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ON SOME KLEIN-GORDON-SCHRÖDINGER TYPE SYSTEMS

NIKOLAOS M. STAVRAKAKIS∗

Abstract. We present some recent trends in the theory of Klein-Gordon-Schrödinger type Systems.
Then we give some resent results on the following special type of a dissipative Klein-Gordon-Schrödinger
System

iψt + κψxx + iαψ = φψ, x ∈ Ω, t > 0,
φtt − φxx + φ+ λφt = −Reψx, x ∈ Ω, t > 0,

satisfying the initial and boundary conditions

ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), x ∈ Ω,
ψ(x, t) = φ(x, t) = 0, x ∈ ∂Ω, t > 0,

with κ, α, λ positive constants and Ω a bounded subset of R. This certain system describes the nonlinear
interaction between high frequency electron waves and low frequency ion plasma waves in a homogeneous
magnetic field. Global existence and uniqueness of solutions are derived. Also necessary conditions for the
exponential energy decay of the system are established. Finally, we mention some resent results concerning
the asymptotic behavior of this problem under external forces in dimension 1.

Key words. Klein-Gordon-Schrödinger system, Electron-Ion Plasma Waves, Dissipation, Global Exis-
tence, Uniqueness, Energy Decay

1. Prehistory and Modelling. Systems of Klein-Gordon-Schrödinger type have been
studied for many years. To our knowledge, it seems that the first problems of this type is
the so called Yukawa System (see, Yukawa H. [36]), which goes back to 1935 and is of the
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following form

iψt +
1
2
∆ψ = −φψ, x ∈ Ω, t > 0, Ω ⊆ RN , (1.1)

φtt −∆φ = |ψ|2, x ∈ Ω, t > 0, (1.2)

with initial conditions

ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), (1.3)

where ψ is the complex nucleon field, φ is the real meson field. The system (1.1)–(1.3)
has been examined with respect to the existence of local and global solutions, blow-up,
exponential decay, and global attractor in both bounded and unbounded domains of RN , for
N ≤ 3. I. Fukuda and M. Tsutsumi in a series of papers (see [11], [12], [13], [14]) have studied
existence of local and global solutions as well as uniqueness, decay estimates and blow-up of
solutions in one and several dimensions. A. Bachelot [1], study existence of local and global
solutions and uniqueness. N. Hayashi and W. von Wahl, [23] study the existence of global
strong solutions of a coupled Klein-Gordon-Schrödinger system. Biler P. [2], establishes the
existence of attractors in a weak topology for a system of Schrödinger and Klein-Gordon
equations with Yukawa coupling. M. Ohta [29] obtained stability results. B. Guo and Y.
Li, [21], proved the existence of a strong global attractor in H2(R3) × H2(R3) attracting
bounded sets of H3(R3)×H3(R3). Cavalcanti M. M. and Cavalcanti V. N.D. [6], prove the
global existence and uniform exponential decay of solutions for a coupled Klein-Gordon-
Schrödinger system of a generalized Yukawa type. K. Lu and Wang B. [25], established the
existence of a strong global attractor in Hk(RN )×Hk(RN ), N = 1, 2, 3, attracting bounded
sets of Hk(RN ) × Hk(RN ), k ≥ 1. Quite recently, H. Pecher [31] proved the existence of
a global solution of the Klein-Gordon-Schrödinger system with Yukawa coupling and rough
data, which have not finite energy necessarily.

An other model which is of the same type is the so called Zakharov System, which is
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formed by V. E. Zakharov [39] in early seventies and is of the form

iψt + κ∆ψ = φψ, x ∈ Ω, t > 0, Ω ⊆ RN (1.4)

φtt −∆φ = ∆|ψ|2, x ∈ Ω, t > 0, (1.5)

with initial conditions

ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), (1.6)

where ψ is the (complex) envelop of the electric field, φ is the (real) fluctuation of the
ion density about the equilibrium value. The system (1.4)–(1.6) has been examined with
respect to the existence of local and global solutions, blow-up, exponential decay and global
attractor in both bounded and unbounded domains of RN , for N ≤ 3. Flahaut I. [10],
proves the existence of a weak global attractor in H1

0 ((0, L)) × H1
0 ((0, L))

⋂
H2((0, L)) ×

H1
0 ((0, L))

⋂
H3((0, L)) and gives an estimation of the Hausdorff and Fractal dimension for

the dissipative Zakharov system. L. Glangetas and F. Merle, [16], [17] study the existence
of self-similar blow-up solutions as well as concentration properties of blow-up solutions and
instability results for a Zakharov system in R2. Guo Boling and Yongsheng Li [21] proves the
existence of attractor for a dissipative Klein-Gordon-Schrödinger system of Zakharov type
in R3. J. Bourgen [3], studies the Cauchy and invariant measure problem for the periodic
Zakharov system. Also in an AMS monograph [4] J. Bourgen presents in a more general
setting resent results on global solutions of nonlinear Schrödinger equations. J. Bourgen and
J. Colliander, [5] study the wellposedness of the Zakharov System. J. Colliander [8], in his
thesis, presents an extensive study of the initial value problem for the Zakharov system. J.
Ginibre, Y. Tsutsumi and G. Velo [15] obtain certain results on the Cauchy problem for
the Zakharov System. O. Goubet and Moise I., [18], establishe the existence of attractor
for dissipative Zakharov system in bounded domains. Takaoka H. [35] proves the well-
posedness for the Zakharov system with periodic boundary conditions. Masselin Vincent
A, [27] establish results on the blow-up rate for the Zakharov system in Dimension 3. J.
Colliander and G. Staffilani [9], obtain regularity bounds on Zakharov systems. H. Pecher
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[30] proves global well-posedness below energy space for the 1-dimensional Zakharov system.
A. Grünrock and Pecher H., [20], establish bounds in time for the Klein-Gordon-Schrödinger
and the Zakharov systems.

Here we consider the following system of Klein-Gordon-Schrödinger Type

iψt + κψxx + iαψ = φψ, x ∈ Ω, t > 0, (1.7)

φtt − φxx + φ+ λφt = −Reψx, x ∈ Ω, t > 0, (1.8)

with initial and boundary conditions

ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), (1.9)
ψ(x, t) = φ(x, t) = 0, x ∈ ∂Ω, t > 0. (1.10)

where κ > 0, α > 0, λ > 0 and Ω is a bounded subset of R, i.e. a bounded interval. Here
ψ stands for the dimensionless low frequency electric field and φ for (the dimensionless)
(real) low frequency density. Problem (1.7)–(1.10) models the Upper Hybrid Heating (UHH)
scheme for plasmas in fusion devices. (UHH) is the dominant branch of the general Electron
Cyclotron Resonance Heating (ECRH) scheme, which, for Tokamaks and Stellarators, con-
stitutes a basic method of plasma build-up and heating. The celebrated Zakharov system,
is highly successful in a multitude of applications, such as laser fusion, electron beam fusion,
solar radio bursts etc, e.g., see Sulem, C., Sulem, P. L. [34]. However, regarding the study
of (UHH), the Zakharov system may not be implemented for the following reasons: (i) It
does not consider the effect of collisions. Therefore, it can only describe the collisionless
part of the damping. (ii) It is indifferent to the presence of a dc magnetic field, due to
the nature of the ponderomotive force. Therefore, perpendicular waves, peculiar to (UHH)
heating, cannot be modelled.

In order to overcome these shortcomings, we study the effect of the space-time varying
electric field on the ion channel. Specifically, we consider the drift motion of the ions caused
by the time variation of the electric field, namely the polarization drift. However, the space
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variation of the electric field is included in the polarization drift. Indeed, it turns out that
the contribution of this effect to the system of equations involves the space derivative of
the electric field. In this respect, we may talk about a non-homogeneous polarization drift
(note that a homogeneous time-varying field is sufficient for the standard polarization drift
to occur). This drift induces a polarization current, which plays the role of the low frequency
coupling between ions and electrons (see, J. Wesson [38] and D. R. Nicholson [28]).

2. Mathematical Analysis.
(A) Estimates – Global Existence – Uniqueness
All the results presented in the rest of the paper are included in the work [24]. Introduce
the new real variable θ = φ′ + δφ, where δ > 0 to be specified later. System (1.7)–(1.10)
becomes

iψ′ + κψxx + iαψ = φψ, (2.1)

φ′ + δφ = θ, (2.2)

θ′ + (λ− δ)θ − φxx + (1− δ(λ− δ))φ = − Reψx, (2.3)

where x ∈ Ω, t > 0, and initial boundary conditions:

ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x), θ(x, 0) = θ0(x), (2.4)

ψ(x, t) = 0 x ∈ ∂Ω, t > 0. (2.5)

Then the main Existence and Uniqueness Theorem states as follows

Theorem 2.1 (Global Existence & Uniqueness Theorem). Assume that the initial condi-
tions (ψ0, φ0, θ0) ∈

(
H1

0 ∩H2(Ω)
)2 ×H1

0 (Ω). Then, there exists a unique solution (ψ, φ, θ)
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for the problem (2.1)–(2.5) such that

ψ ∈ L∞(0,∞;H1
0 (Ω) ∩H2(Ω)), ψt ∈ L∞(0,∞;L2(Ω)),

φ ∈ L∞(0,∞;H1
0 (Ω) ∩H2(Ω)), φt ∈ L∞(0,∞;H1

0 (Ω)), φtt ∈ L∞(0,∞;L2(Ω)),

ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), x ∈ Ω. (2.6)

Proof. The proof is based on two a priori estimates. The first a priori estimate is derived
for (ψ, φ, θ) ∈ H1

0 (Ω)×H1
0 (Ω)× L2(Ω) and the second is for (ψ, φ, θ) ∈ (H1

0 (Ω) ∩H2(Ω))×
(H1

0 (Ω)∩H2(Ω))×H1
0 (Ω). Then the existence and uniqueness results follow applying certain

functional analytic methods.

(B) Energy Decay
We return to the original system (1.7)–(1.10) and define the corresponding energy functional
as

E(t) =
1
2

(
||ψ||2 + κ||ψx||2 +

∫
φ|ψ|2 dx+ ||φ′||2 + ||φx||2 + ||φ||2

)
.

Note that, as in the Zakharov setup, the integral
∫
φ|ψ|2 dx determines the sign of the

Hamiltonian. Nevertheless, this integral cannot possibly affect the asymptotic value of the
energy, which remains positive, as indicated by the following result:

Lemma 2.2. Let Theorem 2.1 be fulfilled. Let that there exists R > 0, such that ||E(0)|| ≤
R. Then, there exists t∗ > 0 such that E(t) > 0, for all t ≥ t∗. We are ready to state the
final result of this part.

Theorem 2.3. Suppose that for the parameters κ, λ, α condition 2λακ > 1 holds and there
exists R(κ, λ, α) > 0, satisfying condition R2 < 2λκα− 1, such that ||E(0)|| ≤ R. Then, the
problem (1.7)–(1.10) manifests energy decay.
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The time t∗ introduced in the energy decay analysis has a specific physical meaning.
This is the time so that the non-collisional integral

∫
φ|ψ|2 dx is absorbed by the collisional

terms. Given standard reaction conditions, this time is of the order of 10−8− 10−6 seconds.

3. Discussion and Open Problems. The physical interpretation of the results ends
up with a threshold of the effectiveness of UHH, involving the plasma variables, i.e., density,
ion and electron temperatures as well as the magnetic field. Our result suggests that UHH is
favored by high-density conditions, such as in the very promising density-limit shots, where
also the temperature assumes relatively low values.

Possible generalizations, include the study of a similar model in a bounded or an un-
bounded domain and the generalization of the results in more regular spaces. Also Stability
results for this KGS-type evolution system, e.g., existence and dimension of attractor are
under consideration. Finally, more complicate forms, in bounded and unbounded domains,
belong to future plans. Recently, we got some further results concerning the asymptotic
behavior of solutions of the problem (1.7)–(1.10). Actually, we have proved the existence
of a strong global attractor for the problem (1.7)–(1.10) under certain external forces, when
it is defined in a bounded domain D ⊂ R (see, work [32]). Also, some upper estimates are
fixed for the Hausdorff and Fractal dimensions of this strong global attractor (see, work [33]).
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