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FLENS — A FLEXIBLE LIBRARY FOR EFFICIENT
NUMERICAL SOLUTIONS

MICHAEL LEHN∗, ALEXANDER STIPPLER† , AND KARSTEN URBAN‡

Abstract. In this paper we describe the main design and realization principles of our software library
FLENS (A Flexible Library for Efficient Numerical Solutions). FLENS is a C++ library allowing easy and
straightforward coding while providing a maximum extend of efficiency. FLENS is in particular suited as a
platform for the realization of fast solvers for differential equations.

1. Introduction. Nowadays, a whole variety of software packages for numerically solv-
ing differential equations is available. Commercial tools offer solvers even for complex in-
dustrial problems. Why the need for a new one?

Our software package FLENS is motivated by several aims and scopes, in particular it
should be

• used both for teaching and research;
• flexible in the sense that is easily possible for a user to extend the library. In

particular, it should be easy to realize and test new numerical methods;
• open source and free for students and researchers;
• highly efficient providing a platform also for complex industrial applications.

The use of commercial numerical software in particular undergraduate classes may con-
flict with high fees for the corresponding licences. Thus it was one source of motivation to
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provide our students with a free but easy to use package. This also includes graduate and
PhD students writing the particular thesis in our group. Those students enter the group
and should be able to become familiar with a software package within short time. Moreover,
such persons typically leave the group after a certain amount of time after finishing the par-
ticular thesis. The software that has been produced in the framework of the thesis should
be written in such a way that is can be used for further research.

On the other hand, we work on numerical methods for pde’s since a couple of years,
in particular on adaptive wavelet methods. It has become clear that the full potential of
such methods cannot be shown by using standard existing software. The new theoretical
paradigm also requires a corresponding new software design.

The third issue is that we have a variety of third party research projects, some of them in
close cooperation with industrial partners. For these purposes, we need a flexible and efficient
software platform that enables us also to provide numerical schemes for such applications.

These goals seem to be conflicting. In particular, known packages are typically
either highly efficient or easy to handle. We introduce some of the design principles
of FLENS that bridge these two demands. The framework of FLENS is suitable
both for academic and commercial applications. It my be downloaded via the webpage
flens.sourceforge.net.

This paper is organized as follows. In Section 2 we describe the design of our matrix
and vector types allowing a clear separation of data and algorithm, an easy usage without
loss of efficiency. This is in particular achieved by avoiding virtual functions. Section 3 is
devoted to the description of the efficient realization of basic matrix-vector operations. Here,
we also make use of BLAS routines, [4]. In Section 4, we show the possible interaction of
FLENS with other numerical libraries such as LAPACK. One feature particularly useful for
adaptive numerical schemes, namely slices of matrices and vectors, are described in Section 5.
In Section 6, we show one short example how to solve pde’s with FLENS and we end with
some comments on efficiency and benchmarks in Section 7.
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2. Implementation of matrix and vector types. Polymorphism means that a par-
ticular interface is provided by entities of different types [1]. In C++ this is realized through
base classes and thereof derived classes. The base class defines the interface that has to be
provided by all derived classes. For our purpose minimal interfaces for matrix/vector types
are defined in the corresponding base classes Matrix and Vector. For the sake of simplicity
we consider in this section just an interface that enforces that all concrete implementations
support index based element access and have methods to retrieve row and column dimen-
sions. Based upon this, a function minij that initializes a matrix A with (A)ij = min{i, j}
can obviously be implemented like this:
void minij(Matrix &A)
{

for (int i=1; i<=A.numRows(); ++i) {
for (int j=1; j<=A.numCols(); ++j) {

A(i,j) = min(i,j);
}

}
}

This function will work with any matrix implementation derived from Matrix. With this
example we address an issue that usually comes along with polymorphism: virtual function
calls [2].

While the function minij is written for the matrix base type, the specialized member
functions have to be dispatched for derived classes. In C++, this is usually achieved by
declaring virtual member functions in the base class. Calls to such a virtual function are
dispatched using a lookup table which contains pointers to the specialized versions of the
method. Due to this indirection, using virtual functions inside loops may lead to a consider-
able loss of efficiency. As the actual type of the matrix object is not known at compile time,
the indirection can not be avoided through inlining.

Virtual functions can be avoided by a technique that became known as the Barton-
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Nackman-Trick [3], which is illustrated in the following for the matrix hierarchy:
template <typename Impl>
class Matrix
{

public:
Impl &
impl() {

return static_cast<Impl &>(*this);
}

double &
operator()(int row, int col)
{

impl()(row, col);
}

};

class GeneralMatrix : public Matrix<GeneralMatrix>
{

public:
double &
operator()(int row, int col)
{

// ...
}

};

The type of the derived class is provided to the base class through a template parameter.
If we just adopt the declaration part of the above function minij we can see that now
polymorphism can be achieved without performance penalty:

http://www.river-valley.com
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template <typename I>
void
minij(Matrix<I> &A)
{

// ... as above ...
}

Calling a method in the base class, e.g., A(i,j) results in a conversion to the derived
class and a subsequent call of the specialized version. As the type of the derived class is
now known at compile time, this can be inlined by a compiler. Thus, specialized methods
in GeneralMatrix are called directly. In fact, writing functions in terms of our base classes
comes without any additional runtime overhead.

FLENS provides matrix implementations that correspond to those defined in
BLAST [6]. These are GeneralMatrix, TriangularMatrix, SymmetricMatrix and
HermitianMatrix. Those are further parameterized with respect to

1. Element type, which can be:
float, double, complex<float>, complex<double>,

2. row or column oriented storage,
3. full, banded or (except for GeneralMatrix) packed storage1.

In Section 6 we will describe how users can add new matrix/vector types.

3. Basic matrix-/vector operations. FLENS implements an efficient mechanism to
evaluate linear algebra expressions. Temporary objects are hereby avoided where possible.
For appropriate standard operations BLAS routines are used to achieve high performance.
While the core of this mechanism is hidden from the user inside the library, it can easily
be extended to support operations on user defined matrix types (see Section 6 below). We
first outline drawbacks of a straightforward but naive implementation and conclude with an
outline of the mechanism used by FLENS.

1See [4] for details
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Consider the expression z = AT x+y where x, y and z are vectors and A is some matrix
type of appropriate dimension. We want that this can be coded in the most natural and
readable way:

z = transpose(A)*x+y;
In order to realize such a notation in C++, one has to overload operators * and + and

provide a function transpose2. In a naive implementation operators and functions would
compute and return the result of the operation as follows:

const VectorType
operator*(const MatrixType &A, const VectorType &x)
{

// compute A*x and return result
}

Behind the scene computation of z = AT x + y would trigger in this case
1. the computation of t1 = AT (i.e., one temporary matrix),
2. the computation of t2 = t1x (i.e., one temporary vector),
3. the computation of t3 = t2 + y (i.e., a second temporary vector) and
4. the assignment z = t3 (i.e., copying a vector).

Hence a lot of CPU time and memory is just consumed for the sake of a readable notation.
Now we are going to describe a natural and efficient realization.

For the evaluation of linear algebra expression, BLAS routines can be regarded as build-
ing blocks. Single BLAS routines can cover the computation of compound (but still simple)
expressions. Let us consider how the above example can be computed using BLAS routines.
Only two BLAS routines are needed. For a general matrix A with full storage and dense
vectors x and y the routine gemv is capable to perform operations of type y = αop(A)x+βy,
where α, β are scalars and op(A) represents A, AT or AH . Obviously α is a scaling parameter
for the product while β can be regarded as an update parameter for the left-hand side of an
assignment. For other matrix types routines of similar or same form are provided. For the

2Unfortunately C++ does not allow to support the notation A’ to express AT .
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sum of two dense vectors the routine axpy, capable to perform y = αx + y, is used. Putting
both pieces together, we compute z = AT x + y in two steps:

1. compute z = AT x using gemv with α = 1, β = 0 and op(A) = AT ,
2. compute z = z + y using axpy with α = 1.

Hence, no temporary objects are created. Hardware vendor tuned BLAS implementations
will typically recognize cache sizes and other architecture specific features providing near
optimal performance.

To combine the neat notation through operator overloading with the high performance of
BLAS implementations, we adopt the closure concept known from functional programming.
In C++ this can be realized by a technique that became known as expression templates
([7]). In FLENS, we refined the expression template technique to ease integration of new,
user defined matrix/vector types and to simplify maintainability ([8]). For matrix/vector
operations that involve types that are not supported by BLAS, user defined BLAS-style
functions must be provided (see Section 6 below).

The general idea is that an operator is overloaded such that it merely returns a closure
object, i.e., an object containing references of the operands and whose type represents the
operation. A closure in turn can be an operand of an operation. So finally the right-hand
side of an assignment ends up as a single composite closure object. In the above example
this composite closure object would then contain references of A, x and y, while its type
would represent the operation AT x + y. For its evaluation, FLENS provides a mechanism
that ‘breaks’ the closure into such parts that can be evaluated by BLAS routines. In our
example the evaluation is done through the BLAS routines gemv and axpy as demonstrated
above.

Usage of overloaded operators and expressive functions like transpose reduces the risk
of error prone code. At the same time, an at most negligible runtime overhead is added.
This is mainly due to the fact that the type of a closure object represents the type of the
encapsulated operation. Thus, a compiler is capable to map simple expressions directly onto
corresponding BLAS routine calls.

http://www.river-valley.com
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4. Using FLENS with other numerical libraries. Matrix/vector types that are
implemented in FLENS provide methods to directly access internal data. In particular we
explicitly allow the user to receive pointers to underlying storage schemes. It is therefore
possible to use FLENS together with other numerical libraries. The storage schemes of our
matrix types are conforming to the schemes documented in BLAST ([6]) and can directly
be passed to LAPACK routines ([5]). But obviously working with pointers always requires
some extra caution even if the structures behind are well documented. Some object oriented
libraries completely prohibit direct access for this reason. The compromise in FLENS is
kind of a gentlemen’s agreement. Other libraries should only be accessed through well-
tested wrapper functions and methods accessing internal data only used herein. For many
LAPACK routines, FLENS already provides such wrappers.

In addition, FLENS provides a convenient notation for calling numerical routines. The
motivation is simply that in every assignment the output parameter should be on the left-
hand side whereas input parameter should be on the right-hand side. However, C++ only
allows one single object on the left-hand side. Spending some thoughts, the bottom line
is that the desired notation can be achieved allowing more than one and even a variable
number of output parameter on the left-hand side.

To illustrate functionality and notation, we consider the computation of eigenvalues and
right/left eigenvectors. For this purpose, FLENS offers the function eig. For real-valued
symmetric matrices it acts as wrapper to the LAPACK routine syev:

DenseVector d;
SymmetrixMatrix A;
GeneralMatrix VL, VR;

d = eig(A); // only eigenvalues
(d, VR) = eig(A); // eigenvalues and right eigenvectors
(VL, d) = eig(A); // eigenvalues and left eigenvectors
(VL, d, VR) = eig(A); // eigenvalues, left and right eigenvectors

http://www.river-valley.com
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The neat thing is that types of the output parameter and their ordering control what
actually is computed. While the implementation details are beyond the scope of the present
paper, what basically gets achieved is that a wrapper routine gets called receiving references
of the left hand side objects and const references of the right-hand side objects.

This also solves the problem one usually faces when functions return large objects. In
a straightforward implementation, a function would return a temporary object that gets
copied. The advantage of our mechanism becomes obvious when we consider the LU-
decomposition of a matrix. With A = lu(A), the matrix A is overwritten by the decompo-
sition. This happens while no temporary matrix is created and no matrix copied.

Following a well-defined pattern, users can write their own wrappers providing the same
capabilities. Again, these kind of wrappers can be treated by compilers such that no runtime
overhead is added.

5. Working with matrix/vector slices. Many numerical applications demand op-
erations on parts of matrices or vectors. Common examples for such parts would be sub-
matrices or single rows/columns of a matrix. Creating copies of such slices would in some
cases cause an unnecessary waste of memory. Instead, we allow to merely reference them.
As this concept bears on similarities with views in database systems, we will adopt this term
to denote referenced matrix/vector slices. For a convenient way to express index ranges an
object named _ is used. Hereby _(2,7) denotes the indices from 2 to 7 and _(2,2,7) the
indices from 2 to 7 with stride 2, i.e. {2, 4, 6}. A maximal index range can be expressed by _
without arguments. Obviously this shows similarities with the MATLAB notation in which
_(k, l) is playing the role of (k:l). Here some examples:

FLENS notation mathematical meaning
A(_,3) (Ai,3)i=1,...,m (i.e., 3-rd column of A)
A(3,_) (A3,j)j=1,...,n (i.e., 3-rd row of A)
A(_(2,6),_(4,7)) (Ai,j)i=2,...,6; j=4,...,7

Whether matrix views should finally get copied or referenced can be expressed with the usual
C++ semantic
GeneralMatrix &B = A(_(2,6), _(4,7));

http://www.river-valley.com
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GeneralMatrix C = A(_(2,6), _(4,7));
Here, B will be an alias for a sub-matrix while C is a copy of it. For FLENS users

the concept of views is completely transparent. Matrix/vector views behave just as regular
matrix/vector types.

6. Integration of user defined matrix-/vector types. To illustrate how users can
add new matrix/vector types to FLENS, we consider the Poisson problem on the unit square
Ω = (0, 1)2: {

−∆u = f in Ω,

u = g on ∂Ω.

Using the finite difference method with the standard 5-point stencil for discretization, leads
to a linear system of equations Ahuh = fh. Hereby, the matrix Ah is a block matrix of
following structure

Ah =


T −I

−I T
. . .

. . . . . . −I
−I T

 , T =


2 −1

−1 2
. . .

. . . . . . −1
−1 2

 .

Obviously, it would be a waste of memory and CPU time to actually set up this matrix.
Instead, one would want to implement a matrix class Poisson2D whose instances just stores
the dimension of the matrix:
class Poisson2D

: public Matrix<Id>
{

public:
Poisson2D(int n);

http://www.river-valley.com
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private:
int n;

};

Now assume that we want to use the conjugate gradient method to solve the linear
system of equations. In FLENS, iterative methods like this are implemented as generic
functions and only require that the needed matrix/vector operations are defined for the
involved types. If for uh and fh FLENS builtin types are used, only a user defined function
for the matrix-vector product Ahuh has to be implemented. Such an implementation has
to follow a certain naming and signature convention with the BLAS-style functionality3:
y = αop(A)x + βy.

Without further effort, user defined operations are integrated into the evaluation mech-
anism described in Section 3. This means in particular that an expression like z = Ax + y,
where A is of type Poisson2D, gets evaluated without creation of temporary objects.

In a similar fashion matrix-matrix products or matrix-matrix sums can be implemented
for user defined types.

7. Performance benchmarks. It is not completely obvious what could be a rea-
sonable benchmark for the efficiency of our design and its realization. Since we provide a
wrapping mechanism in order to use efficient BLAS or LAPACK routines in a user-friendly
way, the optimum we can reach is the performance of the pure BLAS or LAPACK routines.
This has been tested for a whole variety of applications clearly showing that we do not lose
in this comparison. Of course, the compile time is growing, but not the execution time.

As a second test, we performed comparisons of standard LU-decomposition to solve a
linear system of equation for FLENS on the one hand and for MATLAB on the other hand.
Depending on the underlying matrix and the size of the problem, FLENS is faster by a factor
between 2 and 5.

3As A in this case is a symmetric matrix the implementation can assume that op(A) = A
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