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REMARKS ON THE INCOMPRESSIBLE NAVIER-STOKES FLOWS
FOR LINEARLY GROWING INITIAL DATA∗

OKIHIRO SAWADA†

Abstract. We deal with the Cauchy problem of the Navier-Stokes equations with linearly growing
initial data U0 := −Mx + u0(x). Here M is an n × n matrix with assumptions tr M = 0 and M2

is symmetric, and u0 ∈ Lp
σ(Rn). We establish the local-in-time solvability applied Ornstein-Uhlenbeck

semigroup theory. We also show that our solution is analytic in x, if ‖ etM ‖ ≤ 1 for all t ≥ 0, nevertheless,
the semigroup is not analytic.
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1. Introduction. We consider the incompressible and viscous fluid flows in Rn for
initial velocity which grows linearly at space-infinity, which are described the Navier-
-Stokes equations, i.e.

Ut −∆U + (U,∇)U +∇P = 0 in Rn×(0, T ),
∇ · U = 0 in Rn×(0, T ),
U(0) = U0 with ∇ · U0 = 0 in Rn.

(1.1)

Here U = U(t) = (U1(x, t), . . . , Un(x, t)) and P = P (x, t) stand for the unknown velocity
and the unknown pressure of the fluid; U0 = (U1

0 (x), . . . , Un
0 (x)) is the given initial

velocity. There are many contributions of literatures on existence of solutions of (1.1) in
the whole space, see e.g. [1, 5, 6, 7, 9, 13, 23]. All these results assume that the initial data
decay as |x| → ∞. On the other hand, Okamoto [26] showed that for certain concrete
flow problems there exist many exact solutions Ū which have the property that Ū grows
linearly as |x| → ∞.

Our purpose is to construct mild solutions to the equations of Navier-Stokes in
Lp

σ(Rn), when the initial datum may grow as −Mx, where M = (mij)1≤i,j≤n is a real-
valued constant matrix satisfying trM = 0 and M2 is symmetric. We hence assume
throughout this paper that the initial velocity is of the form

U0(x) = −Mx + u0(x), x ∈ Rn, (1.2)

where u0 ∈ Lp
σ(Rn)n is a function.

In the case M = 0, it is well known that there exists a local-in-time smooth solution
to (1.1) provided the initial data U0 belongs to Lp

σ(Rn) for p ≥ n; see e.g. the articles in
the list of References. However, if M 6= 0, the situation is more complicated.

We shall explain the reason why we study (1.1) with (1.2) in Physical point of view.
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Let us think about the case M is skew-symmetric, e.g.

M = R :=

 0 −a 0
a 0 0
0 0 0


for a ∈ R, Notice that Ū := −Rx describes the pure rotation of the fluid. This problem
was investigated by Hishida and by Babin, Mahalov and Nicolaenko. Indeed, Hishida con-
structed in [18, 19, 20] a unique local-in-time mild solution, provided that u0 ∈ H1/2(R3),
and its initial-boundary value problem in the exterior domain is also considered. (We
will see the notion of a mild solution below.) Babin, Mahalov and Nicolaenko [3], [4]
also proved the existence of a local-in-time mild solution (and global regularity theorem),
provided u0 is in Lp

σ(R3) or u0 is a periodic function enjoying the smoothness.
In [29], the second author of this paper proved the existence of a unique local-in-time

mild solution, still for M = R, provided u0 belongs to the Besov space Ḃ0
∞,1

Ḃ0
∞,1 := {f ∈ S ′;

∞∑
j=−∞

‖ϕj ∗ f‖∞ < ∞, f =
∞∑

j=−∞
ϕj ∗ f in S ′ sense}.

Note that Ḃ0
∞,1 ⊂ BUC (and this embedding is continuous), where BUC denotes the

space of bounded and uniformly continuous functions. The virtue of Ḃ0
∞,1 and several

example of functions are found in [30].
An interesting example of M is

M = J :=

 −b 0 0
0 −b 0
0 0 2b


for b ∈ R. According to Majda [24], −Jx for b < 0 corresponds to the drain along to x1

and x2-axises horizontally and to the jet along to x3-axis of the fluid. He showed that
(Ū , P̄ ) is an exact solution of (1.1), where

Ū := −Mx, P̄ := (Πx, x),

and Π := 1
2 [(M sym)2 + (Mant)2] under the assumptions that trM = 0 and M2 is sym-

metric. We have denoted by M sym and Mant the symmetric and skew-symmetric part of
M , respectively, i.e., M sym := 1

2 (M + MT ) and Mant := 1
2 (M −MT ). Here MT denotes

the transposed matrix of M .
Giga and Kambe [11] also investigated the axisymmetric irrotational flow (mainly,

the behavior of its vortex), and studied the stability of the vortex when the velocity field
of the fluid U is expressed as U = −Jx + V , where V = (V 1, V 2, 0) is a two-dimensional
velocity field.

This paper is organized as follows. In Section 2 we state the main results. We shall
refer to key lemmas for proving the theorems in Section 3. In Section 4, we show the
proof briefly.

2. Main results. In this section we refer to the main results in this paper. Before
stating our main theorem, we consider a simple substitute as follows:

u := U − Ū = U + Mx, p := P̃ − P̄ = P − (Πx, x).
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Note that, if (U,P ) is the classical solution of (1.1), then (u, P̃ ) should satisfy the following
equations in classical sense:

ut + Au + (u,∇)u− 2Mu +∇P̃ = 0 in Rn × (0, T ),
∇ · u = 0 in Rn × (0, T ),
u(0) = u0 with ∇ · u0 = 0 in Rn.

(2.1)

Here we have defined the operator A by

Au := −∆u− (Mx,∇)u + Mu

with domain

D(A) := {u ∈ W 2,p(Rn) ∩ Lp
σ(Rn); (Mx,∇)u ∈ Lp(Rn)}.

Thanks to the results of Ornstein-Uhlenbeck semigroup theory by e.g. [25], we know that
−A generates a (C0)-semigroup in Lp

σ(Rn) for p ∈ [1,∞). Also, −A generates a semigroup
in L∞σ . We also have a representation form of semigroup

e−tA f(x) :=
1

(4π)n/2(detQt)1/2
e−tM

∫
Rn

f(etM x− y) e−
1
4 (Q−1

t y,y) dy,

where Qt :=
∫ t

0
esM esMT

ds for all t > 0. Note that this semigroup is not analytic; see
e.g. [18]. Using this semigroup, we deduce the integral equation by Duhamel’s principle:

u(t) = e−tA u0 −
∫ t

0

e−(t−s)A P∇ · (u(s)⊗ u(s)) ds + 2
∫ t

0

e−(t−s)A Pu(s) ds.

Here P is the Helmholtz projection from Lp to Lp
σ. Since ∇ · u = 0, we have used that

(u,∇)u = ∇ · (u ⊗ u), and that A commutes P (since ∇ · Pu = 0). The solution of the
integral equation is often called a mild solution, we use this terminology. The integral
equation is formally equivalent to (2.1). Indeed, once we get the mild solution u, the pair
(u, P̃ ) satisfies (2.1) in classical sense with some P̃ ; see Remark 2.1(i) below. In what
follows we rather discuss the mild solution.

We now state the local-in-time solvability theorem and the uniqueness result for mild
solutions in Lp spaces.

Theorem 2.1. Let n ≥ 2, p ∈ [n,∞). Let M be a real-valued constant n × n-matrix.
Assume that u0 ∈ Lp

σ(Rn). Then there exist T0 > 0 and a unique mild solution u such
that

[t 7→ t
n
2 ( 1

p−
1
q )u] ∈ C([0, T0);Lq

σ(Rn))

[t 7→ t
n
2 ( 1

p−
1
q )+ 1

2∇u] ∈ C([0, T0);Lq(Rn))

for all q ∈ [p,∞].

Remark 2.1.
(i) In this theorem we may relax the condition of M , although in order to derive

(2.1) from (1.1) with (1.2) we need trM = 0 and M2 is symmetric. The mild solution u
is smooth in x, i.e. u(t) ∈ C∞(Rn) for all t ∈ (0, T0). This comes from the regularizing
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effect of the semigroup; see (3.6) in Section 3. Hence, (u, P̃ ) is a classical solution of (2.1)
provided we choose P̃ appropriately, for example,

∂kP̃ =
n∑

i,j=1

∂kRiRju
iuj − 2

n∑
i,j=1

mijRlRju
i.

Uniqueness of classical solutions follows from the argument by [22] and [31].
(ii) When the initial data u0 ∈ L∞σ or BUCσ, it is not easy to obtain a unique mild

solution in general, because the Helmholtz projection is not a bounded operator in L∞.
However, we can show the existence theorem of the mild solutions u ∈ C([0, T0); Ḃ0

∞,1)
provided u0 ∈ Ḃ0

∞,1 with ∇ · u0 = 0.
(iii) In the case n = p = 2 we obtain the global-in-time solution. Multiplying

(2.1) with u and integrating over R2, as the standard way, we can derive ‖u(t)‖2 ≤
C‖u0‖2 exp{|M |t} for all t ≥ 0. Here C is a numerical constant, and |M | := maxi,j |mij |.
That is not conservative, however, that sufficiently gives an a priori estimate for extending
the mild solution globally-in-time. In 3-dimensional case, we do not know how to get the
global solvability as well as the case M = 0.

We see that u ∈ C∞ in Remark 2.1(i). It is a natural question whether u ∈ Cω or
not. We can verify it, if M satisfies an additional condition.

Theorem 2.2. Assume, furthermore, that

‖ etM ‖ ≤ 1 for all t ≥ 0. (2.2)

Then u is analytic in x.

Besides, it is impossible to get the analyticity in time, since the Ornstein-Uhlenbeck
semigroup is not analytic. It is clear that (2.2) holds true if M is skew-symmetric. We do
not know whether the assumption (2.2) is essential or not. Theorem 2.2 is an application
of the regularizing rate estimates of u and its higher order derivatives. We now state them
in the case p = n only (for the shake of simplicity).

Proposition 2.3. Let n ≥ 2, u0 ∈ Ln
σ(Rn) and r ∈ (n,∞). Assume that M satisfies

(2.2). Let u be the local-in-time mild solution of (2.1) for some T > 0. Assume further
that there exist constants M1 and M2 such that

sup
0<t<T

‖u(t)‖n ≤ M1 < ∞ and sup
0<t<T

t
n
2 ( 1

n−
1
r )‖u(t)‖r ≤ M2 < ∞.

Then there exist constants K1 and K2 (depending only on n, r, M , T , M1 and M2) such
that

‖∇mu(t)‖q ≤ K1(K2m)mt−
m
2 −

n
2 ( 1

n−
1
q ) (2.3)

for all t ∈ [0, T ], m ∈ N0 and q ∈ [n,∞].

Remark 2.2. There exists a constant C > 0 such that the size of radius of the Taylor
expansion ρ(t) w.r.t. x is estimated as

ρ(t) ≥ lim sup
m→∞

(
‖∇mu(t)‖∞

m!

)−1/m

≥ C
√

t t ∈ (0, T ). (2.4)

This estimate follows from Proposition 2.3 with q = ∞, the Stirling formula, and
Cauchy-Hadamard’s criterion. It is clear that (2.4) yields Theorem 2.2.

3. Preliminaries. In this section we prepare the lemmas to prove the theorems.
Firstly, we mention the Lp − Lq estimate of e−tA, and its first derivatives.
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Lemma 3.1.
(1) Let n ≥ 1, and let 1 ≤ p ≤ q ≤ ∞. Then there exist constants C > 0 and ω ≥ 0

such that

‖ e−tA f‖q ≤ C eωt t−
n
2 ( 1

p−
1
q )‖f‖p, (3.1)

‖∇ e−tA f‖p ≤ C eωt t−
1
2 ‖f‖p (3.2)

for all f ∈ Lp and t ≥ 0.
(2) Assume, additionally, that p < q. Then

t
n
2 ( 1

p−
1
q )‖ e−tA f‖q → 0 as t → 0, (3.3)

t
1
2 ‖∇ e−tA f‖p → 0 as t → 0 (3.4)

for all f ∈ Lp.

Proof. The first parts of Lemma 3.1 are proved by direct calculations of the kernel of the
representation form of the semigroup, combining with Young’s inequality. To do so, we
use the change the variables y = Q

1/2
t z. For proving second parts, we first recall that C∞

0

is densely subset of Lp for p < ∞. As same as that in [23], by triangle inequality (3.3)
follows from (3.1), obviously. As the same way, the proof of (3.4) is also shown by (3.2).

Remark that Lemma 3.1 (and Lemma 3.2 below) is shown by [8] for the case M = Id.
To prove Theorem 2.2 (and Proposition 2.3), we need the estimates for higher order

derivatives of the Ornstein-Uhlenbeck semigroup, that is to say, we compute ∇m e−tA f .
The difficulties arise from the fact that ∇ does not commute e−tA. Indeed, we see that

∇ e−tA f = etM e−tA∇f.

Nevertheless, thanks to the representation formula, we can get similar estimate to that
of the Stokes semigroup.

Lemma 3.2. Let n ≥ 1, and let 1 ≤ p ≤ q ≤ ∞. Then there exist constants C̃1, C̃2,
C̃3 > 0, ω1, ω2, ω3, ω4 ≥ 0 (depending only on n, p, q, M) such that

‖∇m e−tA f‖q ≤ C̃1 e(ω1+ω2m)t t−
n
2 ( 1

p−
1
q )‖∇mf‖p (3.5)

for all t > 0, m ∈ N and f ∈ Wm,p(Rn), and also

‖∇m e−tA f‖q ≤ C̃2(C̃3m)m/2 e(ω3+ω4m)t t−
n
2 ( 1

p−
1
q )−m

2 ‖f‖p (3.6)

for all t > 0, m ∈ N and f ∈ Lp(Rn).

Proof. We first consider the case p = q. Since ‖ etM ‖ = ‖ etMT ‖ ≤ C eω2t for all t ≥ 0
with some constants C > 0 and ω2, it follows that

‖∇m e−tA f‖q ≤ ‖ etM ‖m‖ e−tA∇mf‖q ≤ C eω2mt eω1t ‖∇mf‖q, (3.7)

for some ω1 ≥ 0. This and (3.1) show the assertion (3.5).
To prove (3.6) we compute

‖∇m e−tA f‖q = ‖∇ e−
t

2m A e(m−1)tM ∇m−1 e−(1− 1
2m )tA f‖q (3.8)

≤ C
( t

2m

)−1/2

e
ωt
2m C eω(m−1)t ‖∇m−1 e−(1− 1

2m )tA f‖q. (3.9)
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We thus see that there exist constants C > 0 and ω3, ω4 ≥ 0 such that

‖∇m e−tA f‖q ≤ Cmmm/2 eω4mt eω3t t−m/2‖ e−
t
2 A f‖q.

Finally, we apply (3.1) to obtain (3.6).
To show Proposition 2.3 with q = ∞, we have to prepare the following estimate of

set of three operators ∇e−tAP.

Lemma 3.3. Let 1 ≤ p ≤ ∞. Then there exist constants Cp > 0 and ω5 ∈ R such that

‖∇ e−tA P‖L(Lp) ≤ Cpt
−1/2 eω5t, t > 0.

Remark that P is not bounded in L1 and L∞. We use the Fourier multipliers theorem;
refer to [2]. For making short of this paper we omit the proof, since we can find it in [16].
Note also that Lemma 3.3 has already been proved by [10] for the case A = −∆. They
showed it by direct calculation, recalling the et∆ = Gt∗ is a convolution type operator.

Before closing this section we pick up the bilinear estimate of homogeneous Besov
spaces to show Remark 2.1(ii).

Lemma 3.4. There exists a positive constant C such that

‖f · g; Ḃ1
∞,1‖ ≤ C(‖f ; Ḃ1

∞,1‖ ‖g; Ḃ0
∞,1‖+ ‖f ; Ḃ0

∞,1‖ ‖g; Ḃ1
∞,1‖)

for all f, g ∈ Ḃ0
∞,1 ∩ Ḃ1

∞,1.
We can prove this lemma using by the equivalent norm:

‖v; Ḃs
p,q‖ ∼=

[ ∫ ∞

0

t−1−sq sup
|y|≤t

‖τyv + τ−yv − 2v‖q
p dt
]1/q

,

which is valid for 1 ≤ p, q ≤ ∞, 0 < s < 2, where τy is the translation by y ∈ Rn, that is,
τyf(x) = f(x− y). In [17] we found the similar proof so that we may skip the details.

4. Proofs of theorems. We give the proofs of theorems briefly.

Proof of Theorem 2.1. We use the iteration procedure, that is, successive approxi-
mation. We only show it for the case p = n. Let n ≥ 2 and u0 ∈ Ln

σ(Rn). For j ≥ 1 and
t > 0 we define u1(t) := e−tA u0 and functions uj+1 by

uj+1(t) := e−tA u0 −
∫ t

0

e−(t−s)A P∇ · (uj(s)⊗ uj(s)) ds + 2
∫ t

0

e−(t−s)A PMuj(s) ds.

Since e−tA acts on Lp
σ(Rn) it follows from the definition of the Helmholtz projection that

the functions uj are divergence-free for all t > 0 and all j.
Let T ∈ (0, 1], and let δ ∈ (0, 1). We settle

A0 := sup
0<t≤T

t
1−δ
2 ‖ e−tA u0‖n/δ and A′0 := sup

0<t≤T
t

1
2 ‖∇ e−tA u0‖n,

as well as Aj := Aj and A′j := A′j where

Aj := sup
0<t≤T

t
1−δ
2 ‖uj(t)‖n/δ and A′j := sup

0<t≤T
t1/2‖∇uj(t)‖n, j ≥ 1.
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We thus obtain the Lp −Lq-smoothing of the semigroup and the boundedness of P from
Lp into Lp

σ that

‖uj+1(t)‖n/δ ≤ t−
1−δ
2 A0 + C

∫ t

0

(t− s)−
n
2 ( 1

r−
δ
n )‖uj(s) · ∇uj(s)‖r ds + C

∫ t

0

‖uj(s)‖n/δ ds

Here r = n
1+δ . We apply the Hölder inequality. Multiplying with t

1−δ
2 and taking in t,

we have

Aj+1 ≤ A0 + C1AjA
′
j + C2TAj (4.1)

with some constants C1, C2 independent of j and T .
Similarly, applying ∇ to the approximation equation and estimating it in the Ln-

norm, we obtain

A′j+1 ≤ A′0 + C3AjA
′
j + C4TAj (4.2)

with some positive constants C3 and C4. Lemma 3.1(2) implies that for any λ > 0, there
exists T̃0 > 0 such that A0, A

′
0 ≤ λ for all T ≤ T̃0. Therefore, we obtain bounds for Aj

and A′j for any T ≤ T̃0 uniformly in j provided that T̃0 is small enough.

Using the uniform bounds of Aj and A′j , it follows that t
1
2−

n
2q ‖uj(t)‖q as well as

t1−
n
2q ‖∇uj(t)‖q are bounded for q ∈ [n,∞], t ≤ T̃0 and j ∈ N. The continuity of the

above functions follows from similar calculations.
The estimate on uj+1 − uj is the same as above, essentially. It thus follows that ap-

proximations are Cauchy sequences and we conclude that there are unique limit functions

t
1
2−

n
2q u(t) ∈ C([0, T0];Lq

σ), t1−
n
2q v(t) ∈ C([0, T0];Lq),

of the sequences (t
1
2−

n
2q uj(t))j≥1 and (t1−

n
2q∇uj(t))j≥1. Finally, note that v(t) = t1/2∇u(t)

and that u is a mild solution on [0, T0].
Uniqueness of mild solutions follows as in [12] from Gronwall’s inequality. This com-

pletes the proof of Theorem 2.1. 2

Proof of Proposition 2.3. Suppose that M satisfies (2.2). We start to prove the
assertion (2.3) under the additional assumption that the mild solution is smooth:

∂α
x u ∈ C((0, T );Lq(Rn)) (4.3)

for all α ∈ Nn
0 . We may assume (4.3), since it can be shown by similar way; see the

details in [16].
We use an induction w.r.t. m ∈ N. That is, we assume that (2.3) holds true for all

m ≤ k− 1. We now proceed to show it for m = k. For simplicity, we suppose that T ≤ 1,
n ≥ 3, q < ∞. For ε ∈ (0, 1) we have

‖∇ku(t)‖q ≤ ‖∇k e−tA u0‖q +

(∫ (1−ε)t

0

+
∫ t

(1−ε)t

)
‖∇k e−(t−s)A P∇ · (u(s)⊗ u(s))‖q ds

+2

(∫ (1−ε)t

0

+
∫ t

(1−ε)t

)
‖∇k e−(t−s)A PMu(s)‖q ds

=: B1 + B2 + B3 + B4 + B5.

We shall estimate each the above terms B1, . . . , B5 separately.
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The estimates for B1 are derived from (3.6) as follows:

B1 ≤ C̃2(C̃3k)k/2 eω3kt ‖u0‖nt−
n
2 ( 1

n−
1
q )− k

2 ≤ C5(C6k)k−δt−
n
2 ( 1

n−
1
q )− k

2

for t ∈ (0, T ) with constants C5 := C̃2‖u0‖n ≤ C̃2M1 and C5 := C̃3 eω3 . This follows
since k/2 ≤ k − δ for k ≥ 2 and δ ≤ 1. The estimates for B2, B4 and B5 are basically
same as above, so we omit to prove.

To derive the estimate B3, we use the Leibniz rule:

B3 ≤ C7

∫ t

(1−ε)t

(t− s)−1/2‖∇ku(s)‖q‖u(s)‖∞ ds

+C7

∫ t

(1−ε)t

(t− s)−1/2 max
|β|=k

∑
0<γ<β

(
β
γ

)
‖∂γ

xu(s)‖q‖∂β−γ
x u(s)‖∞ ds

=: B3a + B3b.

Here C7 = 2C̃1e
ω1 is independent of k by (2.2):

(
β
γ

)
=
∏n

i=1
βi!

γi!(βi−γi)!
is a binomial

coefficient.
Consider B3a. Firstly, there exists positive constant C such that ‖u(s)‖∞ ≤ Cs−1/2;

see the Proposition 3.1 in [15]. Then,

B3a ≤ C8

∫ t

(1−ε)t

(t− s)−1/2s−1/2‖∇ku(s)‖q ds

with C8 is a constant depending only on n, p, q, M, M1,M2. Next we deal with B3b. By
assumption of induction, we have

B3b ≤ C7

∫ t

(1−ε)t

(t− s)−
1
2 max
|β|=k

∑
0<γ<β

(β
γ

)
K1(K2|γ|)|γ|−δs−

n
2 ( 1

n−
1
q )− |γ|

2

×K1(K2|β − γ|)|β−γ|−δs−
n
2 ( 1

n−
1
q )− |β−γ|

2 ds

≤ C7K
2
1Kk−2δ

2

∑
0<γ<β

(β
γ

)
|γ||γ|−δ|β − γ||β−γ|−δ

∫ t

(1−ε)t

(t− s)−
1
2 s−1− n

2q−
k
2 ds.

We now use Kahane’s lemma in [21, Lemma 2.1] to get

B3b ≤ C9K
2
1Kk−2δ

2 kk−δt−
n
2 ( 1

n−
1
q )− k

2 I(ε).

Here I(ε) :=
∫ 1

1−ε
(1 − τ)−

1
2 τ−

n
2 ( 1

n−
1
q )− k

2−
1
2 dτ , and C9 is a constant depending only on

C7 and δ (independent of k). Moreover,, and the dependence of C9 w.r.t. δ is C9 ∼∑∞
j=1 j−1/2−δ/2, so we need δ > 1/2.

Define bε by

bε := C̃5(C̃6k/ε)k/2 + C9K
2
1Kk−2δ

2 kk−δI(ε).

Here C̃5 and C̃6 are constants. Gathering estimates above, we obtain

‖∇ku(t)‖q ≤ bεt
−n

2 ( 1
n−

1
q )− k

2 + C̃8

∫ t

(1−ε)t

(t− s)−1/2s−1/2‖∇ku(s)‖q ds.
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Here C̃8 is a constant independent of k. By Gronwall’s type inequality in [15, Lemma
2.4], there exists a εk ∈ (0, 1) such that

‖∇ku(t)‖q ≤ 2bεk
t−

n
2 ( 1

n−
1
q )− k

2 , t ∈ (0, T ). (4.4)

This is possible if we take εk small enough. Indeed, there exists k0 (depending only on
n, p,M,M1,M2) such that I(1/k) ≤ 1

2C̃8
for all k ≥ k0.

Finally, we verify 2b1/k ≤ K1(K2k)k−δ for suitable choice of K1 and K2. Fix a
constant K0 > 0 (depending only on n, p,M,M1,M2) so that ‖∇ku(t)‖q ≤ K0 holds for
k ≤ k0. For k ≥ 2, since I(1/k) ≤ 2, 2b1/k ≤ 2{C̃5C̃

k−δ
6 +2C9K

2
1Kk−2δ

2 }kk−δ. Therefore,
we choose

K1 := max
(
K0, 4C̃5

)
and K2 := max

(
C̃6, (4C9K1)δ

)
,

then (2.3) holds true for all m.
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