
Home Page

Title Page

Contents

JJ II

J I

Page 1 of 12

Go Back

Full Screen

Close

Quit

Proceedings of Equadiff-11
2005, pp. 303–310

THE BEAM OPERATOR AND THE FUČÍK SPECTRUM∗

PETR NEČESAL†

Abstract. The aim of this paper is mainly to introduce a new variational approach in order to obtain a
robust and global algorithm which is suitable for the exploration of unknown Fuč́ık spectrum structure in the
case of a beam operator. Qualitative results of numerical experiments that involve unknown branches of the
Fuč́ık spectrum are essential for better understanding of the behaviour of PDE models such as suspension
bridge models.
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1. Introduction. Let L : dom(L) ⊂ L2(Ω) → L2(Ω) be a linear self-adjoint operator,
Ω ⊂ RN being open and bounded set. The set

Σ(L) :=
{
(α, β) ∈ R2 : Lu = αu+ − βu− has a nontrivial solution

}
(1.1)

is called the Fuč́ık spectrum, where u+ := max{u, 0} and u− := max{−u, 0}. This set
was firstly introduced by Fuč́ık (see [10]) in order to extend existence results for semi-linear
boundary value problems. Nowadays, several recent papers such as [1], [2] or [9] deal with
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the structure of the Fuč́ık spectrum Σ(L) in the case of a general operator L. For instance in
[1], authors give a description of the Fuč́ık spectrum of L away from its essential spectrum,
they give local and global results describing the Fuč́ık spectrum of L and also existence
results for semi-linear equations using degree computations between the Fuč́ık curves. All
the same there are still many open problems, especially in applying these general results in
particular cases of partial differential operators such as wave or beam operators.

The Fuč́ık spectrum plays an important role in several mathematical models. Let us
mention the following one-dimensional nonlinear model of a suspension bridge

utt(x, t) + uxxxx(x, t) + bu+(x, t) = h(x, t), (x, t) ∈ (0, π)× R,

u(0, t) = u (π, t) = uxx(0, t) = uxx (π, t) = 0, t ∈ R,

u(x, t) = u(x, t + T ), (x, t) ∈ (0, π)× R.

(1.2)

This problem can be interpreted as a normalized model of the vertical motion of a suspen-
sion bridge (see e.g. Drábek, Holubová, Matas and Nečesal [7]). The Fuč́ık spectrum of the
related beam operator indicates points of resonance for the model (1.2). But the Fuč́ık spec-
trum for such beam operator is not explicitely known (see [8] for more careful analysis).
Thus we design an algorithm in order to explore the Fuč́ık curves numerically.

2. The Fuč́ık spectrum for a beam operator. Let us briefly recall in this section
what is known about the Fuč́ık spectrum for the following problem

utt(x, t) + uxxxx(x, t) + αu+(x, t)− βu−(x, t) = 0, (x, t) ∈ (0, π)× R,

u (0, t) = u (π, t) = uxx (0, t) = uxx (π, t) = 0, t ∈ R,

u(x, t) = u(x, t + T ), (x, t) ∈ (0, π)× R.

(2.1)

Let us set

ω := 2π/T, Ωω := (0, π)× (0, 2π/ω) , Hω := L2(Ωω)

http://www.river-valley.com


Home Page

Title Page

Contents

JJ II

J I

Page 3 of 12

Go Back

Full Screen

Close

Quit

with a standard L2-norm ‖·‖ and standard inner product 〈·, ·〉. Let us define for k ∈ N and
l ∈ Z

λω
k,l := l2ω2 − k4, ϕω

k,l(x, t) :=


2
√

ω/π sin kx sin lωt for k ∈ N, l ∈ N,
√

ω/π sin kx for k ∈ N, l = 0,

2
√

ω/π sin kx cos lωt for k ∈ N, −l ∈ N.

The set {ϕω
k,l : k ∈ N, l ∈ Z} forms an orthonormal basis in Hω. The abstract realization of

the beam differential operator u 7→ −(utt+uxxxx) with the periodic and the Navier boundary
conditions from (2.1) is the linear operator Lω : dom (Lω) ⊂ Hω → Hω defined by

dom (Lω) :=

{
u ∈ H :

+∞∑
k=1

+∞∑
l=−∞

∣∣λω
k,l

∣∣2 ∣∣uω
k,l

∣∣2 < +∞

}
,

Lωu(x, t) :=
+∞∑
k=1

+∞∑
l=−∞

λω
k,l u

ω
k,l ϕ

ω
k,l(x, t),

where uω
k,l := 〈u, ϕω

k,l〉. Then Lω is densely defined, closed and self-adjoint operator. More-
over, Lω has a pure point spectrum σ (Lω) made of eigenvalues {λω

k,l : k ∈ N, l ∈ Z}. Due
to orthogonality of basis {ϕω

k,l} in Hω, it is possible to locate some inadmissible areas of R2

that have a zero intersection with the Fuč́ık spectrum Σ(Lω). More precisely, the problem
(2.1) has only a trivial solution for any

(α, β) ∈ (−∞, λω
1,0)× (λω

1,0,+∞) ∪ (λω
1,0,+∞)× (−∞, λω

1,0) ∪ (λi, λj)× (λi, λj),

where λi and λj are two successive eigenvalues of Lω (see Fig. 2.1 and [20] for more details).
It is convenient to form eigenvalues {λω

k,l : k ∈ N, l ∈ Z} into an infinite-dimensional matrix
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Λ in the following way

Λ :=


λω

1,0 λω
1,1 λω

1,2 λω
1,3 λω

1,4 . . .

λω
2,0 λω

2,1 λω
2,2 λω

2,3 λω
2,4 . . .

λω
3,0 λω

3,1 λω
3,2 λω

3,3 λω
3,4

λω
4,0 λω

4,1 λω
4,2 λω

4,3 λω
4,4

...
...

. . .

 .

If we take into account only such solutions of the problem (2.1), which are of the form
u(x, t) = y(t) sinx, then the problem (2.1) can be reduced to the following problem for the
periodic ordinary differential operator{

y′′(t) + (α + 1)y+(t)− (β + 1)y−(t) = 0, t ∈ R,

y(t) = y(t + T ), t ∈ R.
(2.2)

The Fuč́ık spectrum for such periodic problem (2.2) is given by explicit analytic formulas (see
[6]), the particular Fuč́ık curves emanate from the points on the diagonal α = β determined
by the eigenvalues which are located in the first row of the matrix Λ (see Fig. 2.1).

On the other hand, if we focus only on time independent solutions of the problem (2.1)
u(x, t) = y(x), then the problem (2.1) reads as the following Navier boundary value problem
containing the fourth order ordinary differential operator{

yIV(x) + αy+(x)− βy−(x) = 0, x ∈ (0, π) ,

y(0) = y′′(0) = y(π) = y′′(π) = 0.
(2.3)

The corresponding Fuč́ık spectrum of (2.3) is not given by explicit analytic formulas, but
the existence of particular Fuč́ık curves is proved by Krejč́ı (see [16]). In other words, each
eigenvalue in the first column of the matrix Λ gives arise to one or two Fuč́ık curves, which
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Fig. 2.1. Known parts of the Fuč́ık spectrum Σ(Lω) of the beam operator.

If we take into account only such solutions of the problem (2.1), which are of the55

form u(x, t) = y(t) sinx, then the problem (2.1) can be reduced to the following problem56

for the periodic ordinary differential operator57 {
y′′(t) + (α + 1)y+(t)− (β + 1)y−(t) = 0, t ∈ R,

y(t) = y(t + T ), t ∈ R.
(2.2)

58

The Fuč́ık spectrum for such periodic problem (2.2) is given by explicit analytic formulas59

(see [6]), the particular Fuč́ık curves emanate from the points on the diagonal α = β60

determined by the eigenvalues which are located in the first row of the matrix Λ (see61

Fig. 2.1).62

On the other hand, if we focus only on time independent solutions of the problem63

(2.1) u(x, t) = y(x), then the problem (2.1) reads as the following Navier boundary value64

problem containing the fourth order ordinary differential operator65 {
yIV(x) + αy+(x)− βy−(x) = 0, x ∈ (0, π) ,

y(0) = y′′(0) = y(π) = y′′(π) = 0.
(2.3)

66

The corresponding Fuč́ık spectrum of (2.3) is not given by explicit analytic formulas, but67

the existence of particular Fuč́ık curves is proved by Krejč́ı (see [16]). In other words, each68

Fig. 2.1. Known parts of the Fuč́ık spectrum Σ(Lω) of the beam operator.

can be explored using a standard continuation method combined with an one-dimensional
shooting method (see Fig. 2.1 and [21] for details).

Clearly, we expect that all other eigenvalues, which are located not only in the first row
or column of the matrix Λ, give arise to other nontrivial Fuč́ık curves. Our expectation
is hardly supported by existence results for a general self-adjoint operator by Ben-Naoum,
Fabry and Smets (see [1]). In our particular case of the beam operator, their results give

http://www.river-valley.com
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us the local existence of Fuč́ık curves close to the diagonal α = β in the case of simple
eigenvalues.

As for the numerical methods for the partial differential Fuč́ık spectrum problems, there
exists only limited group of sporadic numerical results and experiments. One way is to
combine for instance Newton’s method and Mountain Pass Algorithm to localize the higher
Fuč́ık curves (see e.g. results in [13] for the Laplace operator). Alternative approach is
based on a continuation shooting method presented in [19] or [20], which means a suitable
approach how to explore the Fuč́ık curves for the wave operator u 7→ −(utt − uxx). On
the other hand, in the case of the beam operator Lω, a continuation shooting method is
completely inapplicable due to instability of solutions of the initial boundary value problem
related to (2.1) with respect to small perturbations of initial data and parameters α and
β. Thus, the goal of the following two sections is to formulate the main ideas of our new
approach that is completely different from previous methods and that will be suitable for
exploring the Fuč́ık curves including their asymptotes in the case of the beam operator Lω.

3. Variational approach. Let µ ∈ R \ σ(L), where σ(L) denotes the spectrum of L.
Then using the following transformation Tµ

Tµ = Tµ(α, β, u) = (m,λ, v), T −1
µ = T −1

µ (m,λ, v) = (α, β, u),

Tµ :


m =

β − α

β + α− 2µ
,

λ =
2µ− α− β

2(µ− α)(µ− β)
,

v = (µI − L)u,

T −1
µ :


α = µ− 1

λ(1 + m)
,

β = µ− 1
λ(1−m)

,

u = (µI − L)−1v,

it is possible to write the Fuč́ık spectrum problem Lu = αu+ − βu− as the nonlinear homo-
geneous eigenpair problem

(µI − L)−1v = λ(v + m|v|). (3.1)

http://www.river-valley.com
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Moreover, let us define the corresponding Rayleigh quotient J : L2(Ω) → R as

J(v) =
F (v)
G(v)

, where F (v) =
1
2

∫
Ω

(µI − L)−1v · v dx, G(v) =
1
2

∫
Ω

v2 + m|v|v dx.

Due to the homogenity of the problem (3.1), a pair (λ, v) is an eigenpair of (3.1), if and only
if v is a critical point of J and λ = J(v) is the corresponding critical value.
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Fig. 3.1. The first four nontrivial Fuč́ık curves of Σ(LN) transformed by Tµ.

Let us consider the Neumann operator LN : dom(LN) ⊂ C([0, π]) → C([0, π]) by

LNy := −y′′, dom(LN) :=
{
C2([0, π]) : y′(0) = y′(π) = 0

}
.
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Let us set up e.g. µ = 2. Then taking all fixed m ∈ [−1, 1], the minimization and the
maximization processes of functional J(v) generate parts of the second and the first nontrivial
Fuč́ık curves of LN, respectively (see Fig. 3.1). Thus, this approach involve only those parts
of Fuč́ık curves for which (α− µ)(β − µ) > 0. This disadvantage can be overcome if we add
e.g. another parameter δ as in the following section.

4. Revisited variational approach. Let µ ∈ R \ σ(L) and δ ∈ R be such that
(µ + δ) 6∈ σ(L). If we take into account the following generalized transformation

Tµ,δ = Tµ,δ(α, β, u) = (m, λ̃, v), T −1
µ,δ = T −1

µ,δ (m, λ̃, v) = (α, β, u),

Tµ,δ :


m =

β − α

β + α− 2µ
,

λ̃ =
2µ− α− β

2(µ− α)(µ− β)+δ(2µ− α− β)
,

v = (µI − L)u,

T −1
µ,δ :



α = µ− 1−δλ̃

λ̃(1 + m)
,

β = µ− 1−δλ̃

λ̃(1−m)
,

u = (µI − L)−1v,

then the Fuč́ık spectrum problem Lu = αu+ − βu− reads as the nonlinear problem

((µ+δ)I − L)−1v = λ̃(v + m(I−δ[(µ + δ)I − L]−1)|v|). (4.1)

Due to homogenity of such an eigenpair problem, the critical points of the corresponding
Rayleigh quotient J : L2(Ω) → R

J(v) =
F (v)
G(v)

, F (v) =
1
2

∫
Ω

((µ+δ)I − L)−1v · v dx,

G(v) =
1
2

∫
Ω

v2+ m(I−δ[(µ + δ)I − L]−1)|v|v dx,

http://www.river-valley.com
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Fig. 4.1. The first four nontrivial Fuč́ık curves of Σ(LN) transformed by Tµ,δ.

together with their critical values λ = J(v) are in one to one correspondence with eigenpairs
(λ, v) of (4.1).

Let us take µ = 1/6 and δ = 4. Then all nontrivial Fuč́ık curves of σ(LN) are located
in a strip {(m,λ) ∈ [−1, 1] × R} (see Fig. 4.1). As a consequence of this fact, the whole
second and the whole third nontrivial Fuč́ık curves of Σ(LN) including their asymptotes (for
m = ±1) can be obtained by the maximization and the minimization of the functional J(v),
respectively.

5. Example. In order to demonstrate the applicability of our variational approach also
in the case of partial differential operators, let us consider the following Neumann problem

http://www.river-valley.com
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for the wave operator u 7→ −(utt − uxx)
utt − uxx + αu+ − βu− = 0, (x, t) ∈ (0, 2)× (0, 1),
ux(0, t) = ux(X, t) = 0, t ∈ [0, 1],
ut(x, 0) = ut(x, T ) = 0, x ∈ [0, 2].

x

t

u

x

t

u

Fig. 5.1. The generalized eigenfunction for β = +∞ and the starting eigenfunction for α = β.

Let us set up µ = 1 and δ = 0. Starting with the eigenfunction cos πx/2 cos πt, the
minimization process of the corresponding functional J(v) for m = 1 leads to λ = 0.8513
with ‖J ′(v)‖2 = 2.3 · 10−5. Then we recover the generalized eigenfunction with α = 1.5873
and β = +∞ using the inverse transformation T −1

µ,δ (see Fig. 5.1).
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6. Conclusion and further research. Our variational approach provides us a robust
and global algorithm for exploring the generalized eigenfunctions and particular Fuč́ık curves
including their asymptotic behaviour. No continuation technique is required and presented
variational approach is suitable also in the case of the beam operator Lω (see [14] how to
effectively implement the inverse operator (µI − Lω)−1). Finally, let us note that using our
variational approach, we explore the qualitatively different behaviour of the Fuč́ık curves
and their corresponding generalized eigenfunctions in the case of the beam operator Lω in
contrast with known results concerning the Fuč́ık spectrum for ordinary differential opera-
tors.
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[19] P. Nečesal, The Fuč́ık spectrum in models of suspension bridges, Proc. of Dynamic Systems and Ap-

plications 4 (2004), 320–327.
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