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ON A MICRO-MACRO SYSTEM ARISING IN DIFFUSION-REACTION
PROBLEMS IN POROUS MEDIA

SEBASTIAN A. MEIER∗ AND MICHAEL BÖHM†

Abstract. In this note we describe a model of a reaction-diffusion process in a heterogeneous medium.
The model resolves processes on the macro-scale as well as on the micro-scale by imposing a continuous
family of local cell problems at each point of the medium. We list the model equations and derive a
variational formulation in terms of special Sobolev spaces, constructed as direct integrals of Hilbert spaces.
This construction modifies the concept of distributed-microstructure models of single-phase flow in fissured
media, presented by Showalter et al. [1, 2]. The basic results on existence and uniqueness of weak solutions
are given, and their proofs are sketched.
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1. Introduction. In this note we investigate a coupled micro-macro model of a reaction-
diffusion process in a heterogeneous medium. We confine ourselves to a simply structured
problem that can serve as a prototype for various applications. One possible scenario can be
the following: Let Ω be a porous medium consisting of a solid matrix and a pore space that
is partially saturated with water. We assume that a substance diffuses in the air phase in
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gaseous form, and diffuses and reacts in the liquid phase as a solute. On the phase boundary
inside the pores, some exchange occurs. We consider the effective diffusivity in the gas phase
to be much greater than the one in the liquid, which is a typical scenario for real-world ap-
plications such as chemical degradation processes of concrete. Therefore, the bulk transport
is happening in the gaseous phase, and the diffusion-reaction process in the liquid phase
is restricted to a local neighbourhood of a given “macroscopic point” x ∈ Ω. The present
model is directly adapted to this situation by proposing a coupled system of parabolic equa-
tions for the two concentrations: a macroscopic equation for the gaseous phase (u), and a
family of microscopic equations (cell problems) for the liquid phase (U), one at each point
x. By employing a Lipschitz transformation (assumption (G2)), the microscopic geometry
is allowed to vary in space.

Such distributed-microstructure models have been proposed and analysed by Showalter
et al. [1, 2] in the context of single-phase flow in fissured media. Other applications include
capacitance of micro-circuits [3] and heat flow in heterogeneous media [4, 5]. For a spatially
constant micro-structure, such models can also arise as homogenisation limits of classical
microscopic models [6].

2. The distributed-microstructure model. Let Ω ⊂ Rn be a bounded Lipschitz
domain. For each x ∈ Ω, let Y l

x ⊂ Rn also be a Lipschitz domain completely contained in
a fixed, bounded domain Y ⊂ Rn as depicted in Fig. 2.1. The fixed domain Y is usually
chosen as the unit cell, Y = (0, 1)n. Let the phase boundary ∂Y l

x be divided into two

measurable parts, ∂Y l
x = Γs

x ∪ Γl
x, such that

◦
Γ s

x∩
◦
Γ l

x = ∅, and Γl
x has positive measure. In

typical applications, Γl
x and Γs

x are phase boundaries of the liquid phase with a gaseous and
a solid phase, respectively.

We consider a system of PDEs for the two concentrations u : Ω× S → R and U :
Ω× Y l

x × S → R. We refer to x ∈ Ω as the macroscopic spatial variable and to y as the
microscopic spatial variable. The gradient with respect to x is denoted by ∇ and that with
respect to y by ∇y; the same applies for the divergences, div and divy.
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Fig. 2.1. Typical model geometry, including three phases at the micro-scale.

The macroscopic system is given by

θ(x)∂tu(x, t)− div(a(x)∇u) = − 1
|Y |

∫
Γl

x

k(βu− U) ds, x ∈ Ω, t > 0, (2.1a)

a(s)∇u(s, t) · ν = b((ue(t)− u), s ∈ ∂Ω, t > 0, (2.1b)
u(x, 0) = u0(x), x ∈ Ω, (2.1c)

and the cell problem in each point x ∈ Ω is

∂tU(x, y, t)− divy(A∇yU) = f(U), y ∈ Y l
x, t > 0, (2.1d)

A∇yU(x, s, t) · νx = k(βu− U), s ∈ Γl
x, t > 0, (2.1e)

A∇yU(x, s, t) · νx = 0, s ∈ Γs
x, t > 0, (2.1f)

U(x, y, 0) = U0(x, y), y ∈ Y l
x. (2.1g)

For a fixed U , eq. (2.1a)–(2.1c) constitute a linear diffusion-adsorption problem for the
concentration u; while, for a fixed u, a nonlinear diffusion-reaction problem for U is given at
each x ∈ Ω by eq. (2.1d)–(2.1g). The coupling of both systems is given by the linear volume
term in (2.1a) and by the linear boundary condition (2.1e).
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3. Variational formulation. We present the main results of the mathematical analy-
sis of the model (2.1) using variational methods. To our knowledge, mathematical analyses
of diffusion-reaction systems with a similar micro-macro coupling have been performed only
for cell geometries independent of x [7, 8, 9]. We focus our attention on the allowance of
a heterogeneous (i.e. x-dependent) microstructure that can be of low regularity. The key
feature of our model formulation is that the x-dependence of the microscopic domains Y l

x is
incorporated into the function spaces. This treatment is based on appropriate modifications
of the ideas in [1, 2], where a comparable system (without reactions terms) is investigated.
The advantage of this formulation is that, initially, there is no need to transform the cell
problems on Y l

x to a fixed domain. Nevertheless, the existence of such a transformation is
currently postulated for proving the existence of a solution; see assumption (G2) below.

Let S = (0, T ) be a bounded time interval. By Ω × Y l
x, we denote the product domain⋃

x∈Ω({x} × Y l
x) ⊂ Rn+n. We make the following assumptions:

(G1) There exists a (globally) Lipschitz continuous function f : Ω×Y → R such that the
(2n−1)-dimensional boundary Ω× Γl

x of Ω× Y l
x is given by

f(x, y) = 0 ⇐⇒ (x, y) ∈ Ω× Γl
x.

Moreover, the Clarke gradient ∂yf(x, y) is regular1 for all (x, y) ∈ Ω × Y , and the
measures |Y l

x| are uniformly bounded away from zero.
(R) The reaction rate is given by f = −f1 + f2, where f1, f2 ≥ 0 are locally Lipschitz

and f1(U) = 0 if U ≤ 0 and f2(U) ≤ R1U +R2 if U ≥ 0,
(D1) k, β, b, A are positive constants, and θ, a ∈ L∞(Ω) are uniformly bounded away from

zero.
(D2) u0 ∈ L∞(Ω), U0 ∈ L∞(Ω× Y l

x), and ue ∈ L∞(S) are non-negative functions.
Assumption (D1) yields the non-degeneracy of the problem, while (D2) and (R) guar-

antee that its solutions are global, bounded, and non-negative.

1See, e.g., [10], pp. 133ff.
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Assumption (G1) is employed in the construction of the distributed trace spaces. For this
purpose, let us identify the space L2(Ω; L2(Y l

x)) with the usual Hilbert space L2(Ω × Y l
x).

Note that (G1) implies that the measures |Γl
x| and |Y l

x| are uniformly bounded w.r.t. x ∈ Ω.
Therefore the following direct integrals of Hilbert spaces

L2(Ω;H1(Y l
x)) :=

{
U ∈ L2(Ω; L2(Y l

x)) : ∇yU ∈ L2(Ω; L2(Y l
x))

}
and

L2(Ω; L2(Γl
x)) :=

{
U : Ω× Γl

x → R measurable such that
∫

Ω

‖U(x)‖2L2(Γl
x) dx <∞

}
are well-defined, separable Hilbert spaces. We refer to [11] for further details on the con-
struction of these spaces. If the usual trace map on the cell boundary is denoted by
γx : H1(Y l

x) → L2(Γl
x), the distributed trace,

(γU)(x, s) := (γxU(x))(s), x ∈ Ω, s ∈ Γl
x, U ∈ L2(Ω; H1(Y l

x)),

is a bounded linear operator γ : L2(Ω; H1(Y l
x)) → L2(Ω; L2(Γl

x)).
Define L2

θ(Ω) as the usual Lebesgue space, equipped with the (equivalent) scalar product
(u|v)L2

θ(Ω) :=
∫
Ω
θuv dx. Define the Hilbert spaces

V := H1(Ω)× L2(Ω; H1(Y l
x)), H := L2

θ(Ω)× L2(Ω; L2(Y l
x)).

It can easily be seen that the spaces V and H form a Gelfand triple V ↪→ H ↪→ V ′. Note
that the embeddings are not compact.

The weak formulation of problem (2.1), denoted by (P), can now be written as follows:
Find [u, U ] ∈ L2(S;V ) ∩H1(S, V ′) such that [u, U ](0) = [u0, U0], and it holds

d
dt

([u, U ]|[φ,Φ])H +
∫

Ω

a∇u∇φdx+
∫

Ω

∫
Y l

x

A∇yU∇yΦ dy dx

+
∫

Ω

∫
Γl

x

k(βu− U)(|Y |−1φ− Φ) dsdx+
∫

∂Ω

b(u− ue)φds =
∫

Ω

∫
Y l

x

f(U)Φ dy dx (3.1)

http://www.river-valley.com
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for all [φ,Φ] ∈ V .

4. Wellposedness of the problem. First we prove that solutions of (P) are a-priori
positive and bounded.

Proposition 4.1. Every solution [u, U ] of (P) satisfies

0 ≤ βu(x, t), U(x, y, t) ≤ K(t) a.e. x ∈ Ω, y ∈ Y l
x, ∀t ∈ S,

where

K(t) =

{
sup{βu0, βu

e, U0}+R2t, if R1 = 0,

eR1t(sup{βu0, βu
e, U0}+ R2

R1
(1− e−R1t)), otherwise

The proof of Proposition 4.1 is obtained by choosing appropriate cut-off functions as
test functions in (3.1). In the subsequent analysis, Proposition 4.1 is used extensively in
order to handle the nonlinear reaction term f(U). In most of the proofs, f can be replaced
w.l.o.g. by a globally bounded and Lipschitz continuous function.

Applying a-priori estimates of the usual energy-type to (3.1), we obtain the following
result.

Proposition 4.2 (Uniqueness). Let [u, U ] and [v, V ] be solutions corresponding to initial
values [u0, U0], [v0, V0] ∈ H and external data ue, ve ∈ L2(S), respectively. Then there exists
a constant C > 0 depending on T and on the data such that

‖[u− v, U − V ]‖2L2(S;V ) + ‖[(u− v)′, (U − V )′]‖L2(S;V ′)

≤ C(‖ue − ve‖2L2(S) + ‖[u0 − v0, U0 − V0]‖2H). (4.1)

In particular, solutions of (P) are unique and depend continuously on the initial and exterior
data.

http://www.river-valley.com
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To show the existence of a weak solution, we apply a standard fixed-point argument based
on Schauder’s theorem, similar to [8]. For demonstrating the continuity of the operators
involved, the cell problems on Y l

x need to be transformed to a fixed reference domain Z by
a Lipschitz map, uniformly in x. The existence of such a transformation is postulated as an
additional assumption on the geometry:

(G2) There exist bounded Lipschitz domains Zl, Z with Z̄l ⊂⊂ Z ⊂ Rn and a mapping
ψ ∈ C(Ω̄,C0,1(Z̄, Ȳ )) such that ψx(Zl) = Y l

x for each x ∈ Ω.
Moreover, for each x ∈ Ω, the mapping ψx := ψ(x, ·) : Z → Y is bijective, the
transformation determinant det∇yψ(x, y) (in the Clarke sense) is uniformly bounded
from above and below, and the inverse mapping x 7→ ψ−1

x (x, ·) is in C(Ω̄,C0,1(Ȳ , Z̄)).
In the following, the application of the transformation ψx in the existence proof is

sketched. For details see [11]. First we prove that for fixed x ∈ Ω, ū(x, ·), each cell problem
(2.1d)–(2.1g) has a unique solution U(x, ·, ·). By transforming the weak formulations of the
cell problems to the fixed domain Zl, it can be shown that U depends continuously on x and
ū. Vice versa, for a fixed family of cell solutions Ū , there exists a solution u of the macroscopic
system (2.1a)–(2.1c). This yields a continuous fixed point operator F : ū 7→ U =: Ū 7→ u.
By the Lions-Aubin lemma, F is compact in the corresponding Bochner spaces. Hence, the
classical Schauder’s fixed point theorem gives a solution [u, U ] of problem (P).

Theorem 4.3 (Existence of a weak solution). Assume that (G2) holds. Then there exists
a unique weak solution [u, U ] ∈ L2(S;V ) ∩H1(S;V ′) of (P).

We conclude with the remark that actually more regularity can be shown for the solu-
tions. For details, we again refer to [11].
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