
Proceedings of Equadiff-11
2005, pp. 405–414

ISBN 978-80-227-2624-5

DISSIPATIVE DYNAMICS OF REACTION
DIFFUSION EQUATIONS IN RN ∗

JOSE M. ARRIETA† , NANCY MOYA‡ , AND ANIBAL RODRIGUEZ-BERNAL§

Abstract. In this note we present some recent results about the dissipative behavior of a broad
class of reaction diffusion equations in RN . We show that in large spaces of initial data, not having any
decay at infinity, these equations define asymptotically compact semigroups and have a locally compact
global attractor.

The classes of equations considered include some type of logistic–like equations which may have
travelling wave solutions.

Under some additional conditions we also show that the attractors have finite Hausdorff and fractal
dimensions.

Key words. locally uniform spaces, unbounded domains, dissipative equations, attractors, finite
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1. Introduction. Understanding the global dynamics of a reaction diffusion equa-
tion in RN or in an unbounded domain is not a trivial task. The fact that the domain
is unbounded introduces important difficulties in the analysis of the solutions and, more
important, of their asymptotic behavior. The choice of the functional setting where the
initial conditions are taken and where the solutions live is not straitghforward. Once
this choice is made the compactness properties of the semiflow have to be analyzed with
extreme care.

To accomplish this, several solutions have been proposed in different articles. For
instance in [6] an approach using weighted Sobolev spaces has been carried out, while in
[2] the analysis was done in standard Sobolev spaces Lp(RN ) and W s,p(RN ) spaces.

In this paper we present an approach based in locally uniform spaces, of the type
Lp

U (RN ), which are characterized by the fact that φ ∈ Lp
U (RN ) if φ ∈ Lp

loc(RN ) and
‖φ‖Lp(B(x,1)) ≤ C with C independent of x ∈ RN , see Section 2. It turns out that for these
spaces there is a nice linear theory for both, linear heat equations and the Schrödinger
equations. This theory includes the generation of analytic semigroups, characterization
of fractional power spaces (or of interpolation spaces), regularization properties of the
semigroup, Lp

U −−Lq
U estimates, etc.. This linear theory, which is presented in Section 3

is a first step towards understanding the dynamic behavior of nonlinear equations.
Once the linear theory is obtained we proceed to analyze nonlinear equations of the

type ut −∆u = f(x, u), where the nonlinearity has the general form given by f(x, u) =
m(x)u + f0(x, u) + g(x) whith f0(x, 0) ≡ ∂f0

∂u (x, 0) ≡ 0 and the potential m(·) ∈ Lσ
U (RN )

for appropriate σ and it may change sign. We start with conditions that garantee local
existence of solutions in Lq

U (RN ). This conditions include the critical growth condition on
the nonlinearity f . Afterwards, we obtain conditions on the nonlinearities that garantee
that the flow is dissipative, that is, the existence of a bounded set in Lq

U (RN ) such that all
solutions eventually enter this bounded set. We end up proving the existence of a bounded
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‡Depto. de Matemática Aplicada, U. Complutense de Madrid, Spain
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invariant set A that attracts bounded sets of Lp
U (RN ) in the topology of Cloc(RN ), see

Section 4.
Finally in Section 5, we show that for appropriate conditions on the nonlinearity

f(x, u) = m(x)u + f0(x, u) + g(x), including the case where m changes sign (unlike the
results in references [1, 6, 7, 9]), the equation has an attractor in L2(RN ) and that this
attractor has finite Hausdorf and fractal dimension.

2. Locally uniform spaces. We define, for 1 ≤ p < ∞, the uniform space Lp
U (RN )

as the set of functions φ ∈ Lp
loc(RN ) such that

sup
x∈RN

∫
B(x,1)

|φ(y)|p dy < ∞ (2.1)

with norm

‖φ‖Lp
U (RN ) = sup

x∈RN

‖φ‖Lp(B(x,1)).

Observe that for p = ∞, using the analogous definition, we have L∞U (RN ) = L∞(RN )
with norm ‖φ‖L∞U (RN ) = supx∈RN ‖φ‖L∞(B(x,1)) = ‖φ‖L∞(RN ). Observe that Lp

U (RN )
contains L∞(RN ), Lr(RN ) and Lr

U (RN ) for any r ≥ p.
Also denote by L̇p

U (RN ) a subspace of Lp
U (RN ) consisting of all elements which are

translation continuous with respect to ‖ · ‖Lp
U (RN ), that is

‖τyφ− φ‖Lp
U (RN ) → 0 as |y| → 0

where {τy, y ∈ RN} denotes the group of translations. Note that Lp(RN ) ⊂ L̇p
U (RN ) for

1 ≤ p < ∞ and for p = ∞ we get L̇∞U (RN ) = BUC(RN ).
Finally we also define, for k ∈ N, the uniform Sobolev space W k,p

U (RN ) as the set of
functions φ ∈ W k,p

loc (RN ) such that

‖φ‖W k,p
U (RN ) = sup

x∈RN

‖φ‖W k,p(B(x,1)) < ∞. (2.2)

3. Linear parabolic problems. Now we consider the heat equation in Lq
U (RN ){

ut −∆u = 0 in RN , t > 0

u(x, 0) = u0(x) ∈ Lq
U (RN )

(3.1)

whose solution is given by the convolution with the heat kernel

u(x, t) = T (t)u0 = (4πt)−N/2

∫
RN

e−
|x−y|2

4t u0(y) dy. (3.2)

Now we review the results obtained in [3]. First we have

Theorem 3.1.
i) There exists M0 = M0(N) such that for 1 ≤ q ≤ p ≤ ∞

‖T (t)u0‖Lp
U (RN ) ≤ M0

(
t−

N
2 ( 1

q−
1
p ) + 1

)
‖u0‖Lq

U (RN ),

‖DβT (t)u0‖Lp
U (RN ) ≤ M0t

− 1
2 (k−N

p + N
q )‖u0‖Lq

U (RN ),

for any 1 ≤ |β| = k.
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ii) For each bounded set B ⊂ RN and u0 ∈ Lq
U (RN )

‖T (t)u0 − u0‖Lq(B) → 0, as t → 0.

If u0 ∈ L̇q
U (RN ), 1 ≤ q ≤ ∞, then T (t)u0 ∈ L̇p

U (RN ) for t > 0 and any
1 ≤ p ≤ ∞ and

‖T (t)u0 − u0‖Lq
U (RN ) → 0, as t → 0.

With this we can get

Theorem 3.2. The heat equation defines an order preserving analytic semigroup in
Lq

U (RN ), for 1 ≤ q ≤ ∞, which is continuous even at t = 0 if u0 ∈ L̇q
U (RN ). Moreover

for u0 ∈ Lq
U (RN ), 1 ≤ q ≤ ∞

(0,∞) 3 t 7−→ T (t)u0 ∈ L̇∞U (RN ) = BUC(RN )

is analytic.

Now we consider Schrödinger equations of the form{
ut −∆u = V (x)u, x ∈ RN t > 0,

u(0) = u0 ∈ Lq
U (RN )

where a large class of potential functions are allowed. Then we have,

Proposition 3.3. Assume V ∈ Lσ
U (RN ), σ > N/2

i) For 1 ≤ q ≤ p ≤ ∞

‖ e(∆+V )t u0‖Lp
U (RN ) ≤ M1 eµt t−

N
2 ( 1

q−
1
p )‖u0‖Lq

U (RN ), (3.3)

a and M1 depend only on N , σ and ‖V ‖Lσ
U (RN ) and µ ∈ R can be taken as any

number satisfying

− µ < inf
{∫

RN

|∇φ|2 +
∫

RN

V (x)|φ|2, φ ∈ C∞
c (RN ),

∫
RN

|φ|2 = 1
}

(3.4)

In particular e(∆+V )t decays in Lq
U (RN ) if and only if it decays in Lp(RN ) for

1 ≤ q, p ≤ ∞.
ii) For B ⊂ RN bounded, u0 ∈ Lq

U (RN ), 1 ≤ q < ∞,

‖ e(∆+V )t u0 − u0‖Lq(B) → 0, as t → 0.

If moreover u0 ∈ L̇q
U (RN ), 1 ≤ q ≤ ∞, then

‖ e(∆+V )t u0 − u0‖Lq
U (RN ) → 0, as t → 0.

As a consequence we get

Theorem 3.4. If V ∈ Lσ
U (RN ), σ > N/2, then ∆ + V generates an order preserving

analytic semigroup in Lq
U (RN ), for 1 ≤ q ≤ ∞ which is continuous even at t = 0 if

u0 ∈ L̇q
U (RN ). Moreover, for u0 ∈ Lq

U (RN ), 1 ≤ q ≤ ∞

(0,∞) 3 t 7−→ e(∆+V )t u0 ∈ L̇∞U (RN ) = BUC(RN )

is analytic.
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4. Nonlinear parabolic problems. Consider the problem

ut = ∆u + f(x, u), x ∈ RN , t > 0, (4.1)

with initial condition

u(0, x) = u0(x), x ∈ RN . (4.2)

In what follows we present the results in [5]. We will assume that

f(x, s) = m(x)s + f0(x, s) + g(x) with f0(x, 0) = 0,
∂

∂s
f0(x, 0) = 0. (4.3)∣∣∣∣ ∂

∂s
f0(x, s)

∣∣∣∣ ≤ c(1 + |s|ρ−1) and |f0(x, s)| ≤ c(|s|+ |s|ρ). (4.4)

Theorem 4.1. Assume (4.3) holds with g ∈ Lq
U (RN ), m ∈ Lp

U (RN ), for some p > N/2.
Then problem (4.1)–(4.2) is well posed in Lq

U (RN ) provided

1 ≤ ρ ≤ ρC = 1 +
2q

N

Solutions of (4.1)– (4.2) are continuous functions in Lq
U (RN ) which satisfy the vari-

ation of constants formula

u(t, u0) = T (t)u0 = S(t)u0 +
∫ t

0

S(t− s)
(
f0(·, u(s)) + g

)
ds (4.5)

for 0 ≤ t < T , where T = T (u0) is the maximal existence time and S(t) denotes the
analytic semigroup in Lq

U (RN ) generated by ∆+m(x) with Dirichlet boundary conditions,
that is S(t) = e(∆+m(x))t.

Below we will assume the following structure assumption on f .

f(x, s)s ≤ C(x)|s|2 + D(x)|s|, for all s ∈ R, x ∈ RN (4.6)

for some suitable functions C(x) and D(x) ≥ 0 defined in RN .

Theorem 4.2. Assume the conditions for local existence for initial data in Lq
U (RN )

of Theorem 4.1. Assume further that (4.6) holds for some C ∈ Lσ
U (RN ), for some

σ > N/2, and D ∈ Lp
U (RN ) with p > N/2.

Then the unique solution of problem (4.1)–(4.2) with initial data u0 ∈ Lq
U (RN ), is

global, remains bounded in L∞(RN ) on compact time intervals away from t = 0.

Proof. Using comparison and maximum principles we get

|u(t, x)| ≤ U(t, x) x ∈ RN

where

Ut −∆U = C(x)U + D(x), U(0) = |u0|.

With this, D ∈ Lp
U (RN ) and p > N/2 implies U is bounded in L∞(RN ) on [ε, T ]. Hence,

‖f0(·, u)‖Lq
U (RN ) ≤ C0(ε, T ), t ∈ [ε, T ] and from the variation of constants formula, the

result follows.
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The next step is obtaining asymptotic bounds on the solutions

Theorem 4.3. Assume ∆ + C(x)I has negative exponential type, i.e. we can take µ < 0
in (3.4).

Let 0 ≤ φ ∈ W 2,p
U (RN ) ⊂ Cα

U (RN ) be the unique solution of

−∆φ = C(x)φ + D(x) in RN .

Then lim supt→∞ |u(t, x, u0)| ≤ φ(x), uniformly in x ∈ RN . If |u0(x)| ≤ φ(x), then
|u(t, x, u0)| ≤ φ(x) for all t > 0.

Proof. Now

|u(t, x)| ≤ U(t, x) → φ(x), as t →∞

and we use the variation of constants formula.

With this we can prove

Theorem 4.4. With the assumptions above there exists a bounded invariant set A ⊂
BUC(RN ) such that for every bounded set B ⊂ Lq

U (RN ),

distCloc(RN )

(
u(t, B),A

)
→ 0, as t →∞.

For any compact set K ⊂ RN , the set of restrictions to K, A|K , is a compact set in
C(K).

Example: Assume m ∈ Lp
U (RN ), with p > N/2 and

f(x, s) = m(x)s− s3, x ∈ RN .

Since ρ = 3 for local existence we take initial data in Lq
U (RN ) with q > N . On the other

hand, global existence follows by taking C(x) = m(x) and D(x) = 0.
Assume now that m(x) = m0(x)−m1(x), m0,m1 ∈ Lp

U (RN ) such that

e(∆−m1(x)I)t decays exponentially,

e.g. m1 can be taken as a large positive constant. Hence using Young’s inequality we get
(4.6) with

C = −m1 ∈ Lp
U (RN ), p > N/2, D(x) ≈ |m0|3/2(x)

and the existence of the attractor in the local compact topology follows if m0 ∈ Lr
U (RN )

with r > 3N
4 .

5. Finite dimension of invariant sets. The geometric idea behind the estimate of
the dimension of an invariant set A is to analyze the evolution of a d-dimensional volume
under the action of the semigroup. Then one searches for the smallest d for which any
d-dimensional volume contracts asymptotically as t →∞.

Thus we take u0 ∈ A and consider d orthogonal functions in L2(RN ) and we denote by
Vd(0) the d-dimensional volume delimited by them. Then these vectors and volume evolve
by the flow of the equation (4.1) linearized along the trajectory u(t, u0). Hence the volume
Vd(t) is given by the initial volume times the factor exp

( ∫ t

0
Tr

(
A1(s, u0) ◦ Qd(s)

)
ds

)
where A1(t) is the linearized operator along u(t, u0), that is

∂tU = ∆U +
∂f

∂u
(x, u(t, u0))U := A1(t)U (5.1)
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and Qd is a suitable orthogonal projection of rank d. Hence, to obtain the exponential
decay of Vd(t) it is enough to show that

lim sup
t→∞

sup
u0∈A

1
t

∫ t

0

Trd(A1(τ)) dτ < 0 (5.2)

where

Trd(A1(t)) := sup
Ed

Trd(A1(t), Ed) := sup
Ed

d∑
i=1

(A1(t)ϕi, ϕi)L2(RN ) (5.3)

is the d-dimensional trace of A1(t). Here Ed is a d-dimensional subspace of L2(RN ), and
ϕi ∈ Ed, i = 1, . . . , d is an orthonormal basis in L2(RN ) of Ed. This implies in fact that
dimHA ≤ dimFA < ∞, see [11, 13, 12, 8].

Using this general technique, we now present the results in [4].

Lemma 5.1. Assume the Schrödinger operator ∆ + m(x)I, with m ∈ Lσ
U (RN ), σ > N/2

has a negative exponential type, that is, we can take µ < 0 in (3.4). Then for every d ∈ N,
we have

Trd(∆ + m(x)I) ≤ µd.

Proof. Note that for any orthonormal set ϕi, i = 1, . . . , d in L2(RN ) we have

d∑
i=1

((∆ + m(x)I)ϕi, ϕi)L2(RN ) = −
d∑

i=1

( ∫
RN

|∇ϕi|2 −
∫

RN

m(x)ϕ2
i

)
≤ µd

which according to (5.3) gives the result.

The next result, known as the Lieb-Thirring inequality will also be of great help
below, see [13].

Lemma 5.2. Assume {ϕ1, . . . , ϕd} ⊂ H1(RN ) is an orthonormal set in L2(RN ) and
denote ρ(x) :=

∑d
i=1(ϕi(x))2. Then for any p such that max{1, N

2 } < p ≤ 1 + N
2 , there

exists a constant K = K(N, p) > 0 independent of d and of the set {ϕ1, . . . , ϕd} such that

K

( ∫
RN

ρ(x)
p

p−1 dx

) 2(p−1)
N

≤
d∑

j=1

∫
RN

|∇ϕj |2 dx.

Then we have the following result. Note that unlike references [1, 6, 7, 9], we allow
the linear term to be space dependent and sign changing.

Theorem 5.3. Assume the nonlinear term in (4.1) satisfies (4.6) for some C ∈ Lσ
U (RN ),

σ > N
2 , σ > 2 and 0 ≤ D ∈ Lp(RN ), p > N

2 and

|∂
2f

∂s2
(x, s)| ≤ C(R), for |s| ≤ R, x ∈ RN .

Assume (4.1) has a compact invariant set A such that

A ⊂ L∞(RN ) ∩ Lp(RN ) ∩ L2(RN ) is bounded.
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Assume furthermore that the operator ∆ + C(x)I has a negative exponential type. Then
the Hausdorff and fractal dimensions of A are finite.

Proof. We write the linearization as

A1(t) := ∆ +
∂f

∂u
(x, ϕ(x)) +

∂f

∂u
(x, u(t, x))− ∂f

∂u
(x, ϕ(x)) (5.4)

and the key point is to construct ϕ(x) in such a way that ϕ ∈ L∞(RN ) ∩ Lp(RN ) for
p > N

2 and the operator ∆ + ∂f
∂u (x, ϕ(x)) has a negative exponential type, see [4] for

details. Note that ∂f
∂u (·, ϕ(·)) ∈ Lσ

U (RN ), σ > N
2 since |∂f0

∂u (x, u)| ≤ C(R)|u|, for |u| ≤ R,
and since ϕ ∈ L∞(RN ) we get |∂f0

∂u (·, ϕ(·))| ∈ L∞(RN ) ⊂ Lσ
U (RN ), σ > N

2 .
Now we write the linearized operator as

A1(t) = (1− δ)[∆ +
1

1− δ

∂f

∂u
(x, ϕ(x))] + δ∆ +

∂f

∂u
(x, u(t, x))− ∂f

∂u
(x, ϕ(x))

and we chose δ ∈ (0, 1) sufficiently small such that the operator ∆ + 1
1−δ

∂f
∂u (x, ϕ(x))

has a negative exponential type that we still denote µ < 0. Hence from Lemma 5.1,
Trd(∆ + 1

1−δ
∂f
∂u (x, ϕ(x))) ≤ µd and then for any choice of ϕ1, ϕ2, . . . , ϕd ∈ H1(RN ),

which are orthonormal in L2(RN ) and span a subspace Ed, we get

Trd(A1(t), Ed) ≤ (1− δ)µd− δ
d∑

i=1

∫
RN

|∇ϕi|2 dx

+
d∑

i=1

∫
RN

(
∂f

∂u
(x, u(t, x))− ∂f

∂u
(x, ϕ(x))

)
ϕ2

i dx.

Denoting ρ(x) :=
∑d

i=1 ϕi(x)2 and applying Lemma 5.2, we get

Trd(A1(t), Ed) ≤
(1− δ)µd

2
− δK

∫
RN

ρ(x)1+
2
N dx

+
∫

RN

J(t, x)ρ(x) dx.

since
∫

RN ρ(x) dx = d, where J(t, x) := max{0, [∂f
∂u (x, u(t, x)) − ∂f

∂u (x, ϕ(x))] + µ(1−δ)
2 }.

Then setting V (t) =
( ∫

RN |J(t, x)|1+ N
2 dx

) 2
N+2

and y =
( ∫

RN ρ(x)1+
2
N dx

) N
N+2

we

get

Trd(A1(t), Ed) ≤
(1− δ)µd

2
− Cy

N+2
N + V (t)y.

Now, Young’s inequality gives, for every ε > 0, V (t)y ≤ εy
N+2

N + CεV (t)
N+2

2 and taking
ε = C

2 and the sup in all subspaces Ed we get

Trd(A1(t)) ≤
(1− δ)µd

2
+ C1V (t)

N+2
2 . (5.5)

Hence condition (5.2) is satisfied provided

2C1

(1− δ)|µ|
lim sup

t→∞
sup

u0∈A

1
t

∫ t

0

V (τ)
N
2 +1 dτ < d. (5.6)
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Now for any trajectory in A and δ̂ > 0 we split

V (t)
N
2 +1 =

∫
{x∈RN , |u(t,x)−ϕ(x)|≤δ̂}

|J(t, x)|N
2 +1

+
∫
{x∈RN , |u(t,x)−ϕ(x)|>δ̂}

|J(t, x)|N
2 +1.

(5.7)

From (5.3), using that ‖u‖L∞(RN ) ≤ R for all u ∈ A and ‖ϕ‖L∞(RN ) ≤ R, we get

|∂f

∂u
(x, ϕ(x))− ∂f

∂u
(x, u(t, x))| ≤ C(R)|ϕ(x)− u(t, x)|, x ∈ RN . (5.8)

Hence, we chose δ̂ such that if |u− ϕ| < δ̂, then C(R)δ̂ < µ(δ−1)
2 . Thus we have∫

{x∈RN , |u(t,x)−ϕ(x)|≤δ̂}
|J(t, x)|

N+2
2 dx = 0.

Now we deal with the second term in (5.7). Since A is bounded in L∞(RN ) and
ϕ ∈ L∞(RN ), we get |J(t, x)| ≤ CA,ϕ + |µ|(1−δ)

2 := K1 and thus∫
{x∈RN , |u(t,x)−ϕ(x)|>δ̂}

|J(t, x)|
N+2

2 ≤ K
N+2

2
1 |{x ∈ RN : |u(t, x)− ϕ| > δ̂}|. (5.9)

Using now that A is bounded in Lp(RN ) and ϕ ∈ Lp(RN ) we get that for all u ∈ A

δ̂p|{x ∈ RN , |u(x)− ϕ(x)| > δ̂}| ≤
∫

RN

|u(x)− ϕ(x)|p dx ≤ C = C(A, ‖ϕ‖p
Lp(RN )

),

and then substituting in (5.9) we get∫
{x∈RN , |u(t,x)−ϕ(x)|>δ̂}

|J(t, x)|
N+2

2 dx ≤ K
N+2

2
1

C(A, ‖ϕ‖p
Lp(RN )

)

δ̂p
.

From (5.6) we get the result.

Now we illustrate the scope of the result above with the following example. Consider
a prototype problem (4.1) with bistable nonlinear term

f(x, s) = m(x)s− n(x)s3.

Note that as soon as 0 ≤ n ∈ L∞(RN ) then the assumption above are satisfied. Assume
there exists a decomposition

m(x) = m0(x)−m1(x), with m0,m1 ∈ Lσ
U (RN ), σ > N/2, σ > 2,

such that the operator ∆−m1(x) has negative exponential type. Hence, using Young’s
inequality we have that (4.6) is satisfied with

C(x) = −m1(x), D(x) = A
|m0|3/2(x)
n1/2(x)

for some constant A.
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Moreover, it was proved in [2] that the attractor A of (4.1) satisfies the remaining
assumptions in Theorem 5.3, that is

A ⊂ L∞(RN ) ∩ Lp(RN ) ∩ L2(RN ) is bounded

provided

|m0|3/2

n1/2
∈ Lr(RN ) ∩ Lp(RN ) ∩ Ls(RN )

for some r > N/3, p > N
2 and 2 ≥ s > 2N

N+4 .
Note that a source term g(x) = f(x, 0) can also be considered as long as

g ∈ L∞(RN ) ∩ Lp(RN ) ∩ L2(RN );

see [2, Theorem 5.2] for sharper assumptions on g.
The particular case of the theorem above, when f0 does not depend on x improves

conditions in [6, Theorem 3.3].

Theorem 5.4. Consider (4.1) with f as in (4.3) and f0 = f0(s) with g ∈ L2(RN ),
m ∈ Lσ

U (RN ), σ > N
2 , and

f0 ∈ C2(R), with f0(0) = 0 = f ′0(0). (5.10)

Assume a compact invariant set, A, exists and satisfies

A ⊂ L∞(RN ) ∩ L2(RN ) is bounded. (5.11)

Finally assume the operator ∆+m(x)I has a negative exponential type. Then the Haus-
dorff and fractal dimensions of A are finite.

Finally, note that the technique above can be adapted for nonlinear terms depending
on the gradient, see [4] for further details.
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