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EIGENVALUE QUESTIONS ON SOME
QUASILINEAR ELLIPTIC PROBLEMS

M. N. POULOU∗ AND N. M. STAVRAKAKIS†

Abstract. We present resent results on some quasilinear elliptic problems of p-Laplacian type. Among
other things we prove the existence of a positive principal eigenvalue for a p-Laplacian equation and discuss
questions of simplicity and isolation of the eigenvalue.
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1. Introduction. In this paper we prove the existence of a positive principal eigenvalue
of the following quasilinear elliptic problem,

−∆pu(x) = λg(x)|u|p−2u, x ∈ RN , (1.1)

lim
|x|→+∞

u(x) = 0, (1.2)

where λ ∈ R. Next, we state the general hypotheses which will be assumed throughout the
paper:
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(E) Assume that N, p satisfy the following relation N > p > 1.

(G) g is a smooth function, at least C1,α(RN ) for some α ∈ (0, 1), such that g ∈
L∞(RN ) and g(x) > 0, on Ω+, with measure of Ω+, |Ω+| > 0. Also there exist
R0 sufficiently large and k > 0 such that g(x) < −k, for all |x| > R0.

On various types of bounded domains the picture for “the principal eigenpair” seems to be
fairly complete where for unbounded domain, papers have appeared quite recently. These
problems are of a more complex nature, as the equation may give rise to a noncompact
operator (see [4]).

The main aim of this paper is to study the quasilinear elliptic problem (1.1)–(1.2), by
generalizing ideas introduced in the paper [7]. In Section 2, we study the space setting of
the problem (1.1)–(1.2). A generalised version of Poincaré’s inequality plays a crucial role.
In Section 3, we define the basic operators for the construction of the first positive eigenvalue
the proof which is based on Ljusternik-Schnirelmann’s theory. Also here, we derive some
regularity results. Finally, in Section 4, we establish the simplicity and isolation of the
principal eigenvalue. The detailed proofs of the results appearing here are presented in the
work [5].
Notation. We denote by BR the open ball of RN with center 0 and radius R and B∗

R =:
RN \BR. For simplicity reasons sometimes we use the symbols C∞0 , Lp, W 1,p respectively
for the spaces C∞0 (RN ), Lp(RN ), W 1,p(RN ) and ||.||p for the norm ||.||Lp(IRN ). Also,
sometimes when the domain of integration is not stated, it is assumed to be all of RN .
Equalities introducing definitions are denoted by “=:”. Denote by g± =: max{±g, 0}.
The end of the proofs is marked by “�”.

2. Space Setting. In this section we are going to characterize the space Vg (introduced
below) in terms of classical Sobolev spaces. Let B be a ball centered at the origin of RN ,

such that
∫

B

g(x) dx < 0 and g(x) ≤ −k, for all x ∈ B∗. First, we prove the following type

of Poicaré’s inequality:
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Theorem 2.1. Suppose
∫
IRN g(x) dx < 0. Then there exists α > 0, such that∫

IRN
| 5 u|p dx > α

∫
IRN

g(x)|u|p dx,

for all u ∈ W 1,p(RN ), such that
∫
IRN g(x)|u|p dx > 0.

By the above result we may introduce the following norm

‖u‖g =:
(∫

IRN
| 5 u|p dx− α

2

∫
IRN

g(x)|u|p dx

)1/p

. (2.1)

We define the space Vg to be the completion of C∞0 with respect to the norm ‖.‖g. Let
V∗g be the dual space of Vg with the pairing (., .)V . Note that Vg is a uniformly convex
Banach space. Although the space Vg would seem to depend on g, we shall prove that the
space is independent of g. To achieve this result we need the following three results.

Corollary 2.2. Under the assumptions of Theorem 2.1, for all u ∈ C∞0 (RN ), we have:

(i)
∫

IRN
| 5 u|p ≤ 2‖u‖p

g, (2.2)

(ii)
∣∣∣∣∫

IRN
g|u|p dx

∣∣∣∣ ≤ 2
α
‖u‖p

g. (2.3)

Lemma 2.3. Assume that the hypotheses of Theorem 2.1 are valid. Let {un} ⊂ C∞0 (RN )
be a bounded sequence in Vg. Then {

∫
B

g|un|p dx} is bounded in Vg.
To prove the next results we need to introduce the following notation: D1 =: {x ∈ B :

g(x) > 0}, D2 =: {x ∈ B : g(x) ≤ 0} and

ḡ(x) =:

{
g+(x), x ∈ D1,

−g−(x), x ∈ D2.
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Lemma 2.4. Assume that the hypotheses of Theorem 2.1 are valid. Then there exist
constants K0 > 0 and K1 > 0 such that

(i)
∫

g+(x)|u|p dx ≤ K0‖u‖p
g, (2.4)

(ii) −
∫

g−(x)|u|p dx ≤ K1‖u‖p
g, (2.5)

for all u ∈ C∞0 (RN ).
Next, we give the following uniform Sobolev characterization of the space Vg.

Proposition 2.5. Suppose that g satisfies (G). Then Vg = W 1,p(RN ).

3. Principal Eigenvalue and Regularity Results. In this section we are going to
define the basic operators and some of their characteristics, which will help to prove the
existence of a positive principal eigenvalue of the problem (1.1)–(1.2). Finally, we close this
section by proving some regularity results.

For any r0 large enough (r0 ≥ R0), there exists σ0 > 0, such that g(x) ≤ − k
σ0

, for all |x| ≥
r0. For later needs we introduce the following smooth splitting of the weight function g

g2(x) =:


g(x), for |x| ≥ r0,

− k

σ0
, for |x| < r0,

and g1(x) =: g(x)− g2(x).

Let us define the operator Aλ : D(Aλ) ⊂ W 1,p → W 1,q as follows

(Aλ(u), v) =
∫

(| 5 u|p−2 5 u5 v − λg2|u|p−2uv) dx, for all u, v ∈ W 1,p.

We can then define the bilinear mapping

aλ : W 1,p ×W 1,p → R, by aλ(u, v) =: (Aλ(u), v).
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It is easy to see that aλ is bounded and coercive for all u, v ∈ D(Aλ) and λ > λ0.
Next, we introduce the following bilinear form b(u, v)

b(u, v) =
∫

g1|u|p−2uv dx, for all u, v ∈ W 1,p(RN ).

We see that b(u, v) is bounded by using Hölder’s inequality and the definition of g1, for
all u, v ∈ W 1,p.

Therefore by the Riesz Representation Theory we can define a linear operator Bλ :
D(Bλ) ⊂ Lp 7−→ Lq, such that (Bλ(u), v) = b(u, v), for all u, v ∈ D(Bλ) and λ > 0. It is
easy to see that D(Bλ) ⊂ W 1,p. Moreover it is easy to see that the operators Aλ, Bλ are
well defined and Aλ is continuous.

Lemma 3.1.
(i) if {un} is a sequence in W 1,p, with un ⇀ u, then there is a subsequence, denoted

again by {un}, such that Bλ(un) → Bλ(u),

(ii) if B
′

λ(u) = 0, then Bλ(u) = 0.

Theorem 3.2. Let 1 < p < N. Assume that g satisfies (G). Then
(i) the problem (1.1)–(1.2) has a sequence of solutions (λk, uk) with

∫
g(x)|uk|p = 1,

0 < λ1 < λ2 ≤ . . . ≤ λk →∞, as k →∞,
(ii) the eigenfunction u1 corresponding to the first eigenvalue can be taken positive in

RN .
Proof. The proof is based on Ljusternik-Schnirelmann theory.

The next theorem examines the regularity as well as the Lpk character and asymptotic
behavior of the W 1,p solutions of the problem (1.1)–(1.2).

Theorem 3.3. Suppose that u ∈ W 1,p is a solution of the problem (1.1)–(1.2). Then
u ∈ Lpk , for all pk ∈ [pc,+∞] and the solutions u(x) decay uniformly to zero, as |x| → +∞.

Corollary 3.4. For any r > 0, the solutions of the problem (1.1)–1.2 belong to C1,α(Br),
where α = α(r) ∈ (0, 1).
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4. Simplicity and Isolation of the Principal Eigenvalue. In this section, first we
are going to prove the simplicity of the principal eigenvalue of the problem (1.1)–(1.2) by
generalizing Picone’s identity.

Theorem 4.1 (Generalized Picone’s Identity). Let v > 0, u ≥ 0 be differentiable functions
in Ω, where Ω is a bounded or unbounded domain in RN . Denote by

L(u, v) = | 5 u|p + (p− 1)
up

vp
| 5 v|p − p

up−1

vp−1
5 u| 5 v|p−2 5 v,

R(u, v) = | 5 u|p −5
(

up

vp−1

)
| 5 v|p−2 5 v.

Then L(u, v) = R(u, v) ≥ 0. Moreover, L(u, v) = 0, a.e. in Ω, if and only if 5(u/v) = 0,
a.e. in Ω, i.e., u = kv, for some constant k in each component of Ω.

Proof. For the proof we refer to W. Alegretto and Y. X. Huang [1, Theorem 1.1].

Theorem 4.2. Suppose v ∈ C1 satisfies −∆pv ≥ λgvp−1 and v > 0 in RN , for some λ > 0.
Then, for u ≥ 0 in W 1,p we have∫

| 5 u|p dx ≥ λ

∫
g(x)|u|p dx, (4.1)

and λ ≤ λ+
1 . The equality in (4.1) holds if and only if λ = λ+

1 , u = kv and v = cu1, for
some constants k, c. In particular, the principal eigenvalue λ+

1 is simple.

Theorem 4.3. The principal eigenvalue λ1 of the problem (1.1)–(1.2) is isolated in the
following sense: there exists η > 0, such that the interval (−∞, λ1 + η) does not contain any
other eigenvalue than λ1.
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