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ANALYTIC SOLUTIONS FOR THE CLASSICAL
TWO-PHASE STEFAN PROBLEM∗

JAN PRÜSS , JÜRGEN SAAL† , AND GIERI SIMONETT

Abstract. A survey of the results obtained in [22] is presented. In [22] the authors prove the existence
of a local-in-time solution for the classical two-phase Stefan problem that is analytic in space and time. The
result is based on Lp maximal regularity, which is proved first, and the implicit function theorem.

Key words. Classical Stefan problem, free boundary problem, phase transition, maximal regularity,
analytic solutions.
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1. Introduction and main result. Consider a family Γ = {Γ(t) : t ≥ 0} of hypersur-
faces in Rn+1, where each individual hypersurface is assumed to be a graph over Rn, that
is, Γ(t) = graph(ρ(t)) for some ρ(t) : Rn → R. Moreover, let Ω+(t) and Ω−(t) denote the
domain above and below Γ(t), respectively, that is,

Ω±(t) := {(x, y) ∈ Rn × R : ±y > ±ρ(t, x)}.

We set Ω(t) := Ω+(t)∪Ω−(t) and consider the following problem: Given Γ0 = graph(ρ0) and
u0 : Ω(0) → R, determine a family Γ = {Γ(t) : t ≥ 0} and a function u :

⋃
t≥0

(
{t}×Ω(t)

)
→
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R such that 

(∂t − c∆)u = 0 in
⋃

t>0({t} × Ω(t)),

γu = 0 on
⋃

t>0({t} × Γ(t)),

V = −[c∂νu] on
⋃

t>0({t} × Γ(t)),

u(0) = u0 in Ω(0),

Γ(0) = Γ0,

(1.1)

where γ stands for the trace operator, V denotes the normal velocity of Γ, and ν is the unit
normal vector, pointing into Ω+(t). Given any function v : Ω(t) → R, we write v+ and v−

for the restriction of v to Ω+(t) and Ω−(t), respectively. Moreover, we admit the possibility
of two different diffusion coefficients in Ω±(t), i.e. c is given as

c(t, x, y) =

{
c+, (x, y) ∈ Ω+(t),

c−, (x, y) ∈ Ω−(t),
(1.2)

where c+, c− are strictly positive constants. Using this notation, let [c∂νu] denote the jump
of the normal derivatives of u across Γ(t), that is,

[c∂νu] := c+γ∂νu+ − c−γ∂νu−.

Of course, u0 is a given initial value for u and Γ0 describes the initial position of Γ.
Problem (1.1) is called the classical two-phase Stefan problem which is a model for phase

transitions in liquid-solid systems and accounts for heat diffusion and exchange of latent heat
in a homogeneous medium. In a typical physical situation the domain Ω is occupied by a
liquid and a solid phase, say water and ice, that are separated by the interface Γ. Due to
melting or freezing, the corresponding regions occupied by water and ice will change and,
consequently, the interface Γ will also change its position and shape, which leads to the free
boundary problem (1.1).
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In the classical Stefan problem one assumes that the temperatures u+ and u− coincide
at the interface Γ (where the two phases are in contact), that is, one requires

u+ = u− = 0 on Γ, (1.3)

where 0 is the melting temperature.
The Stefan problem has been studied in the mathematical literature for over a century,

see [23, 20] and [26, pp. 117–120] for a historic account, and has attracted the attention of
many prominent mathematicians, see e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17,
18, 19, 20, 21, 23, 24].

To formulate our main result, let W s
p (Rn), s ≥ 0, p ∈ (1,∞), denote the Sobolev-

Slobodeckij spaces, cf. [25]. Then we have

Theorem 1.1. Let p > n + 3. Then there is a number η > 0 such that the following holds:
Given (u0, ρ0) ∈ W

2−2/p
p (Ω(0))×W

2−2/p
p (Rn) with

γu±0 = 0, ±u±0 > 0 on Ω±(0), α± := ∂νu±0 (0, ρ0(0)) > 0, (1.4)

and

‖ρ0‖BUC1(Rn) +
∥∥∂νu±0 − α±

∥∥
BUC(Γ0)

≤ η, (1.5)

there exists T = T (u0, ρ0) and a unique solution (u, Γ), where Γ(t) = graph(ρ(t)), for the
Stefan problem (1.1) that is analytic in space and time. More precisely, we have that

M =
⋃

t∈(0,T )

({t} × Γ(t)) is a real analytic manifold

and that u± ∈ Cω(Ω
±
T , R), with Ω

±
T := {(t, (x, y)) ∈ (0, T )× Rn+1 : (x, y) ∈ Ω

±
(t)}.

In the subsequent sections of this note we will give an outline of the proof of this result
presented in [22]. In Section 2 we first transform (1.1) into a quasilinear problem in a fixed
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domain consisting of the union of two halfspaces. Then, in Section 3 we will provide the
maximal regularity of a suitable linearization, which will be the basis for the treatment
of the quasilinear system in the last two sections. The existence of a unique local-in-time
solution by employing the contraction mapping principle is sketched in Section 4, whereas
in Section 5 the analyticity of these solutions is proved by an application of the implicit
function theorem.

2. The transformed problem. Let T > 0 and set Ṙ := R \ {0} and Ṙn+1 := Rn× Ṙ.
Analogously to the definition of u± : Ω(t)± → R for a function u on Ω(t), we denote v+

and v− for the restriction of a function v : Ṙn+1 → R to Rn+1
+ and Rn+1

− respectively, where
Rn+1
± := {x ∈ Rn+1 : ±xn+1 > 0}. We intent to transform the equations in Ω(t) into a

problem in Ṙn+1. For this purpose we define

Θ : (0, T )× Ṙn+1 → QT :=
⋃

t∈(0,T )

{t} × Ω(t),

Θ(t, x, y) := (t, x, y + ρE(t, x, y)),

where Γ(t) = graph(ρ(t)) as defined in the last section and ρE is a suitable extension of ρ
to (0, T )× Ṙn+1. We denote by

u = Θ∗v = v ◦Θ−1 and v = Θ∗u = u ◦Θ

the push-forward and pull-back respectively, and set J = (0, T ). Then it can be shown that
(1.1) is formally equivalent to the system

∂tv − c∆v = F (v, ρE), in J × Ṙn+1,

γv± = 0, on J × Rn,

∂tρ + [cγ∂y(v − aρE)] = H(v, ρE), on J × Rn,

v(0) = v0, in Ṙn+1,

ρ(0) = ρ0, in Rn,

(2.1)

http://www.river-valley.com
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and we will require that the function ρE satisfies the equation
(∂t − c∆)ρE = 0 in J × Ṙn+1,

γρ±E = ρ on J × Rn,

ρE(0) = e−|y|(1−∆x)
1
2 ρ0 in Ṙn+1.

(2.2)

Then the nonlinearities F and H are given by

F (v, ρE) = c

(
1 + |∇xρE |2

(1 + ∂yρE)2
− 1
)

∂2
yv − c

2〈∇xρE |∇x∂yv〉
1 + ∂yρE

− c

[(
1 + |∇xρE |2

(1 + ∂yρE)2
− 1
)

∂2
yρE − 2〈∇xρE |∇x∂yρE〉

1 + ∂yρE

]
∂yv

1 + ∂yρE

and

H(v, ρE) = H+(v, ρE)−H−(v, ρE) (2.3)

with

H±(v, ρE) = c±

[(
1−

1 + |γ∇xρ±E |2

1 + γ∂yρ±E

)
γ∂yv± − a±γ∂yρ±E

]
. (2.4)

Here 〈·|·〉 denotes the standard scalar product in Rn+1, and ∇x the gradient with respect to
x. Furthermore, observe that in slight abuse of notation we also denote the pull-back Θ∗c
of the diffusion coefficient c introduced in (1.2) by c, that is, we set

c(x, y) =

{
c+, y > 0,

c−, y < 0,
(2.5)

http://www.river-valley.com
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whereas

a(x, y) =

{
a+, y > 0,

a−, y < 0,
with a± :=

∂yv±0 (0, 0)
1 + ∂yρ±E(0, 0, 0)

. (2.6)

Observe that α± > 0, given in (1.4), implies that also

a± =
∂yv±0 (0, 0)

1 + ∂yρ±E(0, 0, 0)
=
(
1 + |∇xρ0(0)|2

)−1/2
∂νu±0 (0, ρ0(0)) > 0.

If F and H are replaced by functions belonging to suitable function spaces, then system
(2.1)–(2.2) represents the linearization admitting maximal regularity as will be proved in
the next section. Note that the additional term ’aρE ’ appearing in the linearization of the
Stefan condition

[cγ∂y(v − aρE)] = c+γ∂y(v − aρE)+ − c−γ∂y(v − aρE)−

= c+γ∂y(v+ − a+ρ+
E)− c−γ∂y(v− − a−ρ−E).

is necessary in order to get sufficient regularity for the function ρ.

3. Maximal regularity for the linearized problem. First let us introduce suitable
function spaces. Let Ω ⊆ Rn be open and X be an arbitrary Banach space. By Lp(Ω; X)
and Hs

p(Ω;X), for 1 ≤ p ≤ ∞, s ∈ R, we denote the X-valued Lebegue space and the
Bessel potential space of order s, respectively. We will also frequently make use of the
Sobolev-Slobodeckij spaces W s

p (Ω;X), 1 ≤ p < ∞, s ∈ R \ Z, with norm

‖g‖W s
p (Ω;X) = ‖g‖

H
[s]
p (Ω;X)

+

(∫
Ω

∫
Ω

‖g(x)− g(y)‖p
Lp(Rn)

|x− y|n+(s−[s])p
dxdy

)1/p

,

http://www.river-valley.com
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where [s] denotes the largest integer smaller than s. Let T ∈ (0,∞] and J = (0, T ). We set

0W
s
p (J ;X) :=


{u ∈ W s

p (J ;X) : u(0) = u′(0) = . . . = u(k)(0) = 0},

if k + 1
p < s < k + 1 + 1

p , k ∈ N ∪ {0},

W s
p (J ;X), if s < 1

p .

The spaces 0H
s
p(J ;X) are defined analogously.

In this section we consider the linearized two-phase problem

(∂t − c∆)v = f in J × Ṙn+1,

γv = 0 on J × Rn,

∂tρ + [cγ∂y(v − aρE)] = h on J × Rn,

v(0) = v0 in Ṙn+1,

ρ(0) = ρ0 in Rn,

(3.1)

with c, a as defined in (2.5) and (2.6). In the following, we will always assume that the
function ρE satisfies the equation

(∂t − c∆)ρE = 0 in J × Ṙn+1,

γρ±E = ρ on J × Rn,

ρE(0) = e−|y|(1−∆x)
1
2 ρ0 in Ṙn+1.

(3.2)

Remarks
(a) (3.1)–(3.2) constitutes a coupled system of equations, with the functions (v, ρ, ρE)

to be determined. We will in the sequel often just refer to a solution (v, ρ) of (3.1) with the
understanding that the function ρE also has to be determined.

http://www.river-valley.com
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(b) Suppose ρ ∈ W
1−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W 2−1/p

p (Rn)) and ρ0 ∈ W
2−2/p
p (Rn) is

given. Then the diffusion equation (3.2) admits a unique solution

ρE ∈ H1
p (J ;Lp(Ṙn+1)) ∩ Lp(J ;H2

p (Ṙn+1)).

(c) The solution ρE(t, ·) of equation (3.2) provides an extension of ρ(t, ·) to Ṙn+1. We
should remark that there are many possibilities to define such an extension. The chosen one
is the most convenient one for our purposes.
The main result in this section is

Theorem 3.1. Let 3 < p < ∞, T ∈ (0,∞), J = (0, T ).
(i) There exists a unique solution (v, ρ, ρE) to (3.1)–(3.2)) with

v ∈ H1
p (J ;Lp(Ṙn+1)) ∩ Lp(J ;H2

p (Ṙn+1))

ρ ∈ W 3/2−1/2p
p (J ;Lp(Rn)) ∩H1

p (J ;W 1−1/p
p (Rn)) ∩ Lp(J ;W 2−1/p

p (Rn)),

ρE ∈ H1
p (J ;Lp(Ṙn+1)) ∩ Lp(J ;H2

p (Ṙn+1))

if and only if the data satisfy

(a) f ∈ Lp(J ;Lp(Ṙn+1)),

(b) h ∈ W 1/2−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W 1−1/p

p (Rn)),

(c) v0 ∈ W 2−2/p
p (Ṙn+1),

(d) ρ0 ∈ W 2−2/p
p (Rn),

(e) γv0 = 0.

(ii) If (h(0), v0, ρ0) = (0, 0, 0), then the norm of the solution operator

ST : (f, h) 7→ (v, ρ, ρE) (3.3)

is independent of the length of J = (0, T ) for any T ≤ T0, with T0 arbitrary, but
fixed.

http://www.river-valley.com
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We split the outline of the proof of this result in several steps, and remark that the ’only if’
part follows from the trace results in [8, Section 5].

(i) In the first step we reduce the problem to the case (h(0), v0, ρ0) = (0, 0, 0). In
fact, this can be done by constructing suitable extensions u1

1 and η in the regularity classes
of v and ρ such that u1(0) = v0 and

(η(0), ∂tη(0)) :=
(

ρ0, h(0)− [cγ∂y(v0 − ae−|y|(1−∆x)
1
2 ρ0)]

)
(for the existence see [22]). Then, if ηE is the solution of (3.2), with ρ replaced by η, it
follows that

(v − u1, ρ− η, ρE − ηE)

solves (3.1) and (3.2) with right hand sides (f, g, 0, 0) and (0, ρ, 0) respectively, in the right
classes and such that g(0) = 0.

(ii) It is also not difficult to see that by the shift u 7→ e−tu and by the use of a suitable
extension operator E that maps functions f : J → X into functions Ef : R+ → X, it suffices
to consider the problems

(∂t + 1− c∆)u = f in (0,∞)× Ṙn+1,

γu± = 0 on (0,∞)× Rn,

(∂t + 1)ρ + [cγ∂y(u− aρE)] = h on (0,∞)× Rn,

u(0) = 0 in Ṙn+1,

ρ(0) = 0 in Rn,

(3.4)

1Actually, u1 is chosen as the solution of the homogeneous heat equation in Ṙn+1 with initial value v0.

http://www.river-valley.com
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and 
(∂t + 1− c∆)ρE = 0 in (0,∞)× Ṙn+1

γρ±E = ρ on (0,∞)× Rn,

ρE(0) = 0 in Ṙn+1.

(3.5)

Applying the Fourier-Laplace transform in (t, x), denoted by ̂, to (3.4) and (3.5) this system
can be solved explicitly to the result

û+(y) =
∫ ∞

0

k+(y, s)f̂+(s)ds, y > 0, (3.6)

û−(y) =
∫ 0

−∞
k−(−y,−s)f̂−(s)ds, y < 0, (3.7)

ρ̂E(y) = e−
w√

c
|y|

ρ̂, (3.8)

ρ̂ =
1
m

(
ĥ−

∫ ∞

0

e−ω+s/
√

c+ f̂+(s)ds−
∫ 0

−∞
eω−s/

√
c− f̂−(s)ds

)
. (3.9)

Here we used the abbreviations

k±(|y|, |s|) :=
1

2ω±
√

c±
(e−ω±||y|−|s||/

√
c± − e−ω±(|y|+|s|)/√c±),

ω = ω(λ, ξ, y) =
√

λ + 1 + c(y)|ξ|2,
ω± = ω±(λ, ξ) =

√
λ + 1 + c±|ξ|2,

m = λ + 1 + a+
√

c+ω+ + a−
√

c−ω−.

http://www.river-valley.com
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(iii) The desired regularity for u follows by the fact that it solves the heat equation in
Ṙn+1. The function 1/m represents the principal symbol of the linearization for the classical
Stefan problem. We denote by Op(1/m) the associated operator, i.e. ̂Op(1/m)u = (1/m)û.
Note also that f± ∈ Lp(R+;Lp(Rn+1

+ )) implies that the inverse Fourier-Laplace transform
of
∫∞
0

e−ω+s/
√

c+ f̂+(s)ds and
∫ 0

−∞ eω−s/
√

c− f̂−(s)ds belongs to the space

0W
1/2−1/2p
p (R+;Lp(Rn)) ∩ Lp(R+;W 1−1/p(Rn))

(see [8, pages 15–16]). Thus, if we can show that Op(1/m) is an isomorphism between the
right spaces, then the regularity for ρ and ρE is also clear.

Lemma 3.2. Let 1 < p < ∞. Then Op(1/m) maps the space

0W
1/2−1/2p
p (R+;Lp(Rn)) ∩ Lp(R+;W 1−1/p

p (Rn))

continuously into the space

0W
3/2−1/2p
p (R+;Lp(Rn)) ∩ 0H

1
p (R+;W 1−1/p

p (Rn)) ∩ Lp(R+;W 2−1/p
p (Rn)).

The proof of this Lemma is based on an abstract result of Kalton and Weis [13, The-
orem 4.4]. It essentially follows by the facts that both, the Poisson operator (−∆)1/2,
corresponding to the symbol |ξ|, and the operator ∂t + 1, corresponding to λ + 1, admit a
bounded H∞-calculus on 0H

r
p(R+;Ks

p(Rn)) with H∞-angles φ∞
(−∆)1/2 = 0 and φ∞∂t+1 = π/2,

respectively, where 1 < p < ∞ and r, s ∈ R. Here K ∈ {H,W}, i.e. by Ks
p we mean either

the space Hs
p or W s

p . We refer to [22] for the details.

As a consequence we obtain that ρ and therefore also ρE possess the regularity we claimed
in Theorem 3.1, and the proof of Theorem 3.1 is completed.

http://www.river-valley.com
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4. The two-phase problem, local existence. Let ET = E1
T ×E2

T denote the regu-
larity class of the solution (v, ρ) and let FT = F1

T × F2
T denote the class of the data (f, h).

By 0ET , 0FT we mean the corresponding spaces with zero time trace. It will be convenient
to split the solution in a part with zero time trace plus a remaining part taking care of the
non zero traces. For this purpose we employ Theorem 3.1, which gives us a solution (v∗, ρ∗)
for the linear problem (3.1) with given data

(f, h, v0, ρ0) = (0, h∗, v0, ρ0) where h∗(t) := et∆xH(v0, w0).

It is a consequence of the assumptions on the initial data that the data in the line above
satsify the assumptions (a)–(e) of Theorem 3.1. Thus, (v∗, ρ∗) ∈ ET is well-defined and it
suffices to study the reduced nonlinear problem

(∂t − c∆)v̄ = F0(v̄, w̄) in J × Ṙn+1,

γv̄ ± = 0 on J × Rn,

∂tρ̄ + [cγ∂y(v̄ − aw̄)] = H0(v̄, w̄) on J × Rn,

v̄(0) = 0 in Ṙn+1,

ρ̄(0) = 0 in Rn,

(4.1)

with

F0(v̄, w̄) := F (v̄ + v∗, w̄ + w∗), H0(v̄, w̄) := H(v̄ + v∗, w̄ + w∗)− h∗, (4.2)

where w̄ and w∗ are extensions of ρ̄ and ρ∗, respectively, satisfying equation (3.2). Here we
observe that

H0(v̄, w̄) ∈ 0F2
T

for all functions (v̄, w̄) ∈ 0E1
T × 0E1

T with ‖∂y(w̄ + w∗)‖∞ ≤ 1/2. Thanks to this and
Theorem 3.1(ii), the reduced nonlinear problem (4.1) can now be rephrased as a fixed point

http://www.river-valley.com
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equation

(v̄, ρ̄) = K0(v̄, ρ̄) := ST

(
F0(v̄, w̄),H0(v̄, w̄)

)
in 0ET , (4.3)

where ST is the solution operator of the linear problem defined in (3.3).
The advantage of applying the fixed point argument in the zero trace space 0ET lies in

the fact that the embedding constant of the embedding

0ET ↪→ 0BUC(J ; BUC1(Ṙn+1))

does not depend on the length of the time interval J = (0, T ). Moreover, according to
Theorem 3.1(ii), the norm of the solution operator ST is independent of T as well. This
enables us to choose T as small as we wish for without having the constants blowing up.

In order to show that K0 is a contraction, mapping a small Ball of radius r into itself,
we have to provide suitable estimates of the nonlinearities F and H as defined in (2.3) and
(2.3). By an inspection of the single terms appearing in the expressions of F and H we see
that there are basically three different kind of terms:

• Terms that will become small by choosing r small,
• terms that will become small by choosing T small,
• terms that will become small by the assumptions on the initial data.

This allows us to apply the contraction mapping principle in order to deduce the following
result.

Theorem 4.1. Fix p > n + 3. Then there is a number η > 0 such that the following holds:
Given (v0, ρ0) ∈ W

2−2/p
p (Ṙn+1)×W

2−2/p
p (Rn) with

γv±0 = 0, ±v±0 > 0 on Rn+1
± , a± > 0, and (4.4)

‖ρ0‖BUC1(Rn) +
∥∥∥∥ γ∂yv0

1 + γ∂yw0
− a

∥∥∥∥
BUC(Rn)

≤ η, where (4.5)
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w0 := e−|y|(1−∆)
1
2 ρ0, a± :=

γ∂yv±0 (0, 0)
1 + γ∂yw±

0 (0, 0)
, (4.6)

there exists T = T (v0, ρ0) and a unique solution (v, ρ) ∈ ET for the nonlinear problem (2.1).

5. Analyticity. To prove the analyticity of the solutions to (2.1) we employ a scaling
argument and the implicit function theorem. Roughly speaking, this means we consider the
translated and dilated solution

τλ,µv(t, x, y) := v(λt, x + tµ, y), τλ,µρ(t, x) := ρ(λt, x + tµ)

for (λ, µ) ∈ (1− δ, 1 + δ) × Rn with δ > 0 sufficiently small, and show by an application of
the implicit function theorem that the dependence of τλ,µv and τλ,µρ on λ and µ is analytic.
In order to apply this method to a quasilinear system such as the Stefan problem requires
the following three ingredients:

(i) Maximal regularity for the linearization.
(ii) The nonlinearities are real analytic maps, that is in our situation

(F,H) ∈ Cω(GT , FT )

for an appropriate open subset GT ⊆ E1
T ×E1

T .
(iii) The nonlinearities commute with translations in space and dilations in time, i.e.

τλ,µF = Fτλ,µ, τλ,µH = Hτλ,µ.

In our situation (i) is an immediate consequence of Theorem 3.1. Condition (ii) follows
essentially from an inspection of the representations (2.3) and (2.3) for F and H, respectively.
Indeed, it can be shown that (ii) is satisfied for

GT = {(v, w) ∈ E1
T ×E1

T : ‖∂yw‖∞ ≤ 1/2}.

http://www.river-valley.com
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On the other hand (iii) can be easily seen by these representations, since there does not
appear a time derivative.

Here we also employ the splitting

(v, ρ) = (v̄, ρ̄) + (v∗, ρ∗)

with (v̄, ρ̄) ∈ 0E1
T ×0 E2

T and (v∗, ρ∗) taking care of the non zero traces, as introduced in
the previous section. We focus on the first summand and suppose that the analyticity of
(v∗, ρ∗) is already proved, which, for instance, can be obtained as well by an application of
the implicit function theorem.

Next, let Λ ⊆ (1−δ, 1+δ)×Rn and 0B1
T (0, r)×0B2

T (0, r) ⊆ 0E1
T ×0E2

T , where 0B1
T (0, r)

denotes the ball with center 0 and radius r. Further, we introduce the nonlinear map

Ψ0 : 0B1
T (0, r)× 0B2

T (0, r)× Λ → 0FT

Ψ0((u, σ), (λ, µ)) :=

(
(∂t − λc∆)u− Fλ,µ(u, σ)

∂tρ + λ[cγ∂y(u− T (λ, µ)σ))]−Hλ,µ(u, σ)

)
,

where

Fλ,µ(u, σ) := λF (u + τλ,µv∗, T (λ, µ)σ + τλ,µw∗) + (µ|∇u),

Hλ,µ(u, σ) := λH(u + τλ,µv∗, T (λ, µ)σ + τλ,µw∗)− λτλ,µh∗ + (µ|∇σ),

and T (λ, µ)σ := τλ,µ(τ1/λ,−µ σ)E . The analyticity of F and H implies that also

Ψ0 ∈ Cω(0B1
T (0, r)× 0B2

T (0, r)× Λ, 0FT ).

It readily follows that, if (v̄, ρ̄) solves (2.1) then

(u, σ) = (τλ,µv̄, τλ,µρ̄)
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satisfies Ψ0((u, σ), (λ, µ)) = 0. Therefore, by utilizing the results of the last section it can
be shown that for r, δ, T > 0 small enough Ψ0 is well defined. It turns out that the Fréchet
derivative of Ψ0 with respect to (v̄, ρ̄) at (λ, µ) = (1, 0) is given by

D1Ψ0((v̄, ρ̄), (1, 0))[ũ, σ̃] = U [ũ, σ̃]− (DF0(v̄, ρ̄E), DH0(v̄, ρ̄E))[ũ, σ̃E ]

for (ũ, σ̃) ∈ 0ET , where

U [ũ, σ̃] :=
(
(∂t − c∆)ũ, ∂tσ̃ + [cγ∂y(ũ− aσ̃

E
)]
)

and F0 and H0 are defined in (4.2). The proof of the existence also shows that the respective
norms of the Fréchet derivatives of F0 and H0 are small for (v̄, ρ̄E) ∈ 0B1

T (0, r)× 0B1
T (0, r)

if we suppose that r, T are sufficiently small. This fact and since U represents exactly the
linearization given in (3.1), Theorem 3.1 implies

D1Ψ0((v̄, σ̄), (1, 0)) ∈ Isom(0ET , 0FT ).

Thus the analyticity of Ψ0 and the implicit function theorem imply the existence of an open
neighborhood of (1, 0) in (1− δ, 1 + δ)× Rn, again denoted by Λ, such that

[(λ, µ) 7→ (τλ,µv̄, τλ,µσ̄)] ∈ Cω(Λ, 0ET ). (5.1)

The analyticity of the solution (u, Γ) of the classical Stefan problem (1.1) is now essentially
a consequence of (5.1). This completes the proof of Theorem 1.1.
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