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ON A MICRO-MACRO SYSTEM ARISING IN DIFFUSION-REACTION
PROBLEMS IN POROUS MEDIA

SEBASTIAN A. MEIER∗ AND MICHAEL BÖHM†

Abstract. In this note we describe a model of a reaction-diffusion process in a heterogeneous
medium. The model resolves processes on the macro-scale as well as on the micro-scale by imposing
a continuous family of local cell problems at each point of the medium. We list the model equations
and derive a variational formulation in terms of special Sobolev spaces, constructed as direct integrals
of Hilbert spaces. This construction modifies the concept of distributed-microstructure models of single-
phase flow in fissured media, presented by Showalter et al. [1, 2]. The basic results on existence and
uniqueness of weak solutions are given, and their proofs are sketched.
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1. Introduction. In this note we investigate a coupled micro-macro model of a
reaction-diffusion process in a heterogeneous medium. We confine ourselves to a simply
structured problem that can serve as a prototype for various applications. One possible
scenario can be the following: Let Ω be a porous medium consisting of a solid matrix
and a pore space that is partially saturated with water. We assume that a substance
diffuses in the air phase in gaseous form, and diffuses and reacts in the liquid phase as a
solute. On the phase boundary inside the pores, some exchange occurs. We consider the
effective diffusivity in the gas phase to be much greater than the one in the liquid, which
is a typical scenario for real-world applications such as chemical degradation processes
of concrete. Therefore, the bulk transport is happening in the gaseous phase, and the
diffusion-reaction process in the liquid phase is restricted to a local neighbourhood of a
given “macroscopic point” x ∈ Ω. The present model is directly adapted to this situa-
tion by proposing a coupled system of parabolic equations for the two concentrations: a
macroscopic equation for the gaseous phase (u), and a family of microscopic equations
(cell problems) for the liquid phase (U), one at each point x. By employing a Lipschitz
transformation (assumption (G2)), the microscopic geometry is allowed to vary in space.

Such distributed-microstructure models have been proposed and analysed by Showal-
ter et al. [1, 2] in the context of single-phase flow in fissured media. Other applications
include capacitance of micro-circuits [3] and heat flow in heterogeneous media [4, 5]. For
a spatially constant micro-structure, such models can also arise as homogenisation limits
of classical microscopic models [6].

2. The distributed-microstructure model. Let Ω ⊂ Rn be a bounded Lipschitz
domain. For each x ∈ Ω, let Y l

x ⊂ Rn also be a Lipschitz domain completely contained in
a fixed, bounded domain Y ⊂ Rn as depicted in Fig. 2.1. The fixed domain Y is usually
chosen as the unit cell, Y = (0, 1)n. Let the phase boundary ∂Y l

x be divided into two
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measurable parts, ∂Y l
x = Γs

x∪Γl
x, such that

◦
Γs

x∩
◦
Γ l

x = ∅, and Γl
x has positive measure. In

typical applications, Γl
x and Γs

x are phase boundaries of the liquid phase with a gaseous
and a solid phase, respectively.

Fig. 2.1. Typical model geometry, including three phases at the micro-scale.

We consider a system of PDEs for the two concentrations u : Ω× S → R and U :
Ω× Y l

x × S → R. We refer to x ∈ Ω as the macroscopic spatial variable and to y as the
microscopic spatial variable. The gradient with respect to x is denoted by ∇ and that
with respect to y by ∇y; the same applies for the divergences, div and divy.

The macroscopic system is given by

θ(x)∂tu(x, t)− div(a(x)∇u) = − 1
|Y |

∫
Γl

x

k(βu− U) ds, x ∈ Ω, t > 0, (2.1a)

a(s)∇u(s, t) · ν = b((ue(t)− u), s ∈ ∂Ω, t > 0, (2.1b)
u(x, 0) = u0(x), x ∈ Ω, (2.1c)

and the cell problem in each point x ∈ Ω is

∂tU(x, y, t)− divy(A∇yU) = f(U), y ∈ Y l
x, t > 0, (2.1d)

A∇yU(x, s, t) · νx = k(βu− U), s ∈ Γl
x, t > 0, (2.1e)

A∇yU(x, s, t) · νx = 0, s ∈ Γs
x, t > 0, (2.1f)

U(x, y, 0) = U0(x, y), y ∈ Y l
x. (2.1g)

For a fixed U , eq. (2.1a)–(2.1c) constitute a linear diffusion-adsorption problem for
the concentration u; while, for a fixed u, a nonlinear diffusion-reaction problem for U is
given at each x ∈ Ω by eq. (2.1d)–(2.1g). The coupling of both systems is given by the
linear volume term in (2.1a) and by the linear boundary condition (2.1e).

3. Variational formulation. We present the main results of the mathematical
analysis of the model (2.1) using variational methods. To our knowledge, mathematical
analyses of diffusion-reaction systems with a similar micro-macro coupling have been
performed only for cell geometries independent of x [7, 8, 9]. We focus our attention on
the allowance of a heterogeneous (i.e. x-dependent) microstructure that can be of low
regularity. The key feature of our model formulation is that the x-dependence of the
microscopic domains Y l

x is incorporated into the function spaces. This treatment is based
on appropriate modifications of the ideas in [1, 2], where a comparable system (without
reactions terms) is investigated. The advantage of this formulation is that, initially, there
is no need to transform the cell problems on Y l

x to a fixed domain. Nevertheless, the
existence of such a transformation is currently postulated for proving the existence of a
solution; see assumption (G2) below.

Let S = (0, T ) be a bounded time interval. By Ω×Y l
x, we denote the product domain⋃

x∈Ω({x} × Y l
x) ⊂ Rn+n. We make the following assumptions:
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(G1) There exists a (globally) Lipschitz continuous function f : Ω× Y → R such that
the (2n−1)-dimensional boundary Ω× Γl

x of Ω× Y l
x is given by

f(x, y) = 0 ⇐⇒ (x, y) ∈ Ω× Γl
x.

Moreover, the Clarke gradient ∂yf(x, y) is regular1 for all (x, y) ∈ Ω × Y , and
the measures |Y l

x| are uniformly bounded away from zero.
(R) The reaction rate is given by f = −f1 + f2, where f1, f2 ≥ 0 are locally Lipschitz

and f1(U) = 0 if U ≤ 0 and f2(U) ≤ R1U +R2 if U ≥ 0,
(D1) k, β, b, A are positive constants, and θ, a ∈ L∞(Ω) are uniformly bounded away

from zero.
(D2) u0 ∈ L∞(Ω), U0 ∈ L∞(Ω× Y l

x), and ue ∈ L∞(S) are non-negative functions.
Assumption (D1) yields the non-degeneracy of the problem, while (D2) and (R) guar-

antee that its solutions are global, bounded, and non-negative.
Assumption (G1) is employed in the construction of the distributed trace spaces.

For this purpose, let us identify the space L2(Ω; L2(Y l
x)) with the usual Hilbert space

L2(Ω×Y l
x). Note that (G1) implies that the measures |Γl

x| and |Y l
x| are uniformly bounded

w.r.t. x ∈ Ω. Therefore the following direct integrals of Hilbert spaces

L2(Ω; H1(Y l
x)) :=

{
U ∈ L2(Ω; L2(Y l

x)) : ∇yU ∈ L2(Ω; L2(Y l
x))

}
and

L2(Ω; L2(Γl
x)) :=

{
U : Ω× Γl

x → R measurable such that
∫

Ω

‖U(x)‖2L2(Γl
x) dx <∞

}
are well-defined, separable Hilbert spaces. We refer to [11] for further details on the
construction of these spaces. If the usual trace map on the cell boundary is denoted by
γx : H1(Y l

x) → L2(Γl
x), the distributed trace,

(γU)(x, s) := (γxU(x))(s), x ∈ Ω, s ∈ Γl
x, U ∈ L2(Ω;H1(Y l

x)),

is a bounded linear operator γ : L2(Ω;H1(Y l
x)) → L2(Ω; L2(Γl

x)).
Define L2

θ(Ω) as the usual Lebesgue space, equipped with the (equivalent) scalar
product (u|v)L2

θ(Ω) :=
∫
Ω
θuv dx. Define the Hilbert spaces

V := H1(Ω)× L2(Ω;H1(Y l
x)), H := L2

θ(Ω)× L2(Ω; L2(Y l
x)).

It can easily be seen that the spaces V and H form a Gelfand triple V ↪→ H ↪→ V ′. Note
that the embeddings are not compact.

The weak formulation of problem (2.1), denoted by (P), can now be written as follows:
Find [u, U ] ∈ L2(S;V ) ∩H1(S, V ′) such that [u, U ](0) = [u0, U0], and it holds

d
dt

([u, U ]|[φ,Φ])H +
∫

Ω

a∇u∇φdx+
∫

Ω

∫
Y l

x

A∇yU∇yΦ dy dx

+
∫

Ω

∫
Γl

x

k(βu− U)(|Y |−1φ− Φ) dsdx+
∫

∂Ω

b(u− ue)φds =
∫

Ω

∫
Y l

x

f(U)Φ dy dx (3.1)

for all [φ,Φ] ∈ V .

1See, e.g., [10], pp. 133ff.
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4. Wellposedness of the problem. First we prove that solutions of (P) are a-
priori positive and bounded.

Proposition 4.1. Every solution [u, U ] of (P) satisfies

0 ≤ βu(x, t), U(x, y, t) ≤ K(t) a.e. x ∈ Ω, y ∈ Y l
x, ∀t ∈ S,

where

K(t) =

{
sup{βu0, βu

e, U0}+R2t, if R1 = 0,

eR1t(sup{βu0, βu
e, U0}+ R2

R1
(1− e−R1t)), otherwise

The proof of Proposition 4.1 is obtained by choosing appropriate cut-off functions as
test functions in (3.1). In the subsequent analysis, Proposition 4.1 is used extensively
in order to handle the nonlinear reaction term f(U). In most of the proofs, f can be
replaced w.l.o.g. by a globally bounded and Lipschitz continuous function.

Applying a-priori estimates of the usual energy-type to (3.1), we obtain the following
result.

Proposition 4.2 (Uniqueness). Let [u, U ] and [v, V ] be solutions corresponding to initial
values [u0, U0], [v0, V0] ∈ H and external data ue, ve ∈ L2(S), respectively. Then there
exists a constant C > 0 depending on T and on the data such that

‖[u− v, U − V ]‖2L2(S;V ) + ‖[(u− v)′, (U − V )′]‖L2(S;V ′)

≤ C(‖ue − ve‖2L2(S) + ‖[u0 − v0, U0 − V0]‖2H). (4.1)

In particular, solutions of (P) are unique and depend continuously on the initial and
exterior data.

To show the existence of a weak solution, we apply a standard fixed-point argument
based on Schauder’s theorem, similar to [8]. For demonstrating the continuity of the
operators involved, the cell problems on Y l

x need to be transformed to a fixed reference
domain Z by a Lipschitz map, uniformly in x. The existence of such a transformation is
postulated as an additional assumption on the geometry:

(G2) There exist bounded Lipschitz domains Zl, Z with Z̄l ⊂⊂ Z ⊂ Rn and a mapping
ψ ∈ C(Ω̄,C0,1(Z̄, Ȳ )) such that ψx(Zl) = Y l

x for each x ∈ Ω.
Moreover, for each x ∈ Ω, the mapping ψx := ψ(x, ·) : Z → Y is bijective,
the transformation determinant det∇yψ(x, y) (in the Clarke sense) is uniformly
bounded from above and below, and the inverse mapping x 7→ ψ−1

x (x, ·) is in
C(Ω̄,C0,1(Ȳ , Z̄)).

In the following, the application of the transformation ψx in the existence proof is
sketched. For details see [11]. First we prove that for fixed x ∈ Ω, ū(x, ·), each cell problem
(2.1d)–(2.1g) has a unique solution U(x, ·, ·). By transforming the weak formulations of
the cell problems to the fixed domain Zl, it can be shown that U depends continuously
on x and ū. Vice versa, for a fixed family of cell solutions Ū , there exists a solution u
of the macroscopic system (2.1a)–(2.1c). This yields a continuous fixed point operator
F : ū 7→ U =: Ū 7→ u. By the Lions-Aubin lemma, F is compact in the corresponding
Bochner spaces. Hence, the classical Schauder’s fixed point theorem gives a solution [u, U ]
of problem (P).

Theorem 4.3 (Existence of a weak solution). Assume that (G2) holds. Then there exists
a unique weak solution [u, U ] ∈ L2(S;V ) ∩H1(S;V ′) of (P).
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We conclude with the remark that actually more regularity can be shown for the
solutions. For details, we again refer to [11].
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