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EXISTENCE AND ASYMPTOTICS FOR SELFDUAL PERIODIC
VORTICES OF TOPOLOGICAL-TYPE∗

MARTA MACRÌ† AND MARGHERITA NOLASCO‡

Abstract. We consider vortices of topological-type for a class of selfdual gauge models, with periodic
boundary conditions and as the ratio of the vortex core size to the separation distance between vortex
points (the scaling parameter) tends to zero. We use a gluing technique (shadowing lemma) for solutions
to the corresponding semilinear elliptic equation on the plane, where the vortex points are periodically
arranged. This approach is particularly convenient and natural for the study of the asymptotics as the
scaling parameter tends to zero. In particular, we prove a factorization ansatz for multivortex solutions,
up to an error which is exponentially small.
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1. Introduction. This paper presents some recent results about the existence of
the solutions of topological-type to the following singular elliptic problem

−∆u = δ−2q(eu)− 4π
s∑

j=1

mjδpj in Ω and u doubly periodic on ∂Ω (1.1)

where Ω = (0, a) × (0, b), the points pj ∈ Ω are called vortex points, mj ∈ N is the
multiplicity of the vortex point pj , δpj

is the Dirac measure at pj and q : [0,+∞) → R is
smooth and satisfies:

q(1) = 0, q′(1) < 0; (q1)
q(t) > 0 for all t ∈ (0, 1) (q2)
q(t) < 0 for all t > 1. (q3)

The equation (1.1) arises from several self-dual gauge theories as considered, e.g. in
the monographs [7], [17] and more recently in [14].

The periodic boundary conditions are justified by certain more general gauge invariant
conditions introduced by ‘t Hooft [6]. Such conditions force the magnetic flux through
a lattice cell to be a “quantized” value proportional to the number of vortices confined.
Namely, the ‘t Hooft boundary conditions imply a topological constraint on the solutions
of (1.1), exactly as for finite energy solutions on R2.

Let us recall some known results on problem (1.1). For q(t) = 1 − t, the equation
(1.1) reduces to the equation describing self-dual Abelian Higgs vortices, see [15] for
existence and uniqueness of finite energy solutions on R2 and [16] for the periodic case.
In particular, for the self-dual Abelian Higgs vortices we refer to [8], where the asymptotic
properties as δ → 0+ are analyzed for both the planar and the periodic case.
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For q(t) = t(1 − t), the equation (1.1) reduces to the equation describing selfdual
Chern-Simons vortices, see [11] for existence of finite energy solutions on R2 and [2], [12]
for the periodic case.

The equation (1.1) for the general nonlinearity q satisfying (q1)–(q2)–(q3) has been
considered on R2 by Han [5] and, by Chen, Hastings, McLeod and Yang [3], for a slightly
more general nonlinearity in a radial setting, namely only for a single vortex point. In
particular, Han in [5] proved the existence of topological-type solutions on R2, namely
solutions with exponential decay at infinity and satisfying δ−2

∫
R2 q(eu) = 4πN . In the

present paper we study the equation (1.1) with periodic boundary conditions and we look
for solutions of topological-type, namely uδ → 0 as δ → 0+ in Ω \ {pj}j .

In general, assuming only (q1)–(q2)–(q3) on the nonlinearity, the equation (1.1) may
admit more than a solution with a different asymptotic behavior at infinity for the planar
case and as δ → 0+ for the periodic case, see for instance [12] for a multiplicity results for
the Chern-Simons equation (topological and nontopological type solutions). Moreover,
it is still an open problem if there is uniqueness of topological-type solutions assuming
only (q1)–(q2)–(q3). Indeed, a uniqueness result is given by Han ([5]) for the planar
case under the condition of strict monotonicity on the nonlinearity q, and for a non-
monotone nonlinearity, a uniqueness result was given recently by Tarantello ([13]) for
periodic solutions of topological-type for the Chern-Simon equations, taking advantage
of their variational characterization.

In a non-variational setting we give in a forthcoming paper ([9]) a uniqueness result,
for both the planar and the periodic case, for solutions of (1.1) assuming (q1)–(q2)–(q3),
and the additional condition that δ−2(1− eu) is bounded in L1 uniformly w.r.t. to δ.

2. Main result and outline of the proof. In order to state more precisely our
result, let us denote by UN the unique (radial) solution for the single-vortex problem on
R2 (see [5] and [3])

−∆UN = q(eUN )− 4πNδ0 and UN → 0 as |x| → +∞ (2.1)

We have the following result:

Theorem 2.1. Let us assume (q1)–(q2)–(q3). Then there exists δ1 > 0 such that for
every δ ∈ (0, δ1) there exists a solution uδ for (1.1). Furthermore, uδ satisfies the approx-
imate superposition rule

uδ(x) =
s∑

j=1

Umj

(
|x− pj |

δ

)
+ ωδ, (2.2)

where ‖ωδ‖∞ ≤ Ce−c/δ, for some C, c > 0 independent of δ > 0.
Moreover, uδ satisfies the following properties
(i) euδ < 1 on Ω and vanishes exactly at pj with multiplicity 2mj, j = 1, . . . , s;
(ii) For every compact subset K of Ω \ ∪j=1,...,s{pj} there exist C, c > 0 such that

1− euδ ≤ Ce−c/δ as δ → 0+;
(iii) δ−2q(euδ) → 4π

∑s
j=1mjδpj in the sense of distributions, as δ → 0+.

Our starting point in proving Theorem 2.1 is to consider δ > 0 as a scaling param-
eter. Setting û(x) = u(δx), we have that û satisfies:

−∆û = q(eû)− 4π
∑
k∈P

mkδp̂k
in R2, (2.3)
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where p̂k = pk/δ. Here P is a countable set, and

{pk}k∈P = {pj +mae1 + nbe2 : j = 1, . . . , s; m,n ∈ Z} (2.4)

where e1, e2 are the unit vectors in R2 defining the periodic cell domain Ω.
Note that the vortex points p̂k “separate” as δ → 0+.
We use a “Shadowing-type Lemma” as introduced by Angenent in [1] (see also [10]

and [8]) to prove the existence of a solution with the following form

û =
∑
j∈P

ϕ̂jUmj (x− p̂j) + z

where ϕ̂j is a suitable cut-off function around the point p̂j and z is a fixed point of a
suitable contractive map Fδ. Finally, we prove that the solution uδ(x) = û(x

δ ) of (1.1) is
in fact a periodic solution with periodic cell domain Ω and satisfies all properties stated
in Theorem 2.1.

3. Properties of the single vortex. We collect in the following lemma some
properties of the solution UN of problem (2.1).

Lemma 3.1. There exists a unique solution UN of problem (2.1). Moreover UN is
radially symmetric about the origin and satisfies the following properties:

(i) eUN (x) < 1 for any x ∈ R2.
(ii) For every r > 0 there exist constants C > 0 and α > 0 depending on r and N

such that

|1− eUN (x)|+ |∇UN (x)|+ |UN (x)| ≤ Ce−α|x|,

for all x ∈ R2 \Br(0).
(iii) UN (x) = 2N ln |x|+O(1) as |x| → 0.
(iv) The bounded linear operator LN : H2(R2) → L2(R2) defined by

LN := −∆− q′(eUN )eUN .

is invertible with a bounded inverse.

The existence and the uniqueness of the radial solution of problem (2.1) is proved in
[3]. Then, Han in [5] proved that every solution of problem (2.1) is radially symmetric
about the origin and consequently it is unique. Moreover in [5] the exponential decay
estimate of UN is given. The complete estimate (ii) follows by the standard elliptic
theory (see e.g. [4]). (iii) follows noting that by (2.1) v ≡ UN − 2N ln |x| ∈ H2(R2), and
by elliptic regularity v ∈ C∞(R2).

Concerning (iv) note that the operator LN for the Abelian Higgs model is given by
LN := −∆ + eUN , hence defines a strictly positive quadratic form which represents the
second differential of the Euler functional associated to the variational formulation of the
problem. Indeed, whenever the nonlinearity q(t) is strictly monotone, namely q′(t) < 0,
for t ∈ [0, 1], it is easy to check that the operator is strictly positive and hence injective.
However in general, the term q′(eUN ) may change sign, as for example for the Chern-
Simons model. In [13] is proved that for Chern-Simons equation, UN is a minimum of the
associated Euler functional and that the second differential form, namely the quadratic
form defined by the operator LN , is strictly positive, showing that λ1 = 0 cannot be the
first eigenvalue of LN . We generalize the proof in [13], for a general nonlinearity q, hence
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without any variational characterization of UN , showing that the first eigenvalue of LN

is always strictly positive.

Proof. [Lemma 3.1(iv)] The operator LN is of Fredholm-type. Hence, to conclude it is
enough to prove that LN is injective. Indeed, suppose that LN is not injective, then
denoting by λ1 the first eigenvalue of LN , we have λ1 ≤ 0. Let ϕ ∈ H2(R2) be the first
eigenfunction of LN , then the function ϕ is positive, radially symmetric and uniquely
defined by ϕ(x, y) = φ(

√
x2 + y2) with φ satisfying

−φ′′ − 1
r
φ′ − q′(eUN ) eUN φ = λ1φ in (0,+∞).

We set ψ(t) = φ(et) = φ(r) and V (t) = UN (et) < 0. Then ψ > 0 satisfies:

− ψ̈ = e2t q′(eV ) eV ψ + λ1 e2t ψ in (−∞,+∞) (3.1)

and V satisfies

− V̈ = e2t q(eV ). (3.2)

By the properties of UN and (3.1) easily follows

lim
t→−∞

ψ(t) = φ(0) lim
t→+∞

ψ(t) = 0 lim
t→±∞

ψ̇(t) = 0

and by Lemma 3.1(ii)–(iii) and (3.2) we have

lim
t→+∞

V̇ (t) = 0, lim
t→−∞

V̇ (t) = 2N.

Now, in view of the fact that limt→±∞ ψ̇V̇ = 0, multiplying (3.1) by V̇ and integrating,
we get ∫ +∞

−∞
e2t ψ(2q(eV )− λ1V̇ ) dt =

[
e2t q(eV )ψ

]+∞
−∞ . (3.3)

For λ1 ≤ 0, the l.h.s. is finite and strictly positive and limt→±∞ e2t q(eV )ψ = 0, a
contradiction. Therefore, we may conclude, in particular, that LNϕ = 0 implies necessary
ϕ ≡ 0.

4. The shadowing Lemma. We need a suitable partition of unity. We can use the
same introduced in [8], so that we only report the main aspects and we refer to [8] for
more details.

There exists a locally finite open covering of R2, {Pj , Qk}(j,k)∈P×Q (Q is a countable
set of indices) with the property that Pj ∩Pj′ = ∅ for every j′ 6= j. Moreover there exists
a partition of unity {ϕj , ψk} associated to {Pj , Qk}, such that ϕj(pj) = 1, suppϕj ⊂ Pj

and suppψk ⊂ Qk. We also define the rescaled covering: P̂j = Pj/δ, Q̂k = Qk/δ. Then
{ϕ̂j , ψ̂k} defined by ϕ̂j(x) = ϕj(δx), ψ̂k(x) = ψk(δx) is a partition of unity associated to
{P̂j , Q̂k}. It will also be convenient to define the sets

Ĉj = {x ∈ P̂j : ϕ̂j(x) = 1} j ∈ P.

Note that supp{∇ϕ̂j , D
2ϕ̂j} ⊂ P̂j \ Ĉj and

sup
(j,k)

{‖∇ϕ̂j‖∞ + ‖∇ψ̂k‖∞} ≤ Cδ, sup
(j,k)

{‖D2ϕ̂j‖∞ + ‖D2ψ̂k‖∞} ≤ Cδ2. (4.1)
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We shall use the following Banach spaces:

X̂δ =

{
u ∈ H2

loc(R2) : ‖u‖X̂δ
≡ sup

(j,k)∈P×Q

{
‖ϕ̂ju‖H2 , ‖ψ̂ku‖H2

}
< +∞

}
,

Ŷδ =

{
f ∈ L2

loc(R2) : ‖f‖Ŷδ
≡ sup

(j,k)∈P×Q

{
‖ϕ̂jf‖L2 , ‖ψ̂kf‖L2

}
< +∞

}
.

For any j ∈ P, we define

Ûj(x) = Umj (x− p̂j)

and, for any R > 0, BR = {u ∈ X̂δ : ‖u‖X̂δ
≤ R}.

We make the following ansatz for the solutions û to equation (2.3):

û =
∑
j∈P

ϕ̂jÛj + z. (4.2)

Our goal is to prove:

Proposition 4.1. There exists δ1 > 0 such that for all δ ∈ (0, δ1) there exists
unique zδ ∈ X̂δ such that ûδ =

∑
j∈P ϕ̂jÛj + zδ is a solution to (2.3). Moreover,

‖zδ‖X̂δ
≤ Ce−c/δ.

We note that the functional Fδ : X̂δ → Ŷδ given by

Fδ(z) = −∆z +
∑
j∈P

ϕ̂jq(eÛj )− q(e
∑

j∈P ϕ̂jÛj+z)−
∑
j∈P

[ϕ̂j ,∆]Ûj

is well-defined and C1. Here [∆, ϕ̂j ] = ∆ϕ̂j + 2∇ϕ̂j∇. Moreover, if z ∈ X̂δ satisfies
Fδ(z) = 0, then û defined by (4.2) is a solution to (2.3).

Lemma 4.2. For δ > 0 sufficiently small, we have

‖Fδ(0)‖Ŷδ
≤ Ce−c/δ as δ → 0+

for some constants C, c > 0 independent of δ.

Proof. Let

R =
∑
j∈P

ϕ̂jq(eÛj )− q(e
∑

j∈P ϕ̂jÛj ), C =
∑
j∈P

[ϕ̂j ,∆]Ûj .

Note that {suppR, supp C} ⊂ ∪j∈P P̂j \ Ĉj . Then, by Lemma 3.1(ii) we have

‖q(eÛj )‖L∞(R2\Ĉj)
≤ C‖1− eÛj‖L∞(R2\Ĉj)

≤ C e−c/δ, (4.3)

‖q(eϕ̂jÛj )‖L∞(R2\Ĉj)
≤ C‖1− eÛj‖L∞(R2\Ĉj)

≤ C e−c/δ . (4.4)

Therefore, fixed x ∈ ∪j∈P P̂j \ Ĉj , from (4.3) and (4.4) we have

|R(x)| ≤ sup
j∈P

‖ϕ̂jq(eÛj )‖L∞(P̂j\Ĉj)
+ sup

j∈P
‖q(eϕ̂jÛj )‖L∞(P̂j\Ĉj)

≤ Ce−c/δ.
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On the other hand, in view of (4.1) and Lemma 3.1(ii), for x ∈ ∪j∈P P̂j \ Ĉj , we have

|C(x)| ≤ sup
j∈P

‖ [∆, ϕ̂j ]Ûj‖L∞(P̂j\Ĉj)
≤ Ce−c/δ.

Hence, we conclude that, as δ → 0+:

‖Fδ(0)‖Ŷδ
≤ C sup

j∈P

(
‖R‖L2(P̂j)

+ ‖C‖L2(P̂j)

)
≤ Ce−c/δ

for some constants C, c > 0 independent of δ > 0.

Now, we consider the operator Lδ ≡ DFδ(0) : X̂δ → Ŷδ given by

Lδ = −∆− q′(e
∑

j∈P ϕ̂jÛj )e
∑

j∈P ϕ̂jÛj .

and the operators L̂0 = −∆− q′(1) and L̂j = −∆− q′(eÛj )eÛj for every j ∈ P.
The following holds:

Lemma 4.3. There exist C, c > 0 such that for any u ∈ X̂δ we have

‖(Lδ − L̂j)ϕ̂ju‖L2 ≤ Ce−c/δ‖ϕ̂ju‖L2 , j ∈ P,

‖(Lδ − L̂0)ψ̂ku‖L2 ≤ Ce−c/δ‖ψ̂ku‖L2 , k ∈ Q.

Proof. For any j ∈ P, by Lemma 3.1(ii) follows that

‖q′(eÛj )eÛj − q′(1)‖L∞(R2\Ĉj)
≤ C‖1− eÛj‖L∞(R2\Ĉj)

≤ Ce−c/δ,

‖q′(eϕ̂jÛj )eϕ̂jÛj − q′(1)‖L∞(R2\Ĉj)
≤ C‖1− eÛj‖L∞(R2\Ĉj)

≤ Ce−c/δ.

Therefore we have, as δ → 0+

‖(Lδ − L̂j)ϕ̂ju‖L2 =‖(q′(eϕ̂jÛj )eϕ̂jÛj − q′(eÛj )eÛj )ϕ̂ju‖L2

≤ C e−c/δ ‖ϕ̂ju‖L2

and

‖(Lδ − L̂0)ψ̂ku‖L2 ≤C sup
j∈P

‖q′(1)− q′(eϕ̂jÛj )eϕ̂jÛj‖L∞(P̂j\Ĉj)
‖ψ̂ku‖L2

≤C e−c/δ‖ψ̂ku‖L2 .

The following lemma provides an essential non-degeneracy property of Lδ:

Lemma 4.4. There exists δ0 > 0 such that for any δ ∈ (0, δ0), the operator Lδ is invertible.
Moreover, L−1

δ : Ŷδ → X̂δ is uniformly bounded with respect to δ ∈ (0, δ0).

Proof. Once established Lemma 3.1 and Lemma 4.3, the proof is as in [8, Lemma 5.3]
and then is omitted.

Now we can provide the
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Proof. [Proof of Proposition 4.1] We use the Banach fixed point argument. For any
δ ∈ (0, δ0), with δ0 > 0 given by Lemma 4.4, we introduce the nonlinear map
Gδ ∈ C1(X̂δ, X̂δ) defined by

Gδ(z) = z − L−1
δ Fδ(z).

Then, fixed points of Gδ correspond to solutions of the functional equation Fδ(z) = 0.
First, note that DGδ(0) = 0 and that

DFδ(z) = −∆− q′(e
∑

j∈P ϕ̂jÛj+z)e
∑

j∈P ϕ̂jÛj+z.

Then, by Lemma 4.4, for any z ∈ X̂δ and u ∈ X̂δ we have

‖DGδ(z)u‖X̂δ
= ‖(DGδ(z)−DGδ(0))u‖X̂δ

= ‖L−1
δ (DFδ(z)− Lδ)u‖X̂δ

≤ C‖(−q′(e
∑

j∈P ϕ̂jÛj+z)ez + q′(e
∑

j∈P ϕ̂jÛj ))u‖Ŷδ

≤ C(‖q′‖L∞(Iz) + ‖q′′‖L∞(Iz))‖(ez − 1)u‖Ŷδ
.

where Iz is the interval Iz = [0, e‖z‖L∞ ].
By the elementary inequality et − 1 ≤ tet, for all t > 0, and Sobolev inequality, we

have

‖DGδ(z)u‖X̂δ
≤ C(‖q′‖L∞(Iz) + ‖q′′‖L∞(Iz))‖z‖X̂δ

ec‖z‖X̂δ ‖u‖X̂δ
.

Consequently, there exists R1 > 0 such that for every R ∈ (0, R1) we have

‖DGδ(z)‖ ≤
1
2
, ∀z ∈ BR

for all δ ∈ (0, δ0). Now, for every R ∈ (0, R1)

‖Gδ(z)‖X̂δ
≤ ‖Gδ(z)−Gδ(0)‖X̂δ

+ ‖Gδ(0)‖X̂δ
≤ 1

2
‖z‖X̂δ

+ ‖L−1
δ Fδ(0)‖X̂δ

.

Since, there exist C, c > 0 independent of δ ∈ (0, δ0) such that

‖L−1
δ Fδ(0)‖X̂δ

≤ C‖Fδ(0)‖Ŷδ
≤ Ce−c/δ, (4.5)

there exists δ1 > 0 such that for any δ ∈ (0, δ1) we obtain that Gδ(BR) ⊂ BR. Hence, Gδ

is a strict contraction in BR, for any δ ∈ (0, δ1). By the Banach fixed-point theorem, for
any δ ∈ (0, δ1), there exists a unique zδ ∈ BR, such that Fδ(zδ) = 0.

Moreover, in view of (4.5), we may choose R = Rδ = 2Ce−c/δ and we get ‖zδ‖X̂δ
≤

Rδ = 2Ce−c/δ.

5. Proof of Theorem 2.1. As a consequence of Proposition 4.1, there exists
δ1 > 0 such that for every δ ∈ (0, δ1) the function uδ defined by

uδ(x) = ûδ

(x
δ

)
=

∑
j∈P

ϕj(x)Umj

(
x− pj

δ

)
+ zδ

(x
δ

)
(5.1)

is a solution to (1.1). Then arguing as in [8], lemma 6.1 we have that the solution uδ

defined in (5.1) satisfies the approximate superposition rule (2.2). Then points (i)–(ii)
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follow by maximum principle and by the properties of the solution, see [8, Lemma 6.2]
for more details. To show that (iii) holds, let ϕ ∈ C∞c (R2). Then,

−
∫

R2
uδ∆ϕ = δ−2

∫
R2
q(euδ)ϕ− 4π

∑
j∈P

mjϕ(pj).

It can be proved, as in [8], lemma 6.2, that
∫

R2 uδ∆ϕ → 0 as δ → 0+, and (iii) is
established.

Finally, we want to prove that if the pj ’s are doubly periodically arranged in R2 (see
(2.4)), then uδ is in fact a doubly periodic solution to (1.1). We define êl = el/δ, l = 1, 2.
Equivalently, we show that

ûδ(x+maê1 + nbê2) = ûδ(x) for any x ∈ R2, m, n ∈ Z.

Indeed, we may assume that ϕ̂j(x− (maê1 + nbê2)) = ϕ̂j′(x), where

pj′ = pj +mae1 + nbe2 and ψ̂k(x− (maê1 + nbê2)) = ψ̂k′(x)

for a suitable k′ ∈ Q. Then,

ûδ(x+maê1 + nbê2) =
∑
j∈P

ϕ̂j(x)Ûj(x) + zδ(x+maê1 + nbê2).

Hence, it is sufficient to prove that zδ(x + maê1 + nbê2) = zδ(x), for every x ∈ R2,
m,n ∈ Z.

First, we claim that zδ( · +maê1 + nbê2) ∈ BR. Indeed, for every (j, k) ∈ P ×Q we
have

‖ϕ̂jzδ( · +maê1 + nbê2)‖H2 = ‖ϕ̂j′zδ‖H2 and

‖ψ̂kzδ( · +maê1 + nbê2)‖H2 = ‖ψ̂k′zδ‖H2 .

Hence, we obtain

‖zδ( · +maê1 + nbê2)‖X̂δ
= ‖zδ‖X̂δ

≤ R.

Moreover, if Fδ(zδ) = 0 we also have Fδ(zδ( ·+maê1+nbê2)) = 0. Therefore, zδ( ·+maê1+
nbê2) is a fixed point of Gδ in BR. By uniqueness, we conclude that zδ( · +maê1+nbê2) =
zδ, as asserted.
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