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MATHEMATICAL THEORY FOR THE GINZBURG-LANDAU
APPROXIMATION IN SEMILINEAR PATTERN FORMING SYSTEMS

WITH TIME-PERIODIC FORCING APPLIED TO
ELECTRO-CONVECTION IN NEMATIC LIQUID CRYSTALS∗

HANNES UECKER† , NORBERT BREINDL‡ , AND GUIDO SCHNEIDER§

Abstract. Electro-convection in nematic liquid crystals and the Faraday problem are paradigms for
pattern formation in systems with external time-periodic forcing. Close to the first instability the bifurcating
solutions can be described via perturbation analysis by a Ginzburg-Landau equation. This formal procedure
can be justified mathematically through approximation and attractivity theorems. In this paper this theory
is explained for a regularized standard model describing electro-convection in nematic liquid crystals.
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1. Introduction. In the experiments for electro-convection in nematic liquid crystals a
thin layer of such a material is contained in between two spatially extended electrode plates.
When an alternating current is applied to the electrodes an electro-hydrodynamic instability
can occur if the voltage is above a certain threshold. The trivial spatially homogeneous
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solution becomes unstable and bifurcates into non-trivial pattern [4, 12]. This experiment
together with the Faraday problem is a paradigm for pattern formation in systems with
external time-periodic forcing.

The mathematical description of the dynamics of the bifurcating patterns is based very
often on the reduction of the governing partial differential equations to finite or infinite-
dimensional amplitude equations. The most famous amplitude equation occurring in such a
setup is the so called Ginzburg-Landau equation (GLe)

∂TA = c0A+ c1∂
2
XA+ c2A|A|2 (1.1)

with A = A(X,T ) ∈ C depending on X ∈ R and T ≥ 0 and with coefficients c0, c1, c2 ∈ C.
It is derived by multiple scaling analysis and describes slow modulations in time and space
of the amplitude of the linearly most unstable modes. Our interest is in the justification of
GLes for pattern forming systems with time periodic forcing.

The GLe has been derived for example for reaction-diffusion systems and hydrodynam-
ical stability problems, as the Bénard and the Taylor-Couette problem. For these examples
the GLe has been justified as an amplitude equation by a number of mathematical results:
so called approximation and attractivity theorems have been established by a number of
authors for model problems, but also for general systems including the Navier-Stokes equa-
tion, cf. [3, 26, 6, 15, 13, 16, 22]. Nowadays the theory is a well established mathematical
tool which can be used to prove stability results [25, 21], upper semi-continuity of attractors
[10, 20] and global existence results [14, 19]. Equations of Ginzburg-Landau type have also
been used extensively to describe pattern formation in nematic liquid crystals [23, 12, 28, 1].

However, the literature cited above about the mathematical justification of GLes is
restricted so far to autonomous systems and is not covering the situation of nematic liquid
crystals due to the time-periodic forcing which has to be applied in the experiment in order
to avoid the destruction of the experiment through electrolysis. In [2] we restricted the
discussion of the validity question for time-periodic systems to a scalar model equation.
Here we improve the results from [2] in such a way that all approximation and attractivity
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results from the autonomous case transfer almost one to one to the time-periodic case. As
a consequence the analyticity of the solutions of the GLe as in [2] is no longer needed. The
main steps of the theory are explained for the standard model describing electro-convection
in nematic liquid crystals. However, we circumvent the problem of the local existence and
uniqueness of solutions of the standard model by considering a regularized version. Moreover,
to avoid some additional functional analytic difficulties with the Navier-Stokes equations
over domains with more than one unbounded space directions, which are due to the non-
differentiability of the symbol of the Helmholtz projection in that case, in the following the
problem is considered in an infinitely extended strip.

The plan of this paper is as follows. In Section 2 we describe the standard model. In
Section 3 this (fully nonlinear) evolutionary system is modified by some regularizing terms
to obtain a semilinear system. In Section 4 we explain the spectral situation necessary for a
Ginzburg-Landau approximation. Section 5 contains an approximation and an attractivity
result for the Ginzburg-Landau approximation and some consequences of these results. In
Section 6 we explain in an abstract way how the ideas from the autonomous case transfer
to the time-periodic case, while in Section 7 we show in some detail how to derive the
autonomous GLe from the time-periodic system. In Section 8 we discuss the Faraday problem
as another pattern forming system with time-periodic forcing.

Notation. The spaceHm
l,u ofm-times weakly differentiable uniformly local Sobolev-functions

R× Σ → R is equipped with the norm

‖u‖Hm
l,u(R×Σ) = sup

x1∈R

m∑
|j|=0

‖∂j
xu‖L2((x,x+1)×Σ) with ‖u‖2L2(Ω) =

∫
Ω

|u(x)|2 dx.

Throughout the paper we denote possibly different constants C with the same symbol if
they can be chosen independent of the small bifurcation parameter 0 < ε� 1.

2. The standard model. There are essentially two models for the mathematical de-
scription of electro-convection in nematic liquid crystals. These are the standard model ([29]
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and the references therein) and the weak electrolyte model. The latter has been introduced
by Kramer and Treiber in [24, 23] to overcome some insufficiencies of the standard model,
which, however, will not concern us here. Thus, for simplicity we restrict ourselves to the
standard model. The following presentation and non-dimensionalization of this model is
similar to [5].

The continuum theory of Ericksen [7] and Leslie [9] treats nematic liquid crystals as
incompressible fluids with the average molecular axis described locally by a director field
n of unit vectors. For a layer of nematic liquid crystals in between two horizontal plates,
the Leslie-Erickson equations for n and the generalized Navier-Stokes equations for the fluid
velocity v and the pressure p in the presence of an electric field E are given by

(∂t + v · ∇)n = ω × n+ δ⊥(λAn− h) , (2.1)
P2(∂t + v · ∇)v = −∇p−∇ · (T visc + Π) + π2ρE , (2.2)

∇ · v = 0 , (2.3)

where ω = (∇ × v)/2 is the vorticity. As explained above, here we neglect the sec-
ond unbounded space direction and thus consider the infinitely extended strip (x, z) ∈
R× (0, π). The molecular field h is given by

h = 2
(
∂f

∂n
−∇ · ∂f

∂∇n

)
− εaπ

2(n · E)E (2.4)

where

2f = (∇ · n)2 +K2[n× (∇× n)]2 +K3[n · (∇× n)]2 , (2.5)

is the elastic energy density describing splay, twist (K2), and bend (K3) deformations. We
refer to [5] for a physical interpretation of the constants P2, λ, K2, K3, and εa. The electric
field E = E(x, z, t) ∈ R2 is considered to be quasistationary, i.e. rot E = 0. It is then split
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into an external forcing and some potential part, i.e.

E =
√

2
π
E0 cosω0t

(
1
0

)
−∇φ , (2.6)

The tensors A, and T visc are, respectively, the shear flow tensor

Aij = (∂ivj + ∂jvi)/2 (2.7)

and the viscous stress tensor

− T visc
ij =

3∑
k=1

(α1ninjnknlAkl + α2njmi + α3nimj (2.8)

+α4Aij + α5njnkAki + α6ninkAkj),

with m = δ⊥(λAn − h) and coefficients α1, . . . , α6. The tensor Π is the nonlinear Ericksen
stress tensor

Πij =
3∑

k=1

∂f

∂nk,j
nk,i. (2.9)

The projection tensor δ⊥ij = δij−ninj in (2.1) guarantees that |n| = 1 as long as the solution
exists.

In the standard model for electro-convection the continuum theory of Ericksen and
Leslie is combined with the quasi-static Maxwell equations under the assumption of an
ohmic resistivity, i.e.

P1(∂t + v · ∇)ρ = −∇ · (σEσ) (2.10)

for the charge density ρ. Finally the system is closed by Poisson’s law

ρ = ∇ · (εE) . (2.11)
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The dielectric tensor ε and conductivity tensor σ are given by εij = ε⊥δij + εaninj and
σij = σ⊥δij + σaninj , respectively. The parameters P1 and P2 are Prandtl-type time scale
ratios. Again we refer to [5] for a physical interpretation of the constants P1, σij , εij , α, r.

We assume rigid vertical boundary conditions derived from ideal conducting plate con-
ditions, rigid anchoring for the director, and finite viscosity. This means

n2 = v1 = v2 = φ = 0 (2.12)

at z = 0, π, i.e. the coordinate system is chosen such that n = (1, 0) at the upper and lower
plates located at z = 0, π. The model is invariant under arbitrary translations in x and
under the reflection

(x, n2, v1) → −(x, n2, v1).

3. The regularized standard model. Using Poisson’s law, E resp. φ can be ex-
pressed in terms of ρ and so (2.1)–(2.3) and (2.10) can be rewritten as a system of dynamical
equations for n, v, and ρ. Since n2

1 + n2
2 = 1 for our purposes it is sufficient to consider n2.

System (2.1)–(2.3) and (2.10) for n2, v, and ρ is fully nonlinear and a mixture of different
types of PDEs as quasilinear parabolic equations and balance laws. We are not aware of
any local existence and uniqueness result for this system in the literature. Since such a
theorem is fundamental for any approximation result we consider a regularized version of
the standard model. In order to obtain a semilinear system, we add artificially a regularizing
differential operator −β∆2. For small β > 0 the regularized system and the original system
show qualitatively the same bifurcation behavior. Thus we consider

∂tn2 = 〈e2,−(v · ∇)n+ ω × n+ δ⊥(λA− h)〉 − β∆2n2, (3.1)

∂tv = P−1
2 Q(−(v · ∇)v −∇ · (T visc + Π) + π2ρE)− βQ∆2v, (3.2)

∂tρ = −v · ∇ρ− P−1
1 ∇ · (µEσ)− β∆2ρ , (3.3)

where Q is the projection on the divergence-free vector fields {v | ∇ · v = 0}, cf. [13, 19],
and where E is defined through (2.6) and (2.11) in terms of ρ, n, and E0. The extension of
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Q by identity to the ρ and n variables is also denoted by Q. The system is equipped with
the boundary conditions from the non-regularized system

n2 = v1 = v2 = φ = 0 (3.4)

for z = 0, π, and additional artificial boundary conditions due to the regularization

∂2
zn2 = ∂2

zv1 = ∂2
zv2 = ρ = ∂2

zρ = 0, (3.5)

for z = 0, π. In the following (3.1)–(3.3) is abbreviated as

∂tV = M(t)V + Ñ(t, V ) (3.6)

where M(t)V stands for the linear and Ñ(t, V ) for the nonlinear terms with respect to
V = (n2, v1, v2, ρ).

4. Linear stability analysis. In order to analyze the stability of the trivial solution
V=0 in (3.6) we consider the linearized system

∂tV = M(t)V. (4.1)

Due to the translational invariance of the problem the solutions are given by Floquet-Fourier
modes

V = ϕ̂m(k, z, t) eikx eλm(k)t (4.2)

with k ∈ R, m ∈ N, and ϕ̂m periodic in t, i.e.

ϕ̂m(·, ·, t) = ϕ̂m(·, ·, t+ 2π/ω0).

For V = 0 asymptotically stable, we have for all m ∈ N and k ∈ R that Reλm(k) < 0. If
V = 0 becomes unstable through increasing E0, then there exists one curve of eigenvalues
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λ1 satisfying Reλ1(kc) = 0 if the amplitude E0 of the external alternate current equals
a critical value E0,crit. Due to the fact that we have a real-valued problem we also have
Reλ1(−kc) = 0. We assume that for k close to kc the curve of eigenvalues λ1 is simple. Due
to the reflection symmetry for x → −x this implies λ1(k) = λ1(−k) and so Imλ1(k) = 0
for all wave numbers k where λ1 is simple. For E0 = E0,crit we assume that all Floquet
exponents possess a real part strictly less than −σ0 for a σ0 > 0, except of λ1(k) for k in
small neighborhoods of ±kc. Since there is no possibility of confusion with the dielectric
tensor we denote the bifurcation parameter as usual by ε. It is defined by ε2 = E0−E0,crit.
Then by continuity for ε> 0 we have that the spectrum is only changed slightly, cf. Fig. 4.1.

all other eigenvalues

k

- σ

Re λ

λ

ε2

1
c

k

Fig. 4.1. The real part of the spectrum as a function over the Fourier wave numbers k.
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5. Mathematical theory for the Ginzburg-Landau approximation. The ansatz
for the derivation of the GLe is

εψA(x, z, t) = εA(X,T )eikcxϕ̂1(kc, z, t) + c.c.+O(ε2), (5.1)

where

X = εx and T = ε2t,

and ϕ̂1 is the critical mode belonging to m = 1 in (4.2). Inserting (5.1) into (3.6) shows that
A has to satisfy the GLe (1.1), see Sec. 7 for details.

In the following we formulate an approximation and an attractivity result for the Ginzburg-
Landau approximation and explain the consequences of the validity of such results. In the
subsequent sections we explain how to conclude these theorems from the autonomous case.

5.1. An approximation result. The formal approximation (5.1) is only useful if the
dynamics known for (1.1) can be found approximately in the original system (3.6), too. This
means that for T ∈ [0, T0] or t ∈ [0, T0/ε

2], respectively. the error (in Theorem 5.1 of order
O(ε2)) should be much smaller than the approximation εψA and the solution V which are
both of order O(ε).

Theorem 5.1. Let m ≥ 8 and A = A(X,T ) be a solution of the GLe (1.1) for T ∈ [0, T0],
satisfying

sup
T∈[0,T0]

‖A(T )‖Hm
l,u
<∞.

Then there are ε0 > 0 and C > 0, such that for all ε ∈ (0, ε0) we have solutions V of (3.6)
satisfying

sup
t∈[0,T0/ε2]

sup
(x,z)∈R×(0,π)

|V (x, z, t)− εψA(x, z, t)| ≤ Cε2.

http://www.river-valley.com
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We remark that there are other amplitude equations [17] which although derived by
a formal perturbation analysis do not reflect the true dynamics of the original equations.
Moreover, the proof of Theorem 5.1 is not trivial since solutions of order O(ε) have to
be bounded on a time interval of length O(1/ε2). Theorem 5.1 can be improved in a
number of directions. The error can be made smaller by adding higher order terms to the
approximation. However the time scale cannot be extended [26]. By a more involved analysis
[14] less regularity for the solutions of the GLe is needed.

5.2. An attractivity result. The following attractivity theorem shows that solutions
to order O(ε) initial conditions develop in such a way that after a time O(1/ε2) they can be
approximated by the solutions of the GLe (1.1). Thus, the GLe describes the solutions in
the attracting set of the system, i.e. the interesting dynamics of the standard model close to
the threshold of the first instability.

Theorem 5.2. Let s ≥ 4. For every m ≥ 0, C1 > 0 there exist T0 > 0, ε0 > 0 and C2 > 0
such that the following is true. For all ε ∈ (0, ε0) and all U0 ∈ Hs

l,u with ‖U0‖Hs
l,u
≤ C1ε the

associated solution V of (3.6) at time t = T0/ε
2 can be written as

V (x, z, T0/ε
2) = εA(X) eikcx ϕ̂1(kc, z, t) + c.c.+ ε2R(x, z)

where ‖Â‖Hm
l,u
≤ C2 and ‖R‖Hs

l,u
≤ C2.

This is only one possible version of such an attractivity theorem. See [6, 16, 19] for other
more advanced versions of attractivity theorems.

5.3. Global existence and upper semi-continuity of attractors. As already said
the above versions of the approximation and of the attractivity theorem can be improved such
that the outcome from the attractivity theorem can be used as input for the approximation
theorem. The combination of the two theorems allows for instance to transfer the global
existence of solutions from the GLe to the original system, cf. [14, 19]. Moreover, the upper
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semi-continuity of attractors holds, cf. [10, 20]. The proofs of these results are based only
on suitable approximation and attractivity theorems. Therefore the global existence and
upper semi-continuity of attractors also hold in the time-periodic case. Hence, the GLe
really gives a proper description of these systems near the bifurcation point also in case of
a time-periodic forcing.

We summarize this as follows:

Abstract theorem. Suppose that the assumptions (A1)–(A3), (B1), (B3), and (C1)
and either (B2) I or (B2) II of [19] hold for (3.6) with the following modifications. The
operator M(t) is a sum of the sectorial operator Λ from (A2) and a time-periodic operator
B(t) : Z → Z∗ where Z and Z∗ are the Banach spaces from (A1). Moreover, (B2) I or
(B2) II hold for the Floquet exponents of M(t). Then the approximation and attractivity
result from [19] remain valid if the Fourier modes in the approximation are replaced by the
Floquet-Fourier modes.

6. How to transfer the ideas from the autonomous to the time-periodic case.
In the following we sketch all modifications from the autonomous case to the time-periodic
case such that the reader will be able to check the validity of the above approximation resp.
attractivity result by reading parallel for instance [13, 2] or [19].

The main problem in the proofs of the approximation results is the long time scale
O(1/ε2) which is much longer than O(1/ε) which can be obtained by a simple application of
Gronwall’s inequality due to the O(ε) magnitude of the solutions. Only by a separation of
the modes with positive or slightly negative growth rates from the ones with strictly negative
growth rates in the linearized system the long time scale can be approached. However, there
is no spectral gap and so like in the autonomous case it turns out that it is essential for
the mathematical analysis to consider the Fourier transformed system with respect to the
unbounded spatial variable. In Fourier space (3.6) yields

∂tV̂ (k, t) = M̂(k, t)V̂ (k, t) + N̂(V̂ )(k, t), (6.1)

with k ∈ R and V̂ (k, t) a vector-valued function of z. For fixed wave number k ∈ R close
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to kc there is a spectral gap and so by [8, Theorem 7.2.3] (which is applicable due to our
regularization), a separation into so called critical and non-critical modes is possible. Using
again [8, Theorem 7.2.3] shows that the non-critical part of the evolution operator associated
to M̂(k, t) is damping with some exponential rate. Moreover, [8, Theorem 7.2.3] allows to
transform the one-dimensional critical part of M̂(k, t) with some bounded transformation
into an autonomous operator, i.e. into a multiplication with λ1. Since λ1 is simple the
associated semigroup shows growth rates of order O(eε2t). Using the multiplier theorem in
Hm

l,u-spaces from [13] shows that the associated evolution operators has this growth rate in
physical space in the Hm

l,u-spaces, too. Since the estimates for the nonlinear terms are exactly
the same in the autonomous and in the time-periodic case the proof of the approximation
result then goes along the lines of the autonomous case, cf. [13, 19]. Here, the nonlinearity
is a Lipschitz continuous mapping from some interpolation space Xα with α ∈ (3/4, 1) into
X = H0

l,u ∩ {V = QV }, where X 1 is the domain of definition of −βQ∆2. The error is then
bounded in Xα using Gronwall’s inequality, now in the system for the critical and noncritical
modes. Xα can be embedded by [8, Theorem 1.6.1] into H3

l,u which can be embedded by
Sobolev’s embedding theorem into the space C0

b of uniformly bounded continuous functions.
Similarly the proof of the attractivity result also goes along the lines of the autonomous

case, cf. [19].

7. Derivation of the Ginzburg-Landau equation. For the subsequent analysis it
is sufficient that the critical Floquet exponents λ1 near kc of M̂(k, t) are simple. How-
ever, in order to make things less abstract we assume that the linear operator M̂(k, t) with
M̂(k, t) = M̂(k, t + 2π/ω0) yields for every k ∈ R and t ∈ [0, 2π/ω0) a Floquet Schauder
basis (ϕ̂j(k, t))j∈N of L2((0, π),C4) of 2π/ω0-periodic functions ϕ̂j(k, t) = ϕ̂j(k, t + 2π/ω0)
solving

∂tϕ̂j(k, t) = M̂(k, t)ϕ̂j(k, t)− λj(k)ϕ̂j(k, t),

i.e. the Floquet functions eλ̂j(k)t ϕ̂j(k, t) are solution of ∂tV̂ (k, t) = M̂(k, t)V̂ (k, t) and λj(k)
are the associated Floquet exponents. This means that we assume that there are no Jordan
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blocks in the monodromy operator for M̂(t). The functions ϕ̂j are normalized by setting
‖ϕ̂j(k, 0)‖L2=1. For defining projections onto the ϕ̂j(k, t) we consider the adjoint problem
−∂tV̂ (k, t) = M̂∗(k, t)V̂ (k, t). Consequently also this problem has for every k ∈ R and
t ∈ [0, 2π/ω0) a Floquet Schauder basis (ϕ̂∗j (k, t))j∈N of L2((0, π),C4) of 2π/ω0-periodic
functions ϕ̂∗j (k, t) = ϕ̂∗j (k, t+ 2π/ω0) solving

−∂tϕ̂
∗
j (k, t) = M̂∗(k, t)ϕ̂∗j (k, t)− λj(k)ϕ̂∗j (k, t),

and satisfying the orthogonality

〈ϕ̂∗i , ϕ̂j〉 = δij . (7.1)

A solution V̂ (k, t) of (6.1) is expanded in terms of the Floquet functions ϕ̂j(k, t), i.e.

V̂ (k, t) =
∑
j∈N

âj(k, t)ϕ̂j(k, t) with âj(k, t) ∈ C, (7.2)

such that

∂t

∑
j∈N

âj(k, t)ϕ̂j(k, t)

 =
∑
j∈N

((∂tâj(k, t))ϕ̂j(k, t) + âj(k, t)∂tϕ̂j(k, t))

=
∑
j∈N

âj(k, t)M̂(k, t)ϕ̂j(k, t) + N̂(V̂ )(k, t).

In order to find the equations for the coefficient functions âj(k, t) we apply the adjoint
eigenfunction ϕ̂∗j (k, t) and find

∂tâj(k, t) = λ̂j(k)âj(k, t) + 〈ϕ̂∗j (k, t), N̂(k, t)〉 (7.3)
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for j ∈ N. We used (7.1) and

−〈ϕ̂∗j (k, t), ∂tϕ̂i(k, t)〉+〈ϕ̂∗j (k, t), M̂(k, t)ϕ̂i(k, t)〉

= 〈ϕ̂∗j (k, t), λ̂j(k)ϕ̂i(k, t)〉 = λ̂j(k)δij .

Our derivation of the GLe is now based on (7.3). For notational simplicity we avoid the
explicit notation of the small parameter ε in the following. We make the ansatz

a1(x, t) = εA1(X,T ) eikcx +ε2A2,1(X,T ) e2ikcx +ε2A0,1(X,T ) + c.c.,
aj(x, t) = ε2A2,j(X,T ) e2ikcx +ε2A0,j(X,T ) + c.c.

where j ∈ N \ {1}, X = εx and T = ε2t. With this ansatz we derive formally a GLe with
time periodic coefficients. We write the nonlinearity of (3.6) in the form

N(V ) = B(t, V, V ) + C(t, V, V, V ) +O(V 4), (7.4)

with bilinear and trilinear symmetric terms B and C and introduce the abbreviations

B̂j(t, k, k −m,m) = e−ikxB(t, ϕ̂1(k −m, t) ei(k−m)x, ϕ̂j(m, t) eimx),

Ĉ(t, k, k − l1, l1 − l2, l2)

= e−ikx C(t, ϕ̂1(k − l1, t) ei(k−l1)x, ϕ̂1(l1 − l2, t) ei(l1−l2)x, ϕ̂1(l2, t) eil2x).

For ε2e0ix in the j-the equation we obtain

λj(0, 0)A0,j = −2〈ϕ̂∗j , B̂1(t, 0, kc,−kc)〉|A1|2, (7.5)

and for ε2e2ikcx in the j-th equation

λj(2kc, 0)A2,j = −〈ϕ̂∗j , B̂1(t, 2kc, kc, kc)〉A2
1. (7.6)
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For ε3eikcx in the equation for j = 1 we obtain

∂TA1 = d0A1 + d1∂
2
XA1 (7.7)

+ 2〈ϕ̂∗1,
∑

j∈N\{1}

B̂j(t, kc, kc, 0)〉A1A0,j

+2〈ϕ̂∗1,
∑

j∈N\{1}

B̂j(t, kc,−kc, 2kc)〉A−1A2,j

+3〈ϕ̂∗1, Ĉ(t, kc, kc, kc,−kc)〉A1|A1|2,

with d0 = ∂ε2λ1(kc, 0) and 2d1 = ∂2
kλ1(kc, 0). In (7.7) we replace A0,j through (7.5) and A2,j

through (7.6) and obtain the GLe

∂TA1 = d0(ε)A1 + d1(ε)∂2
XA1 + γ(t, ε)A1|A1|2, (7.8)

with a time-periodic coefficient γ(t, ε). Since all coefficients dj and γ depend smoothly on
ε2 we have the existence of limits cj and γ0(t) with

dj(ε) = cj +O(ε2) and γ(t, ε) = γ0(t) +O(ε2).

In the limit ε2 → 0 we obtain a GLe

∂TA1 = c0A1 + c1∂
2
XA1 + γ0(T/ε2)A1|A1|2. (7.9)

Averaging over the highly oscillating cubic coefficient γ0(T/ε2) shows that for the dynamics
only the mean value c2 is essential in lowest order. Thus we finally have the autonomous
GLe

∂TA1 = c0A1 + c1∂
2
XA1 + c2A1|A1|2. (7.10)
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8. Another example. When a container of fluid is shaken vertically with sufficient
strength, pattern develop on the the free surface. This pattern forming system is known as
the Faraday problem. If this problem is considered in an infinitely extended strip the trivial
solution, i.e. the flat surface, becomes unstable exactly as described in Section 4, cf. [11, 27].
The first pattern to appear is sub-harmonic with half the external frequency. One model to
describe the Faraday problem are the Zhang-Vinals equations [27] which are derived in the
limit of weak damping and a deep container and which are given in case of two unbounded
dimensions by

∂th = γ∆h+Dφ−∇ · (h∇φ) +
1
2
∇2(h2Dφ)−D(hDφ) (8.1)

+D
(
hD(hDφ) +

1
2
h2∆φ

)
, (8.2)

∂tφ = γ∆φ+ Γ0∆h−G(t)h+
1
2
(Dφ)2 − 1

2
(∇φ)2 (8.3)

−(Dφ)(h∆φ+D(hDφ))− 1
2
Γ0∇ · ((∇h)(∇h)2),

where h(x, t) is the surface height and φ(x, t) a velocity potential, and the symbol of D in
Fourier space is D̂(k) = |k|. The external forcing is given by G(t) = G0 cos(ω0t) and the
parameters γ and Γ0 correspond to viscosity and surface tension respectively [27]. In case of
a strip we have ∇ → ∂x and ∆ → ∂2

x. The Zhang-Vinals equations are fully nonlinear and
so our theory again only applies to a regularized version, i.e. if −β∆2h and −β∆2φ, with a
small β > 0, are added to the right hand side of (8.1) and (8.3), respectively.
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