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ON A MICRO-MACRO SYSTEM ARISING IN DIFFUSION-REACTION
PROBLEMS IN POROUS MEDIA

SEBASTIAN A. MEIER* AND MICHAEL BOHMT

Abstract. In this note we describe a model of a reaction-diffusion process in a heterogeneous medium.
The model resolves processes on the macro-scale as well as on the micro-scale by imposing a continuous
family of local cell problems at each point of the medium. We list the model equations and derive a
variational formulation in terms of special Sobolev spaces, constructed as direct integrals of Hilbert spaces.
This construction modifies the concept of distributed-microstructure models of single-phase flow in fissured
media, presented by Showalter et al. [1, 2]. The basic results on existence and uniqueness of weak solutions
are given, and their proofs are sketched.
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1. Introduction. In this note we investigate a coupled micro-macro model of a reaction-
diffusion process in a heterogeneous medium. We confine ourselves to a simply structured
problem that can serve as a prototype for various applications. One possible scenario can be
the following: Let 2 be a porous medium consisting of a solid matrix and a pore space that
is partially saturated with water. We assume that a substance diffuses in the air phase in
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gaseous form, and diffuses and reacts in the liquid phase as a solute. On the phase boundary
inside the pores, some exchange occurs. We consider the effective diffusivity in the gas phase
to be much greater than the one in the liquid, which is a typical scenario for real-world ap-
plications such as chemical degradation processes of concrete. Therefore, the bulk transport
is happening in the gaseous phase, and the diffusion-reaction process in the liquid phase
is restricted to a local neighbourhood of a given “macroscopic point” x € ). The present
model is directly adapted to this situation by proposing a coupled system of parabolic equa-
tions for the two concentrations: a macroscopic equation for the gaseous phase (u), and a
family of microscopic equations (cell problems) for the liquid phase (U), one at each point
x. By employing a Lipschitz transformation (assumption (Gsz)), the microscopic geometry
is allowed to vary in space.

Such distributed-microstructure models have been proposed and analysed by Showalter
et al. [1, 2] in the context of single-phase flow in fissured media. Other applications include
capacitance of micro-circuits [3] and heat flow in heterogeneous media [4, 5]. For a spatially
constant micro-structure, such models can also arise as homogenisation limits of classical
microscopic models [6].

2. The distributed-microstructure model. Let Q2 € R™ be a bounded Lipschitz
domain. For each z € Q, let Y! C R™ also be a Lipschitz domain completely contained in
a fixed, bounded domain Y C R™ as depicted in F1G. 2.1. The fixed domain Y is usually
chosen as the unit cell, Y = (0,1)". Let the phase boundary dY; be divided into two

[e] [e]
measurable parts, 9Y! = 'S UT, such that TN T, = 0, and T, has positive measure. In
typical applications, I'}, and T'$ are phase boundaries of the liquid phase with a gaseous and
a solid phase, respectively.

We consider a system of PDEs for the two concentrations v : 2 xS — R and U :
QAxYVlxS — R. We refer to z € Q as the macroscopic spatial variable and to y as the
microscopic spatial variable. The gradient with respect to x is denoted by V and that with
respect to y by V,; the same applies for the divergences, div and div,,.
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Fic. 2.1. Typical model geometry, including three phases at the micro-scale.

The macroscopic system is given by

1
0(z)0pu(x,t) — div(a(z)Vu) = Y kE(Bu —U)ds, ze, t>0, (2.1a)
T
a(s)Vu(s,t) - v =b((u(t) — u), s€ 00, t>0, (2.1b)
u(z,0) = uo(z), x €, (2.1c)
and the cell problem in each point z € Q is
8tU(mayvt) - dlvy(Ava) = f(U)v y € Yzla t> 0, (21d)
AV, U(x,s,t) - vy = k(Bu —U), seTll, t>0, (2.1e)
AV, U(z,s,t) - vy =0, sels, t>0, (2.1f)
U(,y,0) = Uo(2,y), yeY;. (2.1g)

For a fixed U, eq. (2.1a)—(2.1c) constitute a linear diffusion-adsorption problem for the
concentration u; while, for a fixed u, a nonlinear diffusion-reaction problem for U is given at
each z € Q by eq. (2.1d)—(2.1g). The coupling of both systems is given by the linear volume
term in (2.1a) and by the linear boundary condition (2.1e).
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3. Variational formulation. We present the main results of the mathematical analy-
sis of the model (2.1) using variational methods. To our knowledge, mathematical analyses
of diffusion-reaction systems with a similar micro-macro coupling have been performed only
for cell geometries independent of x [7, 8, 9]. We focus our attention on the allowance of
a heterogeneous (i.e. z-dependent) microstructure that can be of low regularity. The key
feature of our model formulation is that the z-dependence of the microscopic domains Y} is
incorporated into the function spaces. This treatment is based on appropriate modifications
of the ideas in [1, 2], where a comparable system (without reactions terms) is investigated.
The advantage of this formulation is that, initially, there is no need to transform the cell
problems on Y, to a fixed domain. Nevertheless, the existence of such a transformation is
currently postulated for proving the existence of a solution; see assumption (Gy) below.

Let S = (0,T) be a bounded time interval. By Q x Y, we denote the product domain
Uzea({z} x Y}) € R™*". We make the following assumptions:

(G1) There exists a (globally) Lipschitz continuous function f : Q x Y — R such that the
(2n—1)-dimensional boundary 2 x T'} of Q x Y is given by

fla,y) =0 <= (z,y) €QxTL.

Moreover, the Clarke gradient 9, f(x,y) is reqular' for all (z,y) € Q x Y, and the
measures |Y}!| are uniformly bounded away from zero.
(R) The reaction rate is given by f = —f; + f2, where f1, fo > 0 are locally Lipschitz
and f1(U) =01 U <0 and f3(U) < RiU + R2 if U > 0,
(D) k,[,b, A are positive constants, and 0, a € L>°(f2) are uniformly bounded away from
Z€ero.
(D2) up € L*®(Q), Up € L>®(2 x Y}!), and u® € L>(S) are non-negative functions.
Assumption (D;) yields the non-degeneracy of the problem, while (D3) and (R) guar-
antee that its solutions are global, bounded, and non-negative.

1See, e.g., [10], pp. 133fF.
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Assumption (Gp) is employed in the construction of the distributed trace spaces. For this
purpose, let us identify the space L2(2;L2(Y}!)) with the usual Hilbert space L2(Q x Y}).
Note that (G;) implies that the measures |T'%| and |Y!| are uniformly bounded w.r.t. z € €.
Therefore the following direct integrals of Hilbert spaces

L2(QHN(Y,)) = {U e LA(QLA(Y,)) : VU € LA L2(Y,)) }

and
L2 L)) o= {U :Q x T! — R measurable such that / ||U(ac)||i2(rl ydz < oo}
o p

are well-defined, separable Hilbert spaces. We refer to [11] for further details on the con-
struction of these spaces. If the usual trace map on the cell boundary is denoted by

Ve : HY(Y}) — L%(TY), the distributed trace,
(W) (z,8) = (U@)(s), z€Q sely, UeLAQHI(YS)),
is a bounded linear operator « : L2(; HY(Y}})) — L2(; L2(I'})).
Define LZ(92) as the usual Lebesgue space, equipped with the (equivalent) scalar product
(ulv)rz(a) = Jqfuv dz. Define the Hilbert spaces
Vi=HYQ) x L2(HY(Y))),  H:=L§(Q) x L*(Q;L*(Y))).

It can easily be seen that the spaces V and H form a Gelfand triple V' — H — V’. Note
that the embeddings are not compact.
The weak formulation of problem (2.1), denoted by (P), can now be written as follows:
Find [u, U] € L2(S; V) NHY(S, V') such that [u,U](0) = [ug, Uo], and it holds

i([u,U]|[¢w,<I>])H+/aVuV<;s<igc+// AV, UV,®dydx
de Q oy

o

+/Q/Flwk(ﬂU—U)(|Y|—1¢—<I>)dsdx+/ b(u—ue)(ﬁds:/Q y;f(U)(I)dydw (3.1)
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for all [¢,®] € V.

4. Wellposedness of the problem. First we prove that solutions of (P) are a-priori
positive and bounded.

PROPOSITION 4.1. Every solution [u, U] of (P) satisfies
0 < pu(z,t),U(x,y,t) < K(t) ae xz€, ye Yzl, vVt € S,

where

sup{,@ug,ﬂue, UO} + R2t; if R1 = 0,
K(t) =

et (sup{Buo, Bu®, Up} + #2(1 — e~ ™11)),  otherwise

The proof of PROPOSITION 4.1 is obtained by choosing appropriate cut-off functions as
test functions in (3.1). In the subsequent analysis, PROPOSITION 4.1 is used extensively in
order to handle the nonlinear reaction term f(U). In most of the proofs, f can be replaced
w.l.o.g. by a globally bounded and Lipschitz continuous function.

Applying a-priori estimates of the usual energy-type to (3.1), we obtain the following
result.

PROPOSITION 4.2 (Uniqueness). Let [u, U] and [v, V] be solutions corresponding to initial
values [ug, Upl, [vo, Vo] € H and external data u®,v® € L2(S), respectively. Then there eists
a constant C > 0 depending on T and on the data such that

llu = v,U = V]IZa(svy + l(w =)', (U = V)lllLaessvr
< O([[u = v°lIE2s) + lluo — vo, Uo = Valll7r)-  (4.1)

In particular, solutions of (P) are unique and depend continuously on the initial and exterior
data.
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To show the existence of a weak solution, we apply a standard fixed-point argument based
on Schauder’s theorem, similar to [8]. For demonstrating the continuity of the operators
involved, the cell problems on Y, need to be transformed to a fixed reference domain Z by
a Lipschitz map, uniformly in z. The existence of such a transformation is postulated as an
additional assumption on the geometry:

(G3) There exist bounded Lipschitz domains Z!, Z with Z! cC Z C R" and a mapping
Y € C(Q,C%L(Z,Y)) such that 1,(Z') = Y, for each z € Q.
Moreover, for each z € Q, the mapping ¢, = ¥(z,:) : Z — Y is bijective, the
transformation determinant detV, ¢ (z,y) (in the Clarke sense) is uniformly bounded
from above and below, and the inverse mapping z +— 1 (z, -) is in C(Q, C% (Y, 2)).

In the following, the application of the transformation i, in the existence proof is
sketched. For details see [11]. First we prove that for fixed z € Q, @(z, -), each cell problem
(2.1d)—(2.1g) has a unique solution U(z,-,-). By transforming the weak formulations of the
cell problems to the fixed domain Z!, it can be shown that U depends continuously on z and
. Vice versa, for a fixed family of cell solutions U, there exists a solution u of the macroscopic
system (2.1a)—(2.1c). This yields a continuous fixed point operator F : @ +— U =: U > u.
By the Lions-Aubin lemma, F' is compact in the corresponding Bochner spaces. Hence, the
classical Schauder’s fixed point theorem gives a solution [u, U] of problem (P).

THEOREM 4.3 (Existence of a weak solution). Assume that (Ga) holds. Then there exists
a unique weak solution [u,U] € L2(S; V) NHLY(S; V') of (P).
We conclude with the remark that actually more regularity can be shown for the solu-
tions. For details, we again refer to [11].
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