

and c(x) ≡ 1. Moreover, it is easy to verify that, if 0 < ξ < 1, the function f given by (1.7)
satisfies the conditions of [7, Theorem 1].

On the other hand, it was shown in [11] that a solution of (1.4) with the considered
properties exists only if 0 < ξ < 1.

If in the considered problem we replace the boundary condition (1.6) by

ρ(M) = ξ (1.8)

where M > 0, and N < 4, then, using again the substitution ρ(r) = ξ − y(r), we obtain
a problem of the type (1.1), (1.2). According to [3, Theorem 19 and Remark 5], if M is
sufficiently large, this problem has at least one solution. Moreover, the mentioned theorem
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is still applicable if the right-hand side of equation (1.4) is multiplied by a function c(r),
such that 0 < Cmin ≤ c(r) ≤ Cmax, ∀r ∈ [0,+∞[.

In Section 2, we consider the mentioned above case of f(y) = 4λ2y(y− ξ)(y− ξ− 1) and
extend the results obtained in [10] and [11] for nonconstant functions c(r). In particular,
we shall obtain, for this case, series expansions of the solutions of the considered boundary
value problem near the singularities at zero and infinity.

In section 3, we consider f(y) = y − y3. For this case, we also obtain series expansions
of the solutions of (1.1) at zero and at infinity.

Numerical results for all the considered boundary value problems are presented in Sec-
tion 4.

We finish this paper with some conclusions and remarks on future work.

2. The case f(y) = 4λ2y(y− ξ)(y− ξ− 1). As we have seen in the introduction, when
the function on the right-hand side of our equation has this form, with 0 < ξ < 1, and
c(x) ≡ 1, the boundary value problem (1.1), (1.3) is equivalent to the problem, considered
in [10] and [11]. In order to compare our results with those obtained in the cited works, we
perform the variable substitution y = ξ − ρ. Then (1.1) can be rewritten as

ρ′′(x) +
N − 1

x
ρ′(x) = 4λ2(ρ + 1)ρ(ρ− ξ)c(x), 0 < x < ∞, (2.1)

and the boundary conditions (1.2) and (1.3) become, respectively

ρ′(0) = 0, (2.2)
ρ(M) = ξ (2.3)

and

ρ′(0) = 0, (2.4)
lim

x→∞
ρ(x) = ξ. (2.5)

http://www.river-valley.com
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2.1. The singularity at zero. Let us consider equation (2.1) with initial conditions

lim
x→0+

ρ(x) = ρ0, lim
x→0+

xρ′(x) = 0, (2.6)

where ρ0 is a real parameter. Note that this problem is singular at zero for all N > 1.
We shall assume that c(x) is analytic in a neighborhood of 0 and can be expanded in

the form

c(x) = γ0 +
∞∑

k=1

γkxk, x ≤ δ. (2.7)

If we linearize equation (2.1) in the neighborhood of x = 0, taking (2.6) into account, we
obtain an equation with a regular singularity at zero, with characteristic exponents λ1 = 0
and λ2 = 2−N .

Therefore, according to [9, Theorem 4 and Theorem 5], the Cauchy problem (2.1), (2.6)
for each value of ρ0 has a unique solution that can be represented in the form of the series

ρ(x) = ρ0 +
+∞∑
k=2

ρk(ρ0)xk, 0 ≤ x ≤ δ, δ > 0. (2.8)

The coefficients ρk can be determined substituting (2.8) in (2.1). For k = 2, 3, 4 we obtain
the following formulae:

ρ2(ρ0) =
2λ2

N
ρ0(ρ0 + 1)(ρ0 − ξ)γ0,

ρ3(ρ0) =
4λ2

3N + 3
ρ0(ρ0 + 1)(ρ0 − ξ)γ1,

ρ4(ρ0) =
λ2(−γ2ξρ0 + γ2ρ

2
0 − γ2ξρ

2
0 + γ2ρ

3
0 − γ0ξρ2 + 2γ0ρ0ρ2 − 2γ0ξρ0ρ2 + 3γ0ρ

2
0ρ2)

N + 2
,

(2.9)
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where, for the sake of simplicity, we have replaced ρ2(ρ0) by ρ2. Hence, we conclude that
each solution of the form (2.8) satisfies the condition (2.4) and therefore the singular Cauchy
problem (2.1), (2.4) has a one parameter family of solutions.

Example 2.1.1.Considering, for example, c(x) = cos
(

1
2+x2

)
, we have c(x) = cos( 1

2 ) +
1
4 sin( 1

2 )x2 + O(x4), as x → 0, and therefore γ0 = cos( 1
2 ) and γ2 = 1

4 sin( 1
2 ). Substituting

these values in the right-hand side of formulae (2.9), we obtain the corresponding values of
ρk(ρ0), k = 2, 3, . . ..

2.2. The singularity at infinity. Let us now consider equation (2.1) with initial
condition

lim
x→+∞

(ρ(x)− ξ) = lim
x→+∞

ρ′(x) = 0. (2.10)

In order to analyze the asymptotic behavior of the solutions of (2.1) at infinity, where
this equation has an irregular singular point, we perform the variable substitution z =
x

N−1
2 (ρ− ξ). Then (2.1) becomes

z′′ = 4λ2

(
z

x
N−1

2

+ ξ + 1
) (

z

x
N−1

2

+ ξ

)
zc(x) +

(N − 1)(N − 3)
4x2

z, (2.11)

and (2.10) take the form

lim
x→+∞

z(x) = lim
x→+∞

z′(x) = 0. (2.12)

If N = 1, equation (2.11) is an autonomous equation. When N > 1, this equation
is asymptotically autonomous, this is, when x → +∞, we obtain an autonomous equation
whose characteristic roots are

τ1,2 = ±τ, τ = 2λ
√

ξ(ξ + 1)L, L = lim
x→+∞

c(x) > 0.

http://www.river-valley.com
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Following, as in [10] and [11], a method introduced by Lyapunov [12], the singular Cauchy
problem (2.11),(2.12) has a one parameter family of solutions that can be represented by

z(x, b) = C1(x)b e−τx +
+∞∑
k=2

Ck(x)bk e−τkx, x ≥ x∞, (2.13)

where b is the parameter and |b e−τx∞ | is small. The coefficients Ck(x) can be obtained
substituting (2.13) in (2.11). For k = 1, we obtain the linear differential equation

C ′′1 (x)− 2τC ′1(x) =
(

(N − 1)(N − 3)
4x2

+ (c(x)− L)
)

C1(x), (2.14)

and the initial conditions

lim
x→+∞

C1(x) = 1, lim
x→+∞

C ′1(x) = 0. (2.15)

If
∫∞

x∞
(c(x)−L) dx < ∞, according to [9, Theorem 3 and Note 3], problem (2.14), (2.15)

has an unique solution, whose smoothness depends on the smoothness of c(x). In particular,
if c(x) allows an expansion in the form

c(x) = L +
∞∑

k=2

dk

xk
, x > x∞, (2.16)

the solution of the Cauchy problem (2.14), (2.15) may be expanded as

C1(x) = 1 +
+∞∑
k=1

bk

xk
, x > x∞, (2.17)

http://www.river-valley.com
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where the coefficients bk may be determined substituting (2.17) and (2.16) in (2.14). After
determining b1 and b2, we obtain the following expansion for C1:

C1(x) =1 +
(N − 1)(N − 3) + 16d2λ

2ξ(ξ + 1)
8τx

+
((N − 1)(N − 3) + 16d2λ

2ξ(ξ + 1))((N − 5)(N + 1)
128τ2x2

+
16d2λ

2ξ(ξ + 1)) + 256d3λξ(1 + ξ)
√

ξ(1 + ξ)
128τ2x2

+ O

(
1
x3

)
,

(2.18)

as x → +∞.

Example 2.2.1.Considering, for example, c(x) = cos
(

1
2+x2

)
, we have L = limx→∞ c(x) = 1

and it is easy to verify that
∫∞

x∞
(c(x)− 1) dx < ∞.

Moreover, in this case we have

c(x) = 1− 1
2

(
1
x4

)
+ O

(
1
x6

)
, x →∞,

and therefore d2 = 0, d3 = 0 and d4 = − 1
2 . By replacing these coefficients in (2.18), we

obtain the first terms of the expansion of C1.

Concerning the higher terms of the expansion (2.13), we note that the coefficients Ck, k =
2, 3, . . . may be obtained in a similar way, by solving singular Cauchy problems, analogous to
(2.14), (2.15). Finally, we can conclude that for each value of b the singular Cauchy problem
(2.11), (2.12) has exactly one solution, which can be expanded in the form (2.13).

Returning now to the initial variable ρ, we conclude that the Cauchy problem (2.1),
(2.10) has a one parameter family of solutions that can be represented by

ρ(x, b) = ξ +
1

x
N−1

2

+∞∑
k=1

Ck(x)bk e−τkx, x ≥ x∞,

http://www.river-valley.com
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where b is the parameter. Note that, since the needed solution is increasing, we must have
b < 0.

3. The case f(y) = y− y3. Let us now consider the singular boundary value problems
(1.1)–(1.2) and (1.1)–(1.3) with f(y) = y − y3 and N > 2. It can be easily proved that,
in this case, the conditions of [3, Theorem 19 and Theorem 20] are satisfied if N < 4, and
therefore these problems have at least one positive solution (in the case of the first one, for
a sufficient large M).

3.1. The singularity at zero. Let us consider equation (1.1) with initial conditions

lim
x→0+

y(x) = y0, lim
x→0+

xy′(x) = 0, (3.1)

where y0 is a real parameter.
As in subsection 2.1, we assume that c allows an expansion in the form (2.7). In this

case, equation (1.1) also has a regular singularity at x = 0 and its characteristic exponents
are the same as in subsection 2.1. Then, using again [9, Theorem 4 and Theorem 5], we can
assure that the singular Cauchy problem (1.1), (3.1) has exactly one solution for each value
of y0, which can be represented in the form

y(x) = y0 +
+∞∑
k=2

yk(y0)xk, 0 ≤ x ≤ δ, δ > 0. (3.2)

The coefficients yk can be determined substituting (3.2) in (1.1). For k = 2, 3, 4 we obtain:

y2(y0) =
−y0(y0 + 1)(y0 − 1)γ0

2N
,

y3(y0) =
−y0(y0 + 1)(y0 − 1)γ1

3N + 3
,

y4(y0) =
γ2y0 − γ2y

3
0 + γ0y2 − 3γ0y

2
0y2

4(2 + N)
.

http://www.river-valley.com
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All the solutions of the form (3.2) satisfy y′(0) = 0 and therefore the equation (1.1) has a
one-parameter family of solutions that satisfy this condition.

Note that in this case the positive root of F (t) =
∫ t

0
(s − s3) ds is β =

√
2; therefore,

according to [3] and [7], we must have y(0) >
√

2.

3.2. The singularity at infinity. Let us now consider equation (1.1) with the initial
condition

lim
x→+∞

y(x) = lim
x→+∞

y′(x) = 0. (3.3)

In order to analyze the asymptotic behavior of the solutions of (1.1) at infinity, we follow
the same steps as in subsection 2.2. By means of the variable substitution z = x

N−1
2 y, we

obtain the new equation

z′′ =
(

z

x
N−1

2

+ 1
) (

1− z

x
N−1

2

)
zc(x) +

(N − 1)(N − 3)
4x2

z, (3.4)

and the conditions (3.3) become

lim
x→+∞

z(x) = lim
x→+∞

z′(x) = 0. (3.5)

Equation (3.4) is asymptotically autonomous, since, when x → +∞, we obtain the
autonomous equation z′′ = Lz, where L = limx→+∞ c(x) > 0, whose characteristic roots are

τ1,2 = ±τ, τ =
√

L.

Using again the results of [12], the singular Cauchy problem (3.4), (3.5) has a one
parameter family of solutions that can be represented in the form

z(x, b) = C1(x)b e−τx +
+∞∑
k=2

Ck(x)bk e−τkx, x ≥ x∞, (3.6)

http://www.river-valley.com
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where b is the parameter and |b e−τx∞ | is small.
The coefficients Ck(x) can be obtain substituting (3.6) in (3.4). In particular, for the

coefficient C1(x), we obtain the singular Cauchy problem (2.14), (2.15). Therefore, using
the same arguments as in subsection 2.2, we conclude that C1 satisfies a series expansion of
the form (2.17).

The coefficients Ck, for k = 2, 3, . . . can be computed in a similar way. By substituting
these coefficients in the series (3.6) we obtain, for each b, a solution of the Cauchy problem
(3.4), (3.5).

Returning to the initial variable y, we conclude that the Cauchy problem (1.1),(3.3) has
a one parameter family of solutions that can be represented by

y(x, b) =
1

x
N−1

2

+∞∑
k=1

Ck(x)bk e−τkx, x ≥ x∞,

where b is the parameter. Since in this case the needed solution of (1.1) is decreasing, we
must have b > 0.

4. Numerical Results.

4.1. The case f(y) = 4λ2y(y− ξ)(y− ξ− 1). Numerical results for the problem (2.1),
(2.4), (2.5)(on the half-line), in the case N = 3, have been obtained in [10] and [11], using a
shooting method, similar to the one of the present paper. More recently, in [8], collocation
methods have been used with success to approximate the solution of the same problem. Here
we will begin by presenting some results, concerning the problem (2.1), (2.2), (2.3) (on a
finite domain). In order to solve numerically this problem, for a certain M > 0, we use the
following method:

• solve equation (2.1) with initial condition ρ(δ, λ) = ρ0 +
∑n1

k=2 ρk(ρ0)δk, where n1

is a sufficiently large integer so that the remainder of the series is negligible (for the
considered value of δ).

• shoot on the parameter ρ0 so as to satisfy the other boundary condition ρ(M) = ξ.

http://www.river-valley.com
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Using this method, we have determined numerically the value M0, such that, if M > M0,
then the problem (2.1), (2.2), (2.3) has at least one solution. The approximate values of M0

in the case N = 3, λ = 1 and c(x) = 1 are given in Table. 4.1, for different values of ξ,
with the corresponding values of ρ0. For comparison, we give also the corresponding values
of R and ρ0(inf) (the bubble radius R is, by definition, a positive real number that satisfies
ρ(R) = 0, and ρ0 (inf) denotes ρ0 for the solution in the infinite domain).

ξ M0 ρ0 ρ0(inf) R
0.1 3.45 −0.786731 −0.305 3.32
0.2 3.61 −0.831891 −0.568 2.68
0.3 3.83 −0.893815 −0.771 2.58
0.4 4.14 −0.966880 −0.903 2.72
0.5 4.61 −0.982158 −0.9711 3.07

Table 4.1
N = 3, c(x) = 1

For example, in the case N = 3, λ = 1, c(x) = 1 and ξ = 0.1, we can say that if
M < 3.45, the problem (2.1), (2.2), (2.3) has no solution; if M = 3.45 this problem has one
solution corresponding to ρ0 = −0.786731; and if M = 3.47 (for example) we will have two
solutions corresponding to ρ0 = −0.84779 and ρ0 = −0.742767, as it is shown in Figure 4.1.

Figure 4.2 shows the graphics of some solutions and corresponding derivatives of the
problem (2.1), (2.2), (2.3) in the case c(x) = sin

(
1 + 1

1+x2

)
.

The boundary value problem (2.1), (2.4), (2.5) (on the half-line) was considered only
for c(x) = const. When analysing this problem, we must take into the consideration that it
is singular both at zero and at infinity. Therefore, instead of shooting from one endpoint,
we must divide the original problem into two auxiliary problems: the first, on the interval
[δ, x0], and the second, on [x0, x∞]. Here, x0 is such that y(x0) = 0. Since each of these
problems has exactly one singularity, it can be solved by the shooting method in the usual

http://www.river-valley.com
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M = 3.45 M = 3.47

Fig. 4.1. λ = 1, c(x) = 1 and ξ = 0.1

way. Then we must ”couple” the solutions of the two auxiliary problems in order to obtain
the solution of the original problem. Let us describe this algorithm in detail:

• fix certain values of x0, δ and x∞ such that x∞ > x0 > δ;
• solve the Cauchy problem with initial condition ρ(δ, λ) = ρ0 +

∑n1
k=2 ρk(ρ0)δk with

an arbitrary λ;
• shoot on the parameter ρ0 so as to be satisfied ρ(x0, λ) = 0 and denote by ρ−(x, λ)

the obtained solution in [δ, x0];
• solve the Cauchy problem with initial condition

ρ(x∞, λ) = ξ+ 1

x
N−1

2
∞

∑n2
k=1 Ck(x∞)bke−2λ

√
ξ(ξ+1)Lkx∞ with the same value of λ; here

n2 is a sufficiently large integer, so that the remainder of the series is negligible, for
the given r∞;

http://www.river-valley.com
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Fig. 4.2. Graphics of solutions and their derivatives in the case N = 3, M = 6 and c(x) = sin
(
1 + 1

1+x2

)

• shoot on the parameter b so as to satisfy ρ(x0, λ) = 0 and denote by ρ+(x, λ) the
obtained solution in [x0, x∞];

• compute 4(ρ0, λ) = limx→x−0
ρ′(x, λ)− limx→x+

0
ρ′(x, λ);

• find the value λ̂ ∈ R+ that satisfies 4(x0, λ̂) = 0, by the secant method;
• if ρ(x, λ̂) is the solution of (2.1)–(2.4)–(2.5) for a given value λ̂, then for an arbitrary

value of λ the corresponding solution can be calculated by the formula ρ(x, λ) =
ρ(xλ/λ̂, λ̂).

When ξ is less than a certain value (ξ < 0.3, in the case of N = 3), the described method
becomes unstable. In this case, it is preferable to shoot from x = δ and replace the boundary
condition at x∞ by

ρ′(x∞) =
(

2λ
√

ξ(ξ + 1) +
N − 1
2x∞

− C ′1(x∞)
C1(x∞)

)
(ξ − ρ(x∞))

4.2. The case f(y) = y − y3. In this case, according to the previous section, problem
(1.1), (1.2) has at least one solution, for sufficiently large M , if N < 4. Concerning problem

http://www.river-valley.com
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(1.1), (1.3) (on the halfline), the existence of at least one solution is also guaranteed, if N
satisfies the same restriction.

The numerical algorithms used to solve both problems are similar to the ones, used in
the previous section, in the case of a different function f . The main difference is that, when
solving the problem on an infinite domain, we have to find the root of a nonlinear system of
equations, and the Newton method is applied with this purpose.

The outline of the algorithm for the problem (1.1), (1.2) is as follows:
• solve the Cauchy problem with initial condition y(δ) = y0+

∑n1
k=2 yk(y0)δk in [δ,M ];

• shoot on the parameter y0 so as to satisfy the condition y(M) = 0.

(a) Solutions of the problem (1.1)–(1.2) with M = 6 (b) Solutions of the problem (1.1)–(1.3)

Fig. 4.3. The case f(y) = y − y3 with N = 3

To obtain the numerical solution of the problem (1.1), (1.3) we have used the following
numerical algorithm:

• fix certain values of δ and x∞ such that x∞ > δ;
• solve the Cauchy problem with initial condition y(δ) = y0+

∑n1
k=2 yk(y0)δk in [δ, x∞

2 ];
• solve the Cauchy problem with initial condition
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y(x∞) = 1

x
N−1

2
∞

∑n2
k=1 Ck(x∞)bk e−2λ

√
Lkx∞ in [x∞

2 , x∞];

• shoot on the parameters y0 and b, so that the solutions and their first derivatives
coincide at x∞

2 . This gives us a nonlinear system of two equations which is solved
by the Newton method.

In Figure 4.3(a) we plot the solutions of problem (1.1),(1.2) with M = 6, N = 3 and
f(y) = y − y3. In Figure 4.3(b), the solutions of the problem (1.1), (1.3) are displayed for
the same value of N and the same function f . In both cases, we consider different forms
of the function c(x). The corresponding values of y0 in the finite domain for M = 6 and
y0(inf) in the infinite domain are given in Table 4.2.

c(x) y0(M = 6) y0(inf)

1 4.3376 4.33747
1 + 1

x2+5 4.32029 4.32017

cos
(

1
2+x2

)
4.32125 4.32099

2 + e−x2
4.26728 4.26728

Table 4.2
Values of y0

5. Conclusions and Future Work. In this paper we have continued the work devel-
oped in [10] and [11] on the analysis and numerical solution of nonlinear singular second-
order boundary value problems on unbounded domains. The numerical methods introduced
in those papers have been adapted to new classes of problems. Numerical experiments have
been carried out which have confirmed the theoretical existence results of [3] and [7].

In the future, we are planning to extend the considered numerical methods to new
problems, which arise when searching for radial solutions of the quasilinear equation ∆mu+
f(u) = 0 in Rn, where ∆m is the degenerate Laplace operator.
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