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ON SOME KLEIN-GORDON-SCHRÖDINGER TYPE SYSTEMS

NIKOLAOS M. STAVRAKAKIS∗

Abstract. We present some recent trends in the theory of Klein-Gordon-Schrödinger type Systems.
Then we give some resent results on the following special type of a dissipative Klein-Gordon-Schrödinger
System

iψt + κψxx + iαψ = φψ, x ∈ Ω, t > 0,
φtt − φxx + φ+ λφt = −Reψx, x ∈ Ω, t > 0,

satisfying the initial and boundary conditions

ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), x ∈ Ω,
ψ(x, t) = φ(x, t) = 0, x ∈ ∂Ω, t > 0,

with κ, α, λ positive constants and Ω a bounded subset of R. This certain system describes the nonlinear
interaction between high frequency electron waves and low frequency ion plasma waves in a homogeneous
magnetic field. Global existence and uniqueness of solutions are derived. Also necessary conditions for
the exponential energy decay of the system are established. Finally, we mention some resent results
concerning the asymptotic behavior of this problem under external forces in dimension 1.
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1. Prehistory and Modelling. Systems of Klein-Gordon-Schrödinger type have
been studied for many years. To our knowledge, it seems that the first problems of this
type is the so called Yukawa System (see, Yukawa H. [36]), which goes back to 1935 and
is of the following form

iψt +
1
2
∆ψ = −φψ, x ∈ Ω, t > 0, Ω ⊆ RN , (1.1)

φtt −∆φ = |ψ|2, x ∈ Ω, t > 0, (1.2)

with initial conditions

ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), (1.3)

where ψ is the complex nucleon field, φ is the real meson field. The system (1.1)–(1.3)
has been examined with respect to the existence of local and global solutions, blow-up,
exponential decay, and global attractor in both bounded and unbounded domains of
RN , for N ≤ 3. I. Fukuda and M. Tsutsumi in a series of papers (see [11], [12], [13],
[14]) have studied existence of local and global solutions as well as uniqueness, decay
estimates and blow-up of solutions in one and several dimensions. A. Bachelot [1], study
existence of local and global solutions and uniqueness. N. Hayashi and W. von Wahl,
[23] study the existence of global strong solutions of a coupled Klein-Gordon-Schrödinger
system. Biler P. [2], establishes the existence of attractors in a weak topology for a
system of Schrödinger and Klein-Gordon equations with Yukawa coupling. M. Ohta [29]
obtained stability results. B. Guo and Y. Li, [21], proved the existence of a strong global
attractor in H2(R3)×H2(R3) attracting bounded sets of H3(R3)×H3(R3). Cavalcanti
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M.M. and Cavalcanti V. N.D. [6], prove the global existence and uniform exponential
decay of solutions for a coupled Klein-Gordon-Schrödinger system of a generalized Yukawa
type. K. Lu and Wang B. [25], established the existence of a strong global attractor in
Hk(RN ) ×Hk(RN ), N = 1, 2, 3, attracting bounded sets of Hk(RN ) ×Hk(RN ), k ≥ 1.
Quite recently, H. Pecher [31] proved the existence of a global solution of the Klein-
Gordon-Schrödinger system with Yukawa coupling and rough data, which have not finite
energy necessarily.

An other model which is of the same type is the so called Zakharov System, which is
formed by V. E. Zakharov [39] in early seventies and is of the form

iψt + κ∆ψ = φψ, x ∈ Ω, t > 0, Ω ⊆ RN (1.4)

φtt −∆φ = ∆|ψ|2, x ∈ Ω, t > 0, (1.5)

with initial conditions

ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), (1.6)

where ψ is the (complex) envelop of the electric field, φ is the (real) fluctuation of the ion
density about the equilibrium value. The system (1.4)–(1.6) has been examined with re-
spect to the existence of local and global solutions, blow-up, exponential decay and global
attractor in both bounded and unbounded domains of RN , for N ≤ 3. Flahaut I. [10],
proves the existence of a weak global attractor in H1

0 ((0, L))×H1
0 ((0, L))

⋂
H2((0, L))×

H1
0 ((0, L))

⋂
H3((0, L)) and gives an estimation of the Hausdorff and Fractal dimension

for the dissipative Zakharov system. L. Glangetas and F. Merle, [16], [17] study the
existence of self-similar blow-up solutions as well as concentration properties of blow-up
solutions and instability results for a Zakharov system in R2. Guo Boling and Yongsheng
Li [21] proves the existence of attractor for a dissipative Klein-Gordon-Schrödinger system
of Zakharov type in R3. J. Bourgen [3], studies the Cauchy and invariant measure prob-
lem for the periodic Zakharov system. Also in an AMS monograph [4] J. Bourgen presents
in a more general setting resent results on global solutions of nonlinear Schrödinger equa-
tions. J. Bourgen and J. Colliander, [5] study the wellposedness of the Zakharov System.
J. Colliander [8], in his thesis, presents an extensive study of the initial value problem for
the Zakharov system. J. Ginibre, Y. Tsutsumi and G. Velo [15] obtain certain results on
the Cauchy problem for the Zakharov System. O. Goubet and Moise I., [18], establishe
the existence of attractor for dissipative Zakharov system in bounded domains. Takaoka
H. [35] proves the well-posedness for the Zakharov system with periodic boundary con-
ditions. Masselin Vincent A, [27] establish results on the blow-up rate for the Zakharov
system in Dimension 3. J. Colliander and G. Staffilani [9], obtain regularity bounds on
Zakharov systems. H. Pecher [30] proves global well-posedness below energy space for
the 1-dimensional Zakharov system. A. Grünrock and Pecher H., [20], establish bounds
in time for the Klein-Gordon-Schrödinger and the Zakharov systems.

Here we consider the following system of Klein-Gordon-Schrödinger Type

iψt + κψxx + iαψ = φψ, x ∈ Ω, t > 0, (1.7)

φtt − φxx + φ+ λφt = −Reψx, x ∈ Ω, t > 0, (1.8)

with initial and boundary conditions

ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), (1.9)
ψ(x, t) = φ(x, t) = 0, x ∈ ∂Ω, t > 0. (1.10)
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where κ > 0, α > 0, λ > 0 and Ω is a bounded subset of R, i.e. a bounded interval. Here
ψ stands for the dimensionless low frequency electric field and φ for (the dimensionless)
(real) low frequency density. Problem (1.7)–(1.10) models the Upper Hybrid Heating
(UHH) scheme for plasmas in fusion devices. (UHH) is the dominant branch of the
general Electron Cyclotron Resonance Heating (ECRH) scheme, which, for Tokamaks and
Stellarators, constitutes a basic method of plasma build-up and heating. The celebrated
Zakharov system, is highly successful in a multitude of applications, such as laser fusion,
electron beam fusion, solar radio bursts etc, e.g., see Sulem, C., Sulem, P. L. [34]. However,
regarding the study of (UHH), the Zakharov system may not be implemented for the
following reasons: (i) It does not consider the effect of collisions. Therefore, it can only
describe the collisionless part of the damping. (ii) It is indifferent to the presence of a dc
magnetic field, due to the nature of the ponderomotive force. Therefore, perpendicular
waves, peculiar to (UHH) heating, cannot be modelled.

In order to overcome these shortcomings, we study the effect of the space-time varying
electric field on the ion channel. Specifically, we consider the drift motion of the ions
caused by the time variation of the electric field, namely the polarization drift. However,
the space variation of the electric field is included in the polarization drift. Indeed, it
turns out that the contribution of this effect to the system of equations involves the space
derivative of the electric field. In this respect, we may talk about a non-homogeneous
polarization drift (note that a homogeneous time-varying field is sufficient for the standard
polarization drift to occur). This drift induces a polarization current, which plays the role
of the low frequency coupling between ions and electrons (see, J. Wesson [38] and D. R.
Nicholson [28]).

2. Mathematical Analysis.
(A) Estimates – Global Existence – Uniqueness
All the results presented in the rest of the paper are included in the work [24]. Introduce
the new real variable θ = φ′ + δφ, where δ > 0 to be specified later. System (1.7)–(1.10)
becomes

iψ′ + κψxx + iαψ = φψ, (2.1)

φ′ + δφ = θ, (2.2)

θ′ + (λ− δ)θ − φxx + (1− δ(λ− δ))φ = − Reψx, (2.3)

where x ∈ Ω, t > 0, and initial boundary conditions:

ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x), θ(x, 0) = θ0(x), (2.4)

ψ(x, t) = 0 x ∈ ∂Ω, t > 0. (2.5)

Then the main Existence and Uniqueness Theorem states as follows

Theorem 2.1 (Global Existence & Uniqueness Theorem). Assume that the initial con-
ditions (ψ0, φ0, θ0) ∈

(
H1

0 ∩H2(Ω)
)2 × H1

0 (Ω). Then, there exists a unique solution
(ψ, φ, θ) for the problem (2.1)–(2.5) such that

ψ ∈ L∞(0,∞;H1
0 (Ω) ∩H2(Ω)), ψt ∈ L∞(0,∞;L2(Ω)),

φ ∈ L∞(0,∞;H1
0 (Ω) ∩H2(Ω)), φt ∈ L∞(0,∞;H1

0 (Ω)), φtt ∈ L∞(0,∞;L2(Ω)),

ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), x ∈ Ω. (2.6)
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Proof. The proof is based on two a priori estimates. The first a priori estimate is
derived for (ψ, φ, θ) ∈ H1

0 (Ω)×H1
0 (Ω)×L2(Ω) and the second is for (ψ, φ, θ) ∈ (H1

0 (Ω)∩
H2(Ω)) × (H1

0 (Ω) ∩ H2(Ω)) × H1
0 (Ω). Then the existence and uniqueness results follow

applying certain functional analytic methods.

(B) Energy Decay
We return to the original system (1.7)–(1.10) and define the corresponding energy func-
tional as

E(t) =
1
2

(
||ψ||2 + κ||ψx||2 +

∫
φ|ψ|2 dx+ ||φ′||2 + ||φx||2 + ||φ||2

)
.

Note that, as in the Zakharov setup, the integral
∫
φ|ψ|2 dx determines the sign of

the Hamiltonian. Nevertheless, this integral cannot possibly affect the asymptotic value
of the energy, which remains positive, as indicated by the following result:

Lemma 2.2. Let Theorem 2.1 be fulfilled. Let that there exists R > 0, such that
||E(0)|| ≤ R. Then, there exists t∗ > 0 such that E(t) > 0, for all t ≥ t∗. We are ready
to state the final result of this part.

Theorem 2.3. Suppose that for the parameters κ, λ, α condition 2λακ > 1 holds and
there exists R(κ, λ, α) > 0, satisfying condition R2 < 2λκα − 1, such that ||E(0)|| ≤ R.
Then, the problem (1.7)–(1.10) manifests energy decay.

The time t∗ introduced in the energy decay analysis has a specific physical meaning.
This is the time so that the non-collisional integral

∫
φ|ψ|2 dx is absorbed by the collisional

terms. Given standard reaction conditions, this time is of the order of 10−8−10−6 seconds.

3. Discussion and Open Problems. The physical interpretation of the results
ends up with a threshold of the effectiveness of UHH, involving the plasma variables, i.e.,
density, ion and electron temperatures as well as the magnetic field. Our result suggests
that UHH is favored by high-density conditions, such as in the very promising density-limit
shots, where also the temperature assumes relatively low values.

Possible generalizations, include the study of a similar model in a bounded or an un-
bounded domain and the generalization of the results in more regular spaces. Also Stability
results for this KGS-type evolution system, e.g., existence and dimension of attractor are
under consideration. Finally, more complicate forms, in bounded and unbounded do-
mains, belong to future plans. Recently, we got some further results concerning the
asymptotic behavior of solutions of the problem (1.7)–(1.10). Actually, we have proved
the existence of a strong global attractor for the problem (1.7)–(1.10) under certain ex-
ternal forces, when it is defined in a bounded domain D ⊂ R (see, work [32]). Also, some
upper estimates are fixed for the Hausdorff and Fractal dimensions of this strong global
attractor (see, work [33]).
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