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NUMERICAL BLOW-UP FOR THE P -LAPLACIAN EQUATION
WITH A NONLINEAR SOURCE

ARTURO DE PABLO∗, MAYTE PÉREZ-LLANOS† , AND RAÚL FERREIRA‡

Abstract. We study numerical approximations of nonnegative solutions of the p-laplacian equation
with a nonlinear source, ut = (|ux|p−2ux)x + |u|q−2u, (x, t) ∈ (−L, L)× (0, T ),

u(−L, t) = u(L, t) = 0, t ∈ [0, T ),
u(x, 0) = ϕ(x) > 0, x ∈ (−L, L),

(0.1)

where p > 2, q > 2 and L > 0 are parameters. We describe in terms of p, q and L when solutions of a
semidiscretization in space exist globally in time and when they blow up in a finite time. We also find the
blow-up rates and the blow-up sets by means of the discrete self-similar profiles.
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1. Introduction. In the following work we analyze numerically some of the features of
the blow-up phenomena arising from a quasilineal parabolic equation with the p-Laplacian
operator. More precisely, we study numerical approximations of positive solutions of the
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problem 
ut = (|ux|p−2ux)x + |u|q−2u, (x, t) ∈ (−L,L)× (0, T ),

u(−L, t) = u(L, t) = 0, t ∈ [0, T ),

u(x, 0) = ϕ(x), x ∈ (−L,L),

(1.1)

will behave in rather different ways.

2. The numerical scheme. We build a numerical scheme based on a discretization of
the spatial variable, using piecewise linear finite elements with mass lumping in a uniform
mesh. With such semisdiscretization we translate the analysis of a PDEs problem into the
study of the following ODEs system:

MU ′ = h−pDp U + M |U |q−2U,

u−N = uN = 0,

U(0) = ϕI ,

(2.1)

where by U = U(t) = (u−N (t), · · · , uN (t)) we denote the value of the numerical approxima-
tion at the nodes xi = ih (h = L/N) at time t.

We observe that the operator

Dp U = D+|D−U |p−2D−U, (2.2)

being D+ y D− the stiffness matrices and M the mass matrix, is nonlinear. This fact makes
that our problem differs widely from others that involve as a diffusion operator the Laplacian
or even the porous media operator.

By ϕI we denote the Lagrange interpolation of the initial condition ϕ, which for sim-
plicity is supposed to be symmetric and monotonously decreasing in [0, L]. It is not difficult
to show that our scheme preserves the symmetry and monotonicity properties of the initial
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datum and that it is also provided with a comparison principle. Moreover, we develop an
intersection theory for the proposed scheme known as Sturm Comparison Theory in the
continuous background.

If we denote by uh(x, t) the linear interpolation of the values at the nodes, and by Th

the maximal time of existence for this numerical solution, we obtain the following uniform
convergence result, in sets of the form [−L, L]× [0, Th − τ ], for every τ > 0.

Theorem 2.1.Let u ∈ C1+α, 1
2 ([−L,L] × [0, Th − τ ]), 0 < α < 1, be the solution of the

continuous problem. Then ∃C = C(τ, ‖u‖∞) > 0 such that ∀h > 0,

max
0≤t≤T−τ

{
max

−L≤x≤L
|u(x, t)− uh(x, t)|

}
≤ Chα,

max
0≤t≤T−τ

{
max

−L≤x≤L
|ux(x, t)− (uh)x(x, t)|

}
≤ Ch2α/p,

Moreover, if u(·, t) ∈ W 2,2([−L, L]) we can take α = 1 in the estimates above.

However, it is not possible to extend this result up to time Th, due to the singularity
developed by the solutions at this instant.

Once we have checked the converge of the method, we analyze next wether our scheme
is efficient to reproduce the asymptotic behaviour of the continuous solutions.

3. Blow-up for the numerical scheme. Constructing suitable sub- an super-solutions
by means of the corresponding discrete eigenvalue problem, we show that the conditions as-
suring the blow-up occurrence are identical to the conditions for the continuous problem, as
we state in the theorem below. By λ1(L, h) we denote the first discrete eigenvalue, whose
convergence to the first continuous eigenvalue, λ1(L), is deduced as a consequence of the
density of our approximation space in the Sobolev space.

Theorem 3.1.For the problem (2.1) it holds:
i) If q < p every solution is global.
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ii) If q = p, the solution blows up in finite time, whenever λ1(L, h) < 1, whereas if
λ1(L, h) ≥ 1 every solution of (2.1) is global.

iii) If q > p there are solutions that blow up in finite time.

Despite of the fact that from the previous space inclusion it is also deduced that, at least
for q = p, there exist continuous blowing up solutions, whose numerical approximation is
global for certain values of h , we show that for h sufficiently small, the blow-up occurrence
for the first implies blow-up for the numerical solution. We assure in this sense that every
blowing up solution is included in our analysis.

Theorem 3.2.If q ≥ p it holds that, whenever u blows up there exists h sufficiently small
such that Uh blows up.

4. Blow-up rate and blow-up time. As it would be expected, we obtain the same
blow-up rate corresponding to the continuous case.

Theorem 4.1.Let be q ≥ p and α =
1

q − 2
. Then we have

C1(Th − t)−α ≤ ‖Uh(t)‖∞ ≤ C2(Th − t)−α.

The lower inequality is obtained in both cases by a comparison of intersections with the
solution spatially constant, and for the case q > p the upper bound is deduced from the
equation verified by the central node.

However, the nonlinearity of the operator Dp makes more difficult to obtain the upper
estimate in the case q = p, which leads us to study the self-similar solutions. We consider
solutions of the form

Vh(t) = (Th − t)1/(p−2)Wh,

http://www.river-valley.com
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and Wh verifying the equation

0 = h−pDp Wh + W p−1
h − 1

p− 2
Wh.

By a shooting method from the origin we show that, for a sufficiently large initial datum,
there must exist a node at which such discrete profiles become negative. As can be appreci-
ated in Fig. 4.1, we also prove that the larger this condition is, the closer to Lp they cross
the axis, where Lp denotes the length for which the first eigenvalue is one. For any initial
condition it is always possible to find one of those profiles that intersects our datum as it is
shown in Fig. 4.2.
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Fig. 4.1. Stationary profiles obtained by
shooting method

Fig. 4.2. The initial condition intersected
by one of the previous profiles

It is at this stage that the intersection theory developed for our scheme plays a funda-
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mental role, since it states that the number of intersections between two solutions cannot
increase among the nodes lying at the interior of the support of such profile. Since we look
for positive solutions, they cannot increase at the extremes either.

On the other hand, by the comparison principle we know that two solutions cannot be
ordered. If so, they would explode at different times. Therefore, it proves the upper bound
for the rate if q = p, whose constant is independent of h, by the convergence of these profiles
to the corresponding continuous profiles.

We remark that the constants appearing in the rates are independent of h in both cases.
This fact allows us to deduce immediately from the upper bound the convergence of the
blow-up times.
Theorem 4.2.Let be q ≥ p, then

lim
h→0

Th = T.

5. Blow-up sets. Finally, we describe the blow-up sets for the discrete problem

Theorem 5.1.Let Uh be a blowing up solution of (2.1).
i) If q > p the blow-up set consists on the finite number of nodes, B(U) = [−Kh,Kh],

where K ≡ K(p, q).
ii) If q = p the blow-up set is the whole interval, B(U) = [−L,L].

However, it is known that if q > p, the continuous solutions blow up only at the origen
and that if q = p, for large enough values of L the blow-up is regional.

This result seems to contradict the accuracy of our method to reproduce the blow-up
sets corresponding to the continuous case. Nevertheless, let us show that there is not such
a contradiction.

If q > p, since K is independent on h, in the limit as h tends to zero we recover the
single point blow-up set of the continuous case:

B(U) → {0} = B(u), as h ↘ 0.
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Moreover, it is only at the central node that the discrete solution blows up with the correct
rate, being that rate at the remaining K nodes smaller, as we move away from the central
node.

For the case q = p, from the convergence of the solution Uh towards a strictly positive
self-similar solution as t approaches the blow-up time, it follows that the blow-up is always
global. However, for L sufficiently large, the convergence of the self-similar profiles to the
continuous compact supported self-similar profile, implies that these discrete profiles, despite
being positive, are tending to zero at the nodes that lie out of such support, and the regional
blow-up is recovered in this sense.

6. Numerical experiments. We conclude by showing some numerical experiments
which illustrate some of the previous results.
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Fig. 6.1. Evolution of the numerical
solution (q = p, L < L1) Fig. 6.2. Blow-up rates (q = p)
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Fig. 6.3. The rescaled solution near Th and
the self-similar profile

Fig. 6.4. Evolution of the numerical solu-
tion (q = p, L > L1)
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Fig. 6.5. Evolution of the numerical
solution (q > p)

Fig. 6.6. If 3 = q > p = 2.3 the blow-
-up set consist on K = 2 nodes
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