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ON THIRD ORDER ADVANCED NONLINEAR
DIFFERENTIAL EQUATIONS∗

IVAN MOJSEJ† AND JÁN OHRISKA‡

Abstract. The aim of our report is to present some results concerning the oscillatory and asymptotic
properties of solutions of nonlinear differential equations of the third order with deviating argument. In
particular, comparison results for properties A and B are stated. Obtained results extend some other ones
known for nonlinear differential equations without deviating argument.
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1. Introduction. We consider the third-order nonlinear differential equations with
deviating argument of the form

(
1

p(t)

(
1

r(t)
x′(t)

)′)′
+ q(t)f(x(h(t))) = 0 , t ≥ 0 (N,h)

∗The extension of these results will be published in Central European Science Journals.
†Institute of Mathematics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice, Slovak
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and (
1

r(t)

(
1

p(t)
z′(t)

)′)′
− q(t)f(z(h(t))) = 0 , t ≥ 0 (NA,h)

where

r, p, q, h ∈ C([0,∞), R), r(t) > 0, p(t) > 0, q(t) > 0 on [0,∞), (H1)

f ∈ C(R,R), f(u)u > 0 for u 6= 0, (H2)∫ ∞

0

r(t) dt =
∫ ∞

0

p(t) dt = ∞, (H3)

lim
t→∞

h(t) = ∞. (H4)

Without mentioning them again, we shall assume the validity of conditions (H1)–(H4)
throughout the paper.

The notation (NA,h) is suggested by the fact that for linear equation without deviating
argument, i.e., for the equation(

1
p(t)

(
1

r(t)
x′(t)

)′)′
+ q(t)x(t) = 0, (L)

adjoint equation is (
1

r(t)

(
1

p(t)
z′(t)

)′)′
− q(t)z(t) = 0 . (LA)
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If x is a solution of (N,h), then the functions

x[0] = x, x[1] =
1
r
x′,

x[2] =
1
p

(
1
r
x′
)′

=
1
p

(
x[1]
)′

, x[3] =
1
q

(
1
p

(
1
r
x′
)′)′

=
1
q

(
x[2]
)′

are called the quasiderivatives of x. For (NA,h) we can proceed in a similar way. The linear
case of equations (N,h), (NA,h) denote by (L,h), (LA,h), respectively. For simplicity, when
h(t) ≡ t, we will denote (N,h) and (NA,h) with (N) and (NA), respectively. In addition to
(H1)–(H4), we sometimes assume

lim inf
|u|→∞

f(u)
u

> 0 , (H5)

lim sup
u→0

f(u)
u

< ∞ . (H6)

By a solution of an equation of the form (N,h) [(NA,h)] we mean a function w ∈
C1([0,∞), R) such that w[1](t), w[2](t) ∈ C1([0,∞), R) satisfying equation (N,h) [(NA,h)]
for all t ≥ 0. Any solution of (N,h) or (NA,h) is said to be proper if it is defined on the
interval [0,∞) and is nontrivial in any neighborhood of infinity. A proper solution is said
to be oscillatory (nonoscillatory) if it has (has not) a sequence of zeros converging to ∞.
In addition, (N,h) [(NA,h)] is called oscillatory if it has at least one nontrivial oscillatory
solution and nonoscillatory if all its solutions are nonoscillatory. The study of asymptotic
behavior of solutions, in the ordinary case as well as in the case with deviating argument, is
often connected by introducing the concepts of equation with property A and equation with
property B.

Definition 1.1.Equation (N,h) is said to have property A if any proper solution x of (N,h)
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is either oscillatory or satisfies

|x[i](t)| ↓ 0 as t →∞ for i = 0, 1, 2

and equation (NA,h) is said to have property B if any proper solution z of (NA,h) is either
oscillatory or satisfies

|z[i](t)| ↑ ∞ as t →∞ for i = 0, 1, 2.

The notations u(t) ↓ 0 and u(t) ↑ ∞ mean that function u monotonically decreases to
zero as t →∞ or monotonically increases to infinity as t →∞, respectively.

From a slight modification of the well-known lemma of Kiguradze (see, e.g., [7]) it follows
that the set N [(N,h)] of all proper nonoscillatory solutions of equation (N,h) can be divided
into the following two classes in the same way as in [4]:

N0 = {x ∈ N [(N,h)], ∃Tx : x(t)x[1](t) < 0, x(t)x[2](t) > 0 for t ≥ Tx}

N2 = {x ∈ N [(N,h)], ∃Tx : x(t)x[1](t) > 0, x(t)x[2](t) > 0 for t ≥ Tx}

Similarly, the set N (NA,h) of all proper nonoscillatory solutions of equation (NA,h) can be
divided into the following two classes:

M1 = {z ∈ N [(NA,h)], ∃Tz : z(t)z[1](t) > 0, z(t)z[2](t) < 0 for t ≥ Tz}

M3 = {z ∈ N [(NA,h)], ∃Tz : z(t)z[1](t) > 0, z(t)z[2](t) > 0 for t ≥ Tz}

It is clear that (N,h) has property A if and only if all nonoscillatory solutions x of (N,h)
belong to the class N0 and limt→∞ x[i](t) = 0 for i = 0, 1, 2. Similarly (NA,h) has prop-
erty B if and only if all nonoscillatory solutions z of (NA,h) belong to the class M3 and
limt→∞ |z[i](t)| = ∞ for i = 0, 1, 2. We recall that solutions in the class N0 are called

http://www.river-valley.com
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Kneser solutions and solutions belong to the class M3 are called strongly monotone solu-
tions.

Note that the classification of nonoscillatory solutions of equation (N,h) [(NA,h)] is
different if we consider differential equation in so called non-canonical form, i.e. in the case∫∞

r(t) dt < ∞ or
∫∞

p(t) dt < ∞ (see [2, 3, 6]).
The oscillatory and asymptotic properties of solutions of differential equations of the

third order with quasiderivatives (linear, nonlinear and with delay) have been largely inves-
tigated in [2]–[6], [8], [9].

The aim of this paper is to continue in study of such equations with deviating argu-
ment and with advanced argument. We want to complete relationships between mentioned
equations which did not investigate yet. Our research is based on a study of asymptotic
behavior of nonoscillatory solutions of (N,h) and (NA,h), on a linearization device as well as
on a comparison result between equations with different deviating arguments. The paper is
organized as follows: Section 2 summarizes results which will be useful in the sequel. In the
Section 3 we give a comparison theorem for properties A and B, which is more suitable for
application than others existing in the literature. This theorem extends Theorem 4 in [6].
As consequence we obtain sufficient conditions ensuring property A for (N,h) and property
B for (NA,h) as well as a comparison result on property A between nonlinear equations
without and with deviating argument. In the last section we introduce some interesting
open problems.

We point out that our assumptions on nonlinearity f are related with its behavior only
in a neighbourhood of zero and/or of infinity. No monotonicity conditions are required as
well as no assumptions involving the behavior of f in R are supposed.

2. Preliminary results. We introduce the following notation:

I(ui) =
∫ ∞

0

ui(t) dt, I(ui, uj) =
∫ ∞

0

ui(t)
∫ t

0

uj(s) ds dt, i, j = 1, 2

I(ui, uj , uk) =
∫ ∞

0

ui(t)
∫ t

0

uj(s)
∫ s

0

uk(b) db ds dt, i, j, k = 1, 2, 3,
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where ui, i = 1, 2, 3 are continuous positive functions on [0,∞).
For simplicity, sometimes we will write u(∞) instead of limt→∞ u(t).

In the recent papers [2, 3, 6] authors have studied relationships among properties A and
B and both the oscillation and the asymptotic behavior of nonoscillatory solutions for linear
equations without deviating argument. We recall some of these results which will be useful
in the sequel.

Theorem 2.1. [2, Theorem 2.2] The following assertions are equivalent:
(i) (L) has property A.
(i′) (LA) has property B.
(ii) (L) is oscillatory and I(q, p, r) = ∞.
(ii’) (LA) is oscillatory and I(q, p, r) = ∞.

Lemma 2.2. [2, Lemma 2.1] If there exists a Kneser solution x of equation (L) such that
limt→∞ x[i](t) = 0 for i = 0, 1, 2, then I(q, p, r) = ∞.

The following comparison theorem and a result on Kneser solutions we will use in our
consideration.

Theorem 2.3. [3, Theorem 1] Let the following condition be satisfied:

either I(q, r) = ∞

or lim sup
t→∞

∫ t

0

p(s) ds

∫ ∞

t

q(s)

∫ s

0
r(u)

∫ u

0
p(v) dv du∫ s

0
p(u) du

ds = ∞
(2.1)

If for some K > 0 the equation(
1

p(t)

(
1

r(t)
x′(t)

)′)′
+ Kq(t)x(t) = 0 (LK)
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has property A, then the equation(
1

p(t)

(
1

r(t)
x′(t)

)′)′
+ kq(t)x(t) = 0 (Lk)

has property A for every k > 0.

Proposition 2.4. [3, Proposition 6] Every Kneser solution of (L) tends to zero for t →∞
if and only if I(q, p, r) = ∞.

Remark 1.From Theorem 2.1 and Proposition 2.4 it follows the following statement: If
(L) is oscillatory and it has not property A, then (L) has Kneser solution tending to nonzero
limit and I(q, p, r) < ∞.

To extend known results to differential equations with deviating argument we will use
the following comparison criterion. It is a particular case of a more general theorem which
is stated in [7] for functional differential equations of higher order.

Theorem 2.5. [7, Theorem 1] Consider the differential equations (i = 1, 2)(
1

p(t)

(
1

r(t)
x′(t)

)′)′
+ qi(t)x(hi(t)) = 0 (L,hi)i(

1
r(t)

(
1

p(t)
z′(t)

)′)′
− qi(t)z(hi(t)) = 0 (LA,hi)i

where qi, hi ∈ C([0,∞), R), qi(t) > 0, lim
t→∞

hi(t) = ∞ and

h1(t) ≤ h2(t), q1(t) ≤ q2(t), for t > t0 ≥ 0.

http://www.river-valley.com
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If (L,h1)1 has property A then (L,h2)2 has property A.
If (LA,h1)1 has property B then (LA,h2)2 has property B.

Independently on properties A and B, it is easy to show the following:

Lemma 2.6. [4, Lemma 1.1] It holds:
i) Any solution x of (L,h) [(N,h)] from N0 satisfies lim

t→∞
x[i](t) = 0, i = 1, 2.

ii) Any solution z of (LA,h) [(NA,h)] from M3 satisfies lim
t→∞

|z[i](t)| = ∞, i = 0, 1.

3. Main results. We begin by introducing the following comparison theorem.

Theorem 3.1. Assume (H5) and h(t) ≥ t. If equation (Lk) has property A for every k > 0,
then (N,h) has property A and (NA,h) has property B.

Proof. a) Let us prove that (N,h) has property A.
Let x be a proper nonoscillatory solution of (N,h). We may assume that there exists T ≥ 0
such that x(t) > 0 for all t ≥ T . The case x(t) < 0 for all t ≥ T ∗ may be proved by using
similar arguments. We know that x ∈ N0∪N2. Now we assume that (N,h) has not property
A. By Lemma 2.6 there are two possibilities:

I. x ∈ N2,
II. x ∈ N0 such that lim

t→∞
x(t) = l > 0.

Case I. Let x ∈ N2. We consider the linearized differential equation with deviating argu-
ment (

1
p(t)

(
1

r(t)
w′(t)

)′)′
+ q(t)F1(t)w(h(t)) = 0 , (LF1 ,h)

where F1(t) =
f(x(h(t)))

x(h(t))
. Then w ≡ x is a nonoscillatory solution. In view of the fact

http://www.river-valley.com
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x ∈ N2 we have that (LF1 ,h) has not property A.
As x[1] is a positive increasing function, there exists T ≥ 0 such that x[1](t) ≥ x[1](T ) for all
t ≥ T . Integrating this inequality in (T, t) we get

x(t) ≥ x(T ) + x[1](T )
∫ t

T

r(s) ds.

As t →∞ we get that function x(t) is unbounded.
In view of the facts x(∞) = ∞ and assumption (H5), there exist a positive constant k1 and
T1 ≥ 0 such that F1(t) > k1 for all t ≥ T1. Hence by Theorem 2.5 for q1(t) = q(t)k1,
q2(t) = q(t)F1(t), h1(t) = t, h2(t) = h(t) we obtain that linear differential equation(

1
p(t)

(
1

r(t)
w′(t)

)′)′
+ k1q(t)w(t) = 0 (Lk1)

has not property A, which is a contradiction with the assumption that (Lk) has property A
for all k > 0.

Case II. Let x ∈ N0 and lim
t→∞

x(t) = l > 0. Hence, there exists a positive constant c

such that

x(t) ≥ c > 0 for t sufficiently large. (3.1)

We consider the linearized differential equation(
1

p(t)

(
1

r(t)
w′(t)

)′)′
+ q(t)F2(t)w(t) = 0 , (LF2)

http://www.river-valley.com
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where F2(t) =
f(x(h(t)))

x(t)
. As w ≡ x is a nonoscillatory solution such that x ∈ N0 and

x(∞) > 0, (LF2) has not property A. In view of continuity of function f and (3.1), there
exist a positive constant k2 and T2 ≥ 0 such that F2(t) > k2 for all t ≥ T2. Hence by
Theorem 2.5 for q1(t) = q(t)k2, q2(t) = q(t)F2(t), h1(t) = h2(t) = t we obtain that linear
differential equation (

1
p(t)

(
1

r(t)
w′(t)

)′)′
+ k2q(t)w(t) = 0 (Lk2)

has not property A, which is a contradiction with the assumption that (Lk) has property A
for all k > 0.

b) Let us prove that (NA,h) has property B.
Let z be a proper nonoscillatory solution of (NA,h). We may assume that there exists T ≥ 0
such that z(t) > 0 for all t ≥ T . The case z(t) < 0 for all t ≥ T ∗ may be proved by using
similar arguments. We know that z ∈ M1 ∪ M3. Now we assume that (NA,h) has not
property B. By Lemma 2.6 there are two possibilities:

I. z ∈M3 such that lim
t→∞

z[2](t) 6= ∞,

II. z ∈M1.
Case I. We consider, for sufficiently large t, the linearized differential equation with devi-
ating argument (

1
r(t)

(
1

p(t)
w′(t)

)′)′
− q(t)F3(t)w(h(t)) = 0 , (LAF3

,h)

where F3(t) =
f(z(h(t)))

z(h(t))
. As w ≡ z is a nonoscillatory solution such that (LAF3

,h) and

lim
t→∞

z[2](t) 6= ∞, (LAF3
,h) has not property B. Taking into account that z(∞) = ∞ and
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assumption (H5), there exist a positive constant k3 and T3 ≥ 0 such that F3(t) > k3 for all
t ≥ T3. Hence by Theorem 2.5 for q1(t) = q(t)k3, q2(t) = q(t)F3(t), h1(t) = t, h2(t) = h(t)
we obtain that linear differential equation(

1
r(t)

(
1

p(t)
w′(t)

)′)′
− q(t)k3w(t) = 0 (LAk3

)

has not property B. On the other hand, because equation (Lk) has property A for all k > 0
and thus by Theorem 2.1 equation (LAk ) has property B for all k > 0, which is a contra-
diction.

Case II. Let x ∈M1. Because z is a positive increasing function, there are two possibilities:
z(∞) = ∞ or z(∞) < ∞.
If z(∞) = ∞, the proof proceeds as in the case I and hence omitted.
Now, we suppose that z(∞) < ∞ and consider the linearized differential equation(

1
r(t)

(
1

p(t)
w′(t)

)′)′
− q(t)F4(t)w(t) = 0 , (LAF4

)

where F4(t) =
f(z(h(t)))

z(t)
. As w ≡ z is a nonoscillatory solution such that z ∈ M1, (LAF4

)

has not property B. In view of continuity of function f and z(∞) < ∞, there exist a positive
constant k4 and T4 ≥ 0 such that F4(t) > k4 for all t ≥ T4. Hence by Theorem 2.5 for
q1(t) = q(t)k4, q2(t) = q(t)F4(t), h1(t) = h2(t) = t we obtain that linear differential equation(

1
r(t)

(
1

p(t)
w′(t)

)′)′
− q(t)k4(t)w(t) = 0 (LAk4

)

has not property B. On the other hand, because equation (Lk) has property A for all k > 0
and thus by Theorem 2.1 equation (LAk ) has property B for all k > 0, which is a contra-
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diction. The proof is now complete.

Remark 2.Unlike other comparison results (see e.g., in [7, Theorem 1]), Theorem 3.1 does
not require neither monotonicity assumptions of the nonlinearity in R nor the domination
of the nonlinearity |f(u)| over the linear term |u| in R. Theorem 3.1 will be valid even
in the case of the substitution of the assumption (Lk) has property A for all k > 0 for the
assumptions (2.1) and (LK) has property A for some K > 0 (see Theorem 2.3 and the
proof of Theorem 3.1). The identity h(t) ≡ t in Theorem 3.1 both gives [6, Theorem 4]
and extends [3, Theorem 3].

Theorem 3.1 together with integral criteria ensuring property A for (Lk) gives the following
result.

Corollary 3.2. Assume h(t) ≥ t, (H5) and one of the following conditions hold:

(i) I(q, r) = I(q, p) = ∞,

(ii) I(q) = ∞,

(iii) I(q, p) < ∞ and
∫ ∞

0

r(t)
(∫ ∞

t

q(s) ds

)(∫ ∞

t

p(s)
∫ ∞

s

q(a) da ds

)
dt = ∞.

Then (N,h) has property A and (NA,h) has property B.

Proof. From [5, Theorems 4 and 5] and [5, Proposition 1] it follows that (Lk) has property
A for all k > 0. Now, we get the assertion from Theorem 3.1. The proof is finished.

The following result also holds:

Corollary 3.3. Assume (H5) and h(t) ≥ t. If every nonoscillatory solution of (Lk) is a
Kneser solution for any k > 0 and I(q, p, r) = ∞, then (N,h) has property A and (NA,h)
has property B.

Proof. First let us remark that if I(q, p, r) = ∞, then I(kq, p, r) = ∞ for any positive

http://www.river-valley.com
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constant k. By Proposition 2.4 and Lemma 2.6, every Kneser solution x of (Lk) satisfies
limt→∞ x[i](t) = 0, i = 0, 1, 2. Taking into account that every nonoscillatory solution of
(Lk) is a Kneser one, we get that (Lk) has property A for any k > 0. Now, Theorem 3.1
yields the assertion. This completes the proof.

Theorem 3.1 yields the following comparison result between nonlinear equations without
and with deviating argument.

Theorem 3.4. Assume (H5), (H6), h(t) ≥ t and (Lk) is oscillatory for all k > 0. If
equation (N) has property A, then (N,h) has property A and (NA,h) has property B.

Proof. To prove this assertion we will show that a) if (N) has property A, then (Lk) has
property A for all k > 0 and b) if (Lk) has property A for all k > 0, then (N,h) has property
A and (NA,h) has property B.

a) This part can be proved in the same way as the claim (a) in the proof of [2, Theorem
4.1] is done and thus we omit it.

b) Let (Lk) has property A for all k > 0. From Theorem 3.1 we immediately get that
(N,h) has property A and (NA,h) has property B. Now part b) is proved. This completes
the proof.

Remark 3.If h(t) ≡ t in Theorem 3.4, we obtain known result concerning property A for
(N) and property B for (NA), see [2, Theorem 4.1].

4. Conclusion and open problems. The canonical form of investigated equations
makes the proofs more easily than non-canonical one. For example, in our research we often
apply that in the canonical case Kiguradze lemma holds and so we consider only two classes
of nonoscillatory solutions of equation (N,h)[(NA,h)]. Some asymptotic properties of these
solutions are known (see Lemma 2.6) and we can use a comparison result between equations
with different deviating arguments (Theorem 2.5) etc. And so a lot of questions and new
problems arise.

http://www.river-valley.com
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The following problems remain open:
1. To research the non-canonical case. Does Theorem 3.1 (Theorem 3.4) hold in this

case? We have already a partial answer. Theorem 3.1 holds in the non-canonical
case, if we consider nonlinear differential equation without deviating argument, that
is if h(t) ≡ t in equations (N,h), (NA,h). This will be given elsewhere.

2. To state sufficient conditions for the existence of nonoscillatory solutions from some
class N0 − N3, M0 − M3. In the literature there are only results ensuring the
existence of nonoscillatory solutions from the class N0 for linear (see [6] and the
references obtained therein) and nonlinear (see [1]) equations without deviating
argument. In the linear case similar result is also stated for the class M3 (see [6]).

3. To obtain also necessary conditions for property A (B) or oscillation.
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